скачать книгу бесплатно
end
2. Для популяции со временем регенерации значительно меньшей единицы времени может быть неуместно думать о пропускной способности как о константе. Исследуйте, что произойдет, если пропускная способность изменяется синусоидально. Для начала попробуйте понять следующие команды MATLAB:
t=[0:50]
K=5+sin((2*pi/12)*t)
p=.1; pops=p
for i=1:50
p=p+.2*p*(1-p/K(i));
pops=[pops p];
end
plot(t,K,t,pops)
Рекомендации
Объясните, почему синусоидально изменяющаяся пропускная способность может иметь физический или социально-экономический смысл при некоторых обстоятельствах.
Исследуйте поведение модели для различных вариантов
и
. Колеблется ли
вместе с
? Обратите особое внимание на то, когда популяция достигает пика и каково среднее значение
в долгосрочной перспективе. Соответствуют ли результаты машинных экспериментов вашей интуиции?
Что происходит, если изменяется частота колебаний пропускной способности? Попробуйте заменить
в предыдущем примере на
при разных N.
По мере увеличения
эта модель демонстрирует бифуркации? Хаос?
3. Изучите, что произойдет, если пропускная способность изменяется случайным образом в логистической модели, и, в частности, влияние такой пропускная способность на небольшие популяции. Нужно будет знать, что команда rand(1) в MATLAB выдает случайное число в диапазоне от 0 до 1 с равномерным распределением, и что randn(1) генерирует случайное число из нормального распределения с матожиданием 0 и стандартным отклонением 1. Можете начать с использования программы onepop.m с выражением типа 10 + rand(1) в качестве пропускной способности в логистической модели.
Рекомендации
Возможно, 10*rand(1) или 10+2*randn(1) были бы лучшей формулой для значений
в экспериментальной модели. Опишите качественные различия между реальными ситуациями, которые могут описывать эти математические выражения.
Для выбранного выражения изучите поведение модели для различных вариантов
и
. Как ведет себя
? Каково среднее значение
в долгосрочной перспективе? Соответствуют ли результаты вашей математической интуиции?
По мере увеличения
эта модель демонстрирует бифуркации? Хаос?
Исследуйте, что происходит, если численность популяции небольшая и принимает целые значения. В MATLAB команда floor(p) возвращает ближайшее целое число меньше или равное