banner banner banner
Математические модели в естественнонаучном образовании. Том I
Математические модели в естественнонаучном образовании. Том I
Оценить:
Рейтинг: 0

Полная версия:

Математические модели в естественнонаучном образовании. Том I

скачать книгу бесплатно


. Поскольку интересны лишь значения

, очень близкие к

, то последнее выражение очень близко к предельному значению

. Но этот предел по определению является не чем иным, как производной

, производной функции, определяющей модель. Итак, мы доказали следующую теорему.

Теорема. Если модель

 имеет равновесное значение

, то

 подразумевает, что значение

 нестабильно, а при

 , будет

 стабильным значением. Если же

, то этой информации недостаточно для определения стабильности и необходимо проводить дополнительное исследование.

Пример. Пусть

, тогда

. Вычислим

. Следовательно,

, поэтому

 стабильно.

Обратите внимание, что в этом примере значение, которое нашли для

, оказалось точно таким же, как значение, которое нашли для «коэффициента растяжения» в примере выше, без использования инструментов дифференциального исчисления. Это, конечно, должно было произойти, потому что то, что привело к производной, изначально было более тщательным исследованием «методом пристального всматривания». Таким образом, производную можно интерпретировать как меру того, насколько быстро функция меняет свои значения.

Поскольку использовался формализованный подход, то есть записывались формулы и уравнения, для иллюстрации тесной связи между понятиями производной и стабилизацией поведения модели, настоятельно рекомендуется решить задачи с 1.3.1 по 1.3.3 в конце раздела, чтобы представить обнаруженную связь графически.

Почему важны как графический, так и аналитический подходы к определению стабильности? Первый является наиболее интуитивным и делает основные идеи наиболее ясными. Что можно было наблюдать на примере. Но слабость такого подхода в том, что он действенен лишь для моделей, включающих простые алгебраические формулы. Если бы в уравнении модели присутствовали экспоненты или другие сложные функции, алгебраические средства оказались бессильны. Когда модель усложняется, математический анализ становится прекрасным подручным инструментом для профессионального исследователя.

При линеаризации для определения стабильности очень важно сосредоточиться на равновесии. Даже не пытайтесь определить является ли точка стабильным или нестабильным равновесием, пока не убедитесь в том, что это точка является равновесием в принципе. Последующий анализ предполагает, что точка

 удовлетворяет равенству

. Например, если бы попытались линеаризовать

 для

 в предыдущем примере, то не смогли бы ничего сделать, потому что 11 не является точкой равновесия.

Наконец, также важно, что проведённый анализ стабильного и неустойчивого равновесия, был локальным, а не глобальным. Эта устоявшаяся терминология означает, что рассмотрели лишь то, что происходит в очень небольших окрестностях вокруг точки равновесия. Хотя устойчивое равновесие будет притягивать все близлежащие значения, это не означает, что значения расположенные далекого тоже должны стремиться именно к нему. Точно так же, как несмотря на то нестабильность равновесие, нельзя утверждать, что далёкие от него значения не будут к нему стремиться или не окажутся вовсе ему равными.

Далее рассмотрим такие явления в динамическом моделировании как колебания, бифуркации и хаос. В задаче 1.2.4 предыдущего раздела исследовалось динамическое поведение логистической модели

 для K = 10 при множестве значений r. На самом деле, параметр

 в модели не очень важен; можно выбрать единицы, в которых измеряется численность популяции так, чтобы пропускная способность стала равна 1. Например, если пропускная способность составляет 10 000 штук, то можно использовать масштабную единицу равную 10 000, и тогда получится

. Это наблюдение позволяет подробно сосредоточиться на том, как параметр

 влияет на поведение модели.

Зафиксировав

, для любого значения

 логистическая модель имеет два равновесных значения, 0 и 1, так как это единственные значения

, которые приводят к

. Как увидите в ходе решения задач чуть позже, «коэффициент растяжения» при

 будет равен

, а при

 равен

.  Поэтому

 всегда является неустойчивым равновесием для

.

Случай

 гораздо интереснее. Во-первых, когда

, что равносильно

, модель имеет стабильное равновесие в точке

. Формула

 показывает, что знак

 при этом никогда не изменится; хотя отклонение уменьшается, первоначально положительное отклонение остается положительным, а изначально отрицательное – отрицательным. Популяция просто движется к равновесию, никогда не превышая его.

