скачать книгу бесплатно
, и то первое химическое вещество, которое изначально имеется в количестве
, преобразуется во второе химическое вещество, которое получается в количестве
в момент времени
. Опираясь на свои школьные знания, объясните, почему
. Какие значения
являются допустимыми? Какой смысл имеет
? Как выглядит график функции
от
?
b. Химические реакции называются автокаталитическими, если скорость, с которой они происходят, пропорциональна как количеству сырья, так и количеству продукта, тот есть продукт реакции отказывается её катализатором. Модно снова использовать очень малый интервал времени для моделирования такого действия, но уже с помощью другого уравнения. Пусть общее количество химических веществ участвующих в реакции равно
и то одно химическое вещество преобразуется в другое химическое вещество, которое получается в количестве
. Объясните, почему в данном случае
. Если
мало, но не равно нулю, то как будет выглядеть график функции
от
? Если
, то как будет выглядеть график функции
от
? Можете ли интуитивно объяснить форму полученного графика? Обратите внимание на тот факт, что
будет очень маленьким, потому что используется небольшой интервал времени. Модель логистического роста в таких случаях иногда также называют автокаталитической моделью.
Заметим, что пришедшая из химии автокаталитическая модель применима, среди прочего, для моделирования динамики трудовой миграции в сфере математического образования.
1.3. Анализ нелинейных моделей
В отличие от простой линейной модели, описывающей экспоненциальный рост, нелинейные модели, такие как дискретная логистическая, могут описывать достаточно сложную динамику поведения. Без сомнения, это стало заметным в ходе выполнения некоторые упражнений из предыдущего раздела.
В этом разделе рассмотрим несколько конкретных типов поведения и разработаем простые инструменты для их изучения.
Начнём с моделирования таких явлений, как переходные процессы, равновесие и стабилизация. Полезно выделить несколько аспектов, связанных с поведением динамической модели. Иногда, несмотря на первоначальную уникальность, после того как прошло много шагов, поведение модели становится шаблонным. Первые несколько шагов итерации, однако, могут не указывать на то, что подобное произойдет в долгосрочной перспективе. Например, с дискретной логистической моделью
и большинство начальных значений
, первые несколько итераций модели производят относительно большие изменения в
по мере дальнейшего приближения к 10. Таким образом, подобное поведение на ранней стадии называется переходным, потому что оно в конечном итоге сменяется другим поведением. Однако это не означает, что переходные процессы не вызывают интереса, поскольку реальные популяции вполне могут переживать кризисные ситуации, которые продолжают возвращать популяцию обратно на переходный этап.
Как правило, исследователей интересует долгосрочное поведение модели. Причина этого заключается в том, что изучаемая система не должна быть разрушена раньше, чем прекратятся переходные процессы. Часто, но далеко не всегда, долгосрочное поведение не зависит от точной численности исходной популяции. В модели
, долгосрочное поведение для большинства начальных значений заключается в том, что популяция становится очень близкой к
. Заметим, что если
, то
, следовательно в дальнейшем численность популяции никогда не поменяется. Таким образом,
является равновесием (или стационарной, фиксированной точкой) модели.
Определение. Равновесным значением для модели
является значение
такое, что
. Это эквивалентно тому, что для модели
существует значение
такое, что
.
Нахождение равновесных значений сводится к решению уравнения равновесия. Для модели
, решив уравнение
видим, что существует ровно два равновесных значения:
и
.
Вопросы для самопроверки:
– Графически тоже можно найти равновесия, выполнив поиск пересечения кривой
с диагональной прямой. Почему это так?
Тем не менее, Равновесие все еще может иметь различные качественные особенности. В примере выше
и
являются равновесиями, но популяция, близкая к 0, имеет тенденцию отходить от 0, тогда как популяция близкая к 10 имеет тенденцию двигаться к 10. Таким образом, 0 является неустойчивым или отталкивающим равновесием, а 10 является стабильным или притягивающим равновесием.
