скачать книгу бесплатно
-цикла. Таким образом, как только
становится достаточно большим, небольшие дополнительные увеличения его значения имеют более радикальные последствия.
Во-вторых, если
продолжает увеличиваться после определенной точки (?2.692…), на рисунке 1.6 этот фрагмент подсвечен красным, то все бифуркации на
-циклах произошедшие ранее начинают смешиваться, обнаруживается принципиально иной тип поведения аттракторов. Создается впечатление, что предельные значения модели изменяются более или менее случайным образом. Однако такое поведение, конечно, не случайно – существует полностью детерминированная формула, воспроизводящая его. Техническая терминология для описания того, что произошло, заключается в том, что поведение модели стало хаотичным. Выбор слова «хаос» для описания этого процесса, возможно, неудачен, поскольку вызывает ассоциацию с элементами случайности и изначальной путаницы, которых на самом деле нет. Тем не менее, данная математическая модель прекрасно находит себе практическое применение в современных цифровых криптосистемах и аналоговых системах радиоэлектронной борьбы, поскольку достаточно просто реализуется на аппаратном уровне.
Подобный «хаос» в действительности имеет довольно точное техническое определение, но не будем его приводить. Вместо этого просто неформально укажем на два требования, которые математики предъявляют к употреблению этого слова: 1) модель должна быть детерминированной, то есть в ней не может быть случайности; и 2) прогнозы модели чрезвычайно чувствительны к начальным условиям.
Чтобы увидеть, как именно дискретная логистическая модель проявляет свою хаотичность, например, зафиксировав
, достаточно проиллюстрировать проявление второго требования. На рисунке 1.7 показаны значения
, которые возникают из двух разных, но достаточно близких друг к другу значений
и
.
Рисунок 1.7 Результаты роста значения
, полученные из двух близких начальных значениях
для логистической модели
при
.
Обратите внимание на тот факт, что, хотя популяции и изменяются похожим образом в течение нескольких первых шагов, после этого они становятся полностью различимыми. В результате для такой пары значений наблюдается чрезвычайная чувствительность модели к начальным условиям. Конечно, это не является доказательством чего-либо, и вполне возможно, что такое поведение было просто последствием череды ошибок компьютерного округления. Однако математиками строго доказано, что это подлинный «хаос».
Возможность хаотического поведения в такой простой популяционной модели, как дискретная логистическая, вызвала большой ажиотаж в 1970-х годах, когда она была впервые опубликована в работе Мэй от 1978 года. Если бы такая простая модель смогла воспроизводить сложное поведение любой динамической системы, то от гипотезы о том, что сложная динамическая система может возникать лишь из сложных взаимодействий и флуктуаций окружающей среды пришлось бы отказаться. Дальнейшая работа Мэй с сотоварищами по вычислению соответствующих значений таких параметров, как
, в математических моделях на основании лабораторных и реальных популяциях насекомых заставила их усомниться в том, что хаотическое поведение действительно наблюдается в реальной динамике живых популяций. Тем не менее, исследование эпидемий кори в Нью-Йорке действительно предполагало возможность контролируемого хаоса. Однако эпидемический паротит и ветряная оспа, как оказалось, вели себя отнюдь не хаотично. Хотя та работа все еще не теряет актуальности, существует очень мало данных высокого качества и достаточно длительной продолжительности, чтобы в действительности проверить ключевую идею. В последнее время основное внимание уделялось демографическим моделям, более сложным, чем логистические. Фактически, в 1996 году Кушинг и др. объявили о первом открытии реальной популяции, лабораторной популяции мучного жука триболия, которая демонстрировала хаотическую динамику и опубликовали этот результат в 2001 году.
Задачи для самостоятельного решения:
1.3.1. Точки равновесия модели располагаются там, где график зависимости
от
пересекает прямую линию
. Предположим, что фокусируемся на участке графика вокруг точки равновесия и увеличиваем масштаб так, чтобы график функции
от
казался прямой линией. В каждой из моделей, показанных на рисунке 1.8, решите, является ли равновесие стабильным или нестабильным, выбрав значение
близкое к устойчивому состоянию, а затем изобразите паутинную диаграмму.
а.
б.
в.
г.
