Читать книгу Живи долго! Научный подход к долгой молодости и здоровью (Майкл Грегер) онлайн бесплатно на Bookz (30-ая страница книги)
bannerbanner
Живи долго! Научный подход к долгой молодости и здоровью
Живи долго! Научный подход к долгой молодости и здоровью
Оценить:
Живи долго! Научный подход к долгой молодости и здоровью

3

Полная версия:

Живи долго! Научный подход к долгой молодости и здоровью

1411

Yasuda M, Tanaka Y, Kume S, et al. Fatty acids are novel nutrient factors to regulate mTORC1 lysosomal localization and apoptosis in podocytes. Biochim Biophys Acta. 2014;1842(7):1097–108. https://pubmed.ncbi.nlm.nih.gov/24726883/

1412

Obersby D, Chappell DC, Dunnett A, Tsiami AA. Plasma total homocysteine status of vegetarians compared with omnivores: a systematic review and meta-analysis. Br J Nutr. 2013;109(5):785–94. https://pubmed.ncbi.nlm.nih.gov/23298782/

1413

Khayati K, Antikainen H, Bonder EM, et al. The amino acid metabolite homocysteine activates mTORC1 to inhibit autophagy and form abnormal proteins in human neurons and mice. FASEB J. 2017;31(2):598–609. https://pubmed.ncbi.nlm.nih.gov/28148781/

1414

Dumas SN, Lamming DW. Next generation strategies for geroprotection via mTORC1 inhibition. J Gerontol A Biol Sci Med Sci. 2020;75(1):14–23. https://pubmed.ncbi.nlm.nih.gov/30794726/

1415

Melnik BC. Dietary intervention in acne: attenuation of increased mTORC1 signaling promoted by Western diet. Dermatoendocrinol. 2012;4(1):20–32. https://pubmed.ncbi.nlm.nih.gov/22870349/

1416

Melnik BC. Linking diet to acne metabolomics, inflammation, and comedogenesis: an update. Clin Cosmet Investig Dermatol. 2015;8:371–88. https://pubmed.ncbi.nlm.nih.gov/26203267/

1417

Moro T, Brightwell CR, Velarde B, et al. Whey protein hydrolysate increases amino acid uptake, mTORC1 signaling, and protein synthesis in skeletal muscle of healthy young men in a randomized crossover trial. J Nutr. 2019;149(7):1149–58. https://pubmed.ncbi.nlm.nih.gov/31095313/

1418

Melnik BC. Milk – a nutrient system of mammalian evolution promoting mTORC1-dependent translation. Int J Mol Sci. 2015;16(8):17048–87. https://pubmed.ncbi.nlm.nih.gov/26225961/

1419

Melnik BC, John SM, Carrera-Bastos P, Cordain L. The impact of cow’s milk-mediated mTORC1-signaling in the initiation and progression of prostate cancer. Nutr Metab (Lond). 2012;9(1):74. https://pubmed.ncbi.nlm.nih.gov/22891897/

1420

Melnik BC. Milk – a nutrient system of mammalian evolution promoting mTORC1-dependent translation. Int J Mol Sci. 2015;16(8):17048–87. https://pubmed.ncbi.nlm.nih.gov/26225961/

1421

Melnik BC. Lifetime impact of cow’s milk on overactivation of mTORC1: from fetal to childhood overgrowth, acne, diabetes, cancers, and neurodegeneration. Biomolecules. 2021;11(3):404. https://pubmed.ncbi.nlm.nih.gov/33803410/

1422

Melnik BC, John SM, Schmitz G. Milk is not just food but most likely a genetic transfection system activating mTORC1 signaling for postnatal growth. Nutr J. 2013;12:103. https://pubmed.ncbi.nlm.nih.gov/23883112/

1423

Cordain L, Lindeberg S, Hurtado M, Hill K, Eaton SB, Brand-Miller J. Acne vulgaris: a disease of Western civilization. Arch Dermatol. 2002;138(12):1584–90. https://pubmed.ncbi.nlm.nih.gov/12472346/