Далее, когда

 увеличивается настолько, что

, то

 и равновесие будет все еще стабильным. Однако, теперь видим, что так как

, то знак

 будет чередоваться между положительным и отрицательным значением по мере увеличения

. Таким образом, можно видеть колебательное поведение выше и ниже точки равновесия, поскольку отклонение от равновесного значения имеет чередование знака. Таким образом, популяция приближается к равновесию как затухающее колебание.

Подумаем о том, почему такое колебание может произойти с точки зрения моделируемой популяции. Если

, мера скорости воспроизводства новых ленов популяции, достаточно велика, то популяция ниже пропускной способности окружающей среды может за один временной шаг своего развития временно вырасти настолько, что превысит пропускную способность. Как только численность превышает пропускную способность, популяция вымирает достаточно быстро, чтобы к следующему шагу она снова оказалась ниже пропускной способности окружающей среды. Но затем её численность снова вырастет настолько, чтобы превзойти критическое значение. Как будто популяция перенастраивается и адаптируется заново на каждом временном интервале.

Если параметр

 логистической модели окажется больше только что рассмотренных значений, то популяция не приблизится к равновесию. Когда

, получится

 и поэтому ранее устойчивое равновесие

 становится неустойчивым. Таким образом, происходит резкое качественное изменение поведения численности популяции по мере дальнейшего увеличения параметра

. Отсюда возникает интересный вопрос, каковы возможности модели с двумя неустойчивыми равновесиями и без устойчивых. Какое поведение тогда можно ожидать в долгосрочной перспективе?

Компьютерный эксперимент показывает, что для значений

 чуть больше 2 популяция попадает в 2-цикл, её численность бесконечно прыгает взад и вперед между значением выше 1 и значением ниже 1. По мере дальнейшего увеличения

 значения в 2-цикле меняются, но наличие 2-цикла сохраняется до тех пор, пока не достигнем другого значения

, при котором происходит еще одно внезапное качественное изменение. На этот раз видим, что 2-цикл становится 4-циклом. Дальнейшее увеличение

 производит 8-циклы, затем 16-циклы и так далее.

Эта модель приводит к неожиданному, но интересному выводу: одна и та же популяция может демонстрировать разные циклы в своей численности, даже когда окружающая среда совершенно неизменна. Считая, что теоретические предположения в построении математической модели были верны и популяция имеет достаточно большое значение

, на практике она может никогда не достигать ни одного из теоретически существующих равновесных значений.

Хороший способ понять влияние изменения параметра

 на рассматриваемую модель заключается в изображении диаграммы бифуркации на рисунке 1.6. В Maple это изображение легко получить следующей серией команд:

with(IterativeMaps):with(ImageTools):

Logistic := Bifurcation([x], [x + r*x*(1 – x)], [0.99], 1.5, 3):

ArrayTools:-Dimensions(Logistic)

ColouringProcedures:-HueToRGB(Logistic):Embed(Logistic)

Рисунок 1.6. Бифуркационная диаграмма логистической модели

. По горизонтальной оси слева направо меняется значение параметра

, а по вертикальной снизу вверх отложены циклические аттракторы значений соответствующей популяции.

Рисунок 1.6 получен следующим образом. Для каждого значения

 на горизонтальной оси выбирается некоторое значение

 и выполняется итерация модели на несколько временных шагов, чтобы пройти этап переходного процесса, например, раз 200. На практике это означает повторение итераций столько раз, пока не надоест. Затем продолжаются итерации на серии дополнительных шагов, раз 100, но теперь все значения

 наносятся на вертикальную ось над конкретным используемым

. Это значения будут концентрироваться вокруг своеобразных точек притяжения, формируя так называемые циклические аттракторы.

Чтобы проиллюстрировать процесс для дискретной логистической модели, положим

. Тогда, независимо от

, после первого набора большого числа итераций,

 будет очень близок к стабильному равновесию

. Таким образом, когда строим следующий набор из многих итераций, просто многократно строим точки, которые будут выглядеть так, будто они находятся в

. На рисунке 1.6 точки фрагмента этой горизонтальной прямой выделены розовым цветом.

Если теперь продолжить процесс построения диаграммы при

 чуть большем чем 2, то первый набор итераций устремляет значения

 в 2-цикл, и затем, когда строится график на последующем наборе итераций, появляются точки, которые циклически перескакивают назад и вперед между двумя значениями, поэтому кажется, будто построили две точки. На рисунке 1.6 точки сформировавшихся в результате ветвей выделены синим.

На этой диаграмме заметно несколько особенностей. Во-первых, интервал значений

, через который получаем

-цикл, будет короче, чем для предыдущего