Рисунок 1.8. Заготовки паутинных диаграмм для задачи 1.3.1.
1.3.2. Исходя из приведенной выше задачи, в каком диапазоне должен находиться наклон графика функции
от
в точке равновесия, чтобы обеспечить стабильность? Неустойчивость? Подсказка: возможно, захотите подумать об особых случаях, взяв наклон сначала ?1, а затем 1.
1.3.3. Средствами математического анализа сформулируйте ответ на предыдущую задачу на языке производных: если
является точкой равновесия модели
, то она стабильна, когда выполнено следующее условие _________________ .
1.3.4. С точки зрения математики, имея дело с логистической моделью роста
, всегда можно выбрать единицы, в которых измеряется
так, чтобы
.Таким образом, можно рассматривать уравнение
, имеющее только один параметр
, а не два. Исследуйте долгосрочное поведение этой модели для различных значений
, начиная с .5 и постепенно увеличивая его, используя программу onepop.m для MATLAB из задачи 1.2.4. При каких значениях
обнаруживается сходимость к равновесию без колебаний? А при каких
сходимость к равновесию осуществляется с колебаниями? При каких
появляется 2-цикл? А при каких – цикл длины 4?
1.3.5. В предыдущем упражнении обнаружили, что по мере увеличения
после значения 2 популяция перестанет стремиться к
и вместо этого попадет в цикл длины 2 и более.
а. Покажите, что, несмотря на срыв модели в 2-цикл, единственными точками равновесия по-прежнему являются
и 1.
б. Если
попадает в 2-цикл, то
. Поэтому, возможно, стоит найти формулу для
выраженного через
. Сделайте это для
и
. Ответ должен оказаться многочленом четвертой степени.
в. Можно ли использовать полученные результаты из части (б) для поиска аналитических формул точек равновесия в 2-цикле, приравняв
? Попробуйте. Не всё может получиться с первого раза, но, по крайней мере, попробуйте объяснить те сложности, с которыми столкнулись.
1.3.6. Для каждого из следующих пунктов определите точки равновесия.
а.
б.
в.
г.
д.
1.3.7. Для пунктов (а–д) из предыдущей задачи алгебраическими преобразованиями линеаризуйте модель сначала на устойчивом состоянии 0, а затем на другом устойчивом состоянии для определения типа их устойчивости.
1.3.8. Вычислите все точки равновесия модели
. Затем используйте чисто алгебраические средства для линеаризации в каждой из этих точек, чтобы определить, когда они стабильны или нестабильны.
1.3.9. Средствами математического анализа повторите решение предыдущей задачи используя производные для определения устойчивости равновесий
. Конечно, должны получиться те же ответы.
1.3.10. Несколько иной подход к поиску соотношения между производными и стабильностью заключается в следующем: найдите приближение касательной прямой к
в точках равновесия
и
. После этого замените
найденными линейными приближениями в уравнении
. Используйте это для определения типа стабильности точек равновесия. Полученный результат должен совпадать с ответами из двух предыдущих задач.
1.3.11. Моделирование многих социальных процессов связано с диффузией. Даже на уровне математических идей их взаимное проникновение между самыми разными отраслями очень заметно. Простым примером является найм выпускников математических специальностей на работу программистами (верно и обратное, квалифицированные программисты как правило дополнительно получают качественную математическую подготовку). Простая модель представляет социальную группу программистов как единый пул с концентрацией незаурядных умов
, а группу профессиональных математиков как смежный отдел с концентрацией умов
. Если для простоты предположить, что оба интеллектуальных пула имеют единичный объем, то в течение фиксированного промежутка времени на одной итерации найма новых сотрудников общее количество сотрудников
окажется неизменным. Если представить себе очень маленький фиксированный интервал времени, то увеличение
за этот временной интервал будет пропорционально разности между
и
. То есть
. Этот экспериментальный факт иногда называют законом Фика.
а. В каком диапазоне должен быть параметр
, чтобы эта модель имела смысл?
б. Используя тот факт, что
, формализуйте модель так, оставив лишь два параметра,
и
, чтобы выразить
через
.
в. Для
,
, и различных вариантов значений
, исследуйте модель с помощью программы onepop.m для MATLAB из задачи 1.2.4. Как изменится поведение модели, если использовать другое значение
?