1424

Danby FW. Acne and milk, the diet myth, and beyond. J Am Acad Dermatol. 2005;52(2):360–2. https://pubmed.ncbi.nlm.nih.gov/15692488/

1425

Aghasi M, Golzarand M, Shab-Bidar S, Aminianfar A, Omidian M, Taheri F. Dairy intake and acne development: a meta-analysis of observational studies. Clin Nutr. 2019;38(3):1067–75. https://pubmed.ncbi.nlm.nih.gov/29778512/

1426

Melnik BC. Linking diet to acne metabolomics, inflammation, and comedogenesis: an update. Clin Cosmet Investig Dermatol. 2015;8:371–88. https://pubmed.ncbi.nlm.nih.gov/26203267/

1427

Melnik BC. Lifetime impact of cow’s milk on overactivation of mTORC1: from fetal to childhood overgrowth, acne, diabetes, cancers, and neurodegeneration. Biomolecules. 2021;11(3):404. https://pubmed.ncbi.nlm.nih.gov/33803410/

1428

Melnik BC. Dietary intervention in acne: attenuation of increased mTORC1 signaling promoted by Western diet. Dermatoendocrinol. 2012;4(1):20–32. https://pubmed.ncbi.nlm.nih.gov/22870349/

1429

Baron JA, Weiderpass E, Newcomb PA, et al. Metabolic disorders and breast cancer risk (United States). Cancer Causes Control. 2001;12(10):875–80. https://pubmed.ncbi.nlm.nih.gov/11808705/

1430

Sutcliffe S, Giovannucci E, Isaacs WB, Willett WC, Platz EA. Acne and risk of prostate cancer. Int J Cancer. 2007;121(12):2688–92. https://pubmed.ncbi.nlm.nih.gov/17724724/

1431

Melnik BC, John SM, Carrera-Bastos P, Cordain L. The impact of cow’s milk-mediated mTORC1-signaling in the initiation and progression of prostate cancer. Nutr Metab (Lond). 2012;9(1):74. https://pubmed.ncbi.nlm.nih.gov/22891897/

1432

Sargsyan A, Dubasi HB. Milk consumption and prostate cancer: a systematic review. World J Mens Health. 2021;39(3):419–28. https://pubmed.ncbi.nlm.nih.gov/32777868/

1433

Pettersson A, Kasperzyk JL, Kenfield SA, et al. Milk and dairy consumption among men with prostate cancer and risk of metastases and prostate cancer death. Cancer Epidemiol Biomarkers Prev. 2012;21(3):428–36. https://pubmed.ncbi.nlm.nih.gov/22315365/

1434

Tognon G, Nilsson LM, Shungin D, et al. Nonfermented milk and other dairy products: associations with all-cause mortality. Am J Clin Nutr. 2017;105(6):1502–11. https://pubmed.ncbi.nlm.nih.gov/28490510/

1435

Melnik BC, Schmitz G. Pasteurized non-fermented cow’s milk but not fermented milk is a promoter of mTORC1-driven aging and increased mortality. Ageing Res Rev. 2021;67:101270. https://pubmed.ncbi.nlm.nih.gov/33571703/

1436

Gao X, Jia H, Chen G, Li C, Hao M. Yogurt intake reduces all-cause and cardiovascular disease mortality: a meta-analysis of eight prospective cohort studies. Chin J Integr Med. 2020;26(6):462–8. https://pubmed.ncbi.nlm.nih.gov/31970674/

1437

Sahin K, Orhan C, Tuzcu M, et al. Tomato powder modulates NF-¿B, mTOR, and Nrf2 pathways during aging in healthy rats. J Aging Res. 2019;2019:1643243. https://pubmed.ncbi.nlm.nih.gov/30719353/

1438

Takeshima M, Ono M, Higuchi T, Chen C, Hara T, Nakano S. Anti-proliferative and apoptosis-inducing activity of lycopene against three subtypes of human breast cancer cell lines. Cancer Sci. 2014;105(3):252–7. https://pubmed.ncbi.nlm.nih.gov/24397737/

1439

Thomson CA, Ho E, Strom MB. Chemopreventive properties of 3,3’-diindolylmethane in breast cancer: evidence from experimental and human studies. Nutr Rev. 2016;74(7):432–43. https://pubmed.ncbi.nlm.nih.gov/27261275/