Предположим, что модель близка к описанию реальной популяции, стабильные равновесия – это те, которые можно наблюдать не только в живой природе. Поскольку любая система, вероятно, будет иметь небольшие отклонения от идеальной модели, даже когда популяция находится в состоянии равновесия, ожидается, что она будет меняться, по крайней мере, благодаря тем факторам, которые исключены из модели или изначально не принимались во внимание. Однако, отклоняясь на небольшое расстояние от стабильного равновесия, наблюдаемое значение будет возвращаться к нему обратно. С другой стороны, если происходит отклонение от неустойчивого равновесия, то наблюдаемое значение остается в стороне. Хотя нестабильные равновесия важны для понимания модели в целом, они не являются характерными особенностями популяции, которые стоит когда-либо ожидать в реальном мире.
Далее займёмся вопросами линеаризации. Следующая цель – определить, что заставляет одни равновесия быть стабильными, а другие – нестабильными.
Стабильность зависит от того, что происходит вблизи равновесия. Итак, чтобы сконцентрироваться в окрестности
, рассмотрим популяцию
, где
– очень маленькое число, которое говорит о том, насколько далеко популяция находится от состояния равновесия. Называется
отклонением от равновесия и интересно тем, как оно меняется с течением времени. Вычислим
и используем его для поиска
. Если
больше, чем
по абсолютной величине, то можно сделать вывод о том, что
отдалилось от
. Если наоборот,
меньше
по абсолютной величине, то
приблизилось к
. Если теперь проанализировать, как меняется
на всех достаточно малых значениях
, то можно будет определить, является ли исследуемое равновесие стабильным или нестабильным. Растущее отклонение означает нестабильность, в то время как уменьшающееся означает стабилизацию. Здесь не учитывается знак отклонения, рассматривая лишь абсолютное значение. Знак стоит принимать во внимание в последнюю очередь, так как он не имеет прямого отношения к вопросу о стабильности.
Пример. Рассмотрим модель
, с которой уже сталкивались ранее и знаем, что равновесие достигается в точках
и 10. В первую очередь исследуем
, которое, судя по графику, стабилен на основании численных экспериментов. Подстановка значений
и
в уравнение для модели приводит к следующему выводу:
Заметим, что
является очень малым числом, меньше 1, следовательно,
еще меньше и ничтожно мало по сравнению с
. Таким образом
.
Это означает, что значения
близкие к равновесию будут иметь отклонение от равновесия, уменьшающееся примерно в 0.3 раза с каждым последующим шагом времени. Поэтому небольшие отклонение от равновесия в дальнейшем уменьшаются и
действительно стабильное значение.
Можно смотреть на число 0.3 как на «коэффициент растяжения», который говорит о том, насколько стремительно меняются отклонения от равновесия с течением времени. В данном примере, поскольку растягиваемся в менее чем 1 раз, на деле имеет место сжатие.
Процесс, описанный в примере выше, называется линеаризацией модели в равновесии, потому что сначала фокусируем внимание вблизи равновесия путем линейной замены
, а затем игнорируем члены степени больше 1 в
. Остается только линейная модель, аппроксимирующая исходную модель. Линейные модели, как видели, легко понять, потому что они производят либо экспоненциальный рост, либо распад.
Вопросы для самопроверки:
– Выполните аналогичный анализ для другого равновесия этой модели, чтобы показать, что оно нестабильно. Каким будет коэффициент растяжения, на который расстояния от точки равновесия растут с каждым шагом времени?
В результате аналогичного анализа в окрестности 0 обнаружится, что линеаризация при
дает
. Поэтому возмущения от этого равновесия со временем растут, следовательно,
неустойчиво. В общем случае, когда коэффициент растяжения больше 1 по абсолютной величине, равновесие нестабильно. И наоборот, когда оно меньше 1 по абсолютной величине, равновесие стабильно.
Из курса математического анализа известно, что вышеописанный процесс линеаризации напоминает аппроксимацию графика функции по касательной прямой. Развивая эту идею коэффициент растяжения в предыдущем примере можно было бы выразить как отношение
при бесконечно малых значениях
. Но
, где
уравнение, определяющее модель. Заметим, что в последнем равносильном преобразовании использовалось равенство