1440

Du H, Zhang X, Zeng Y, et al. A novel phytochemical, DIM, inhibits proliferation, migration, invasion and TNF-a induced inflammatory cytokine production of synovial fibroblasts from rheumatoid arthritis patients by targeting MAPK and AKT/mTOR signal pathway. Front Immunol. 2019;10:1620. https://pubmed.ncbi.nlm.nih.gov/31396207/

1441

Zhang Y, Gilmour A, Ahn YH, de la Vega L, Dinkova-Kostova AT. The isothiocyanate sulforaphane inhibits mTOR in an NRF2-independent manner. Phytomedicine. 2021;86:153062. https://pubmed.ncbi.nlm.nih.gov/31409554/

1442

Li N, Wu X, Zhuang W, et al. Green leafy vegetable and lutein intake and multiple health outcomes. Food Chem. 2021;360:130145. https://pubmed.ncbi.nlm.nih.gov/34034049/

1443

Sato A. mTOR, a potential target to treat autism spectrum disorder. CNS Neurol Disord Drug Targets. 2016;15(5):533–43. https://pubmed.ncbi.nlm.nih.gov/27071790/

1444

Matusheski NV, Juvik JA, Jeffery EH. Heating decreases epithiospecifier protein activity and increases sulforaphane formation in broccoli. Phytochemistry. 2004;65(9):1273–81. https://pubmed.ncbi.nlm.nih.gov/15184012/

1445

Singh K, Connors SL, Macklin EA, et al. Sulforaphane treatment of autism spectrum disorder (ASD). Proc Natl Acad Sci U S A. 2014;111(43):15550–5. https://pubmed.ncbi.nlm.nih.gov/25313065/

1446

Wanke V, Cameroni E, Uotila A, et al. Caffeine extends yeast lifespan by targeting TORC1. Mol Microbiol. 2008;69(1):277–85. https://pubmed.ncbi.nlm.nih.gov/18513215/

1447

Takahashi K, Yanai S, Shimokado K, Ishigami A. Coffee consumption in aged mice increases energy production and decreases hepatic mTOR levels. Nutrition. 2017;38:1–8. https://pubmed.ncbi.nlm.nih.gov/28526373/

1448

Van Aller GS, Carson JD, Tang W, et al. Epigallocatechin gallate (EGCG), a major component of green tea, is a dual phosphoinositide-3-kinase/mTOR inhibitor. Biochem Biophys Res Commun. 2011;406(2):194–9. https://pubmed.ncbi.nlm.nih.gov/21300025/

1449

Elsaie ML, Abdelhamid MF, Elsaaiee LT, Emam HM. The efficacy of topical 2 % green tea lotion in mild-to-moderate acne vulgaris. J Drugs Dermatol. 2009;8(4):358–64. https://pubmed.ncbi.nlm.nih.gov/19363854/

1450

Cassidy A, Chung M, Zhao N, et al. Dose – response relation between tea consumption and risk of cardiovascular disease and all-cause mortality: a systematic review and meta-analysis of population-based studies. Adv Nutr. 2020;11(4):790–814. https://pubmed.ncbi.nlm.nih.gov/32073596/

1451

Lamming DW. Inhibition of the mechanistic target of rapamycin (mTOR) – rapamycin and beyond. Cold Spring Harb Perspect Med. 2016;6(5). https://pubmed.ncbi.nlm.nih.gov/27048303/

1452

Kennedy BK, Lamming DW. The mechanistic target of rapamycin: the grand conducTOR of metabolism and aging. Cell Metab. 2016;23(6):990–1003. https://pubmed.ncbi.nlm.nih.gov/27304501/

1453

Morley JE. The mTOR conundrum: essential for muscle function, but dangerous for survival. J Am Med Dir Assoc. 2016;17(11):963–6. https://pubmed.ncbi.nlm.nih.gov/27780571/

1454

Blagosklonny MV. Why men age faster but reproduce longer than women: mTOR and evolutionary perspectives. Aging (Albany NY). 2010;2(5):265–73. https://pubmed.ncbi.nlm.nih.gov/20519781/

1455

Markofski MM, Dickinson JM, Drummond MJ, et al. Effect of age on basal muscle protein synthesis and mTORC1 signaling in a large cohort of young and older men and women. Exp Gerontol. 2015;65:1–7. https://pubmed.ncbi.nlm.nih.gov/25735236/

1456

Leenders M, Verdijk LB, van der Hoeven L, et al. Prolonged leucine supplementation does not augment muscle mass or affect glycemic control in elderly type 2 diabetic men. J Nutr. 2011;141(6):1070–6. https://pubmed.ncbi.nlm.nih.gov/21525248/

1457

Verhoeven S, Vanschoonbeek K, Verdijk LB, et al. Long-term leucine supplementation does not increase muscle mass or strength in healthy elderly men. Am J Clin Nutr. 2009;89(5):1468–75. https://pubmed.ncbi.nlm.nih.gov/19321567/

1458

Tang H, Shrager JB, Goldman D. Rapamycin protects aging muscle. Aging (Albany NY). 2019;11(16):5868–70. https://pubmed.ncbi.nlm.nih.gov/31454792/

1459

Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21(4):183–203. https://pubmed.ncbi.nlm.nih.gov/31937935/

1460

Kennedy BK, Lamming DW. The mechanistic target of rapamycin: the grand conducTOR of metabolism and aging. Cell Metab. 2016;23(6):990–1003. https://pubmed.ncbi.nlm.nih.gov/27304501/

1461

Тор (Tor) – в германо-скандинавской мифологии бог грома и молний, защищающий богов и людей от великанов и чудовищ с помощью боевого молота (hammer). – Примеч. ред.

1462

Lamming DW, Salmon AB. TORwards a victory over aging. J Gerontol A Biol Sci Med Sci. 2020;75(1):1–3. https://pubmed.ncbi.nlm.nih.gov/31544928/

1463

Caldana C, Martins MCM, Mubeen U, Urrea-Castellanos R. The magic “hammer” of TOR: the multiple faces of a single pathway in the metabolic regulation of plant growth and development. J Exp Bot. 2019;70(8):2217–25. https://pubmed.ncbi.nlm.nih.gov/30722050/

1464

Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21(4):183–203. https://pubmed.ncbi.nlm.nih.gov/31937935/

1465

Kaeberlein M, Galvan V. Rapamycin and Alzheimer’s disease: time for a clinical trial? Sci Transl Med. 2019;11(476):eaar4289. https://pubmed.ncbi.nlm.nih.gov/30674654/

1466

Kapahi P, Chen D, Rogers AN, et al. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab. 2010;11(6):453–65. https://pubmed.ncbi.nlm.nih.gov/20519118/

1467

Sansevero TB. The Profit Machine. Cultiva Libros; 2009.

1468

Harman D. The biologic clock: the mitochondria? J Am Geriatr Soc. 1972;20(4):145–7. https://pubmed.ncbi.nlm.nih.gov/5016631/

1469

Talaulikar VS, Manyonda IT. Vitamin C as an antioxidant supplement in women’s health: a myth in need of urgent burial. Eur J Obstet Gynecol Reprod Biol. 2011;157(1):10–3. https://pubmed.ncbi.nlm.nih.gov/21507551/

1470

Liebman SE, Le TH. Eat your broccoli: oxidative stress, NRF2, and sulforaphane in chronic kidney disease. Nutrients. 2021;13(1):266. https://pubmed.ncbi.nlm.nih.gov/33477669/

1471

Peng C, Wang X, Chen J, et al. Biology of ageing and role of dietary antioxidants. Biomed Res Int. 2014;2014:831841. https://pubmed.ncbi.nlm.nih.gov/24804252/

1472

Maes M, Galecki P, Chang YS, Berk M. A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(3):676–92. https://pubmed.ncbi.nlm.nih.gov/20471444/

1473

Peng C, Wang X, Chen J, et al. Biology of ageing and role of dietary antioxidants. Biomed Res Int. 2014;2014:831841. https://pubmed.ncbi.nlm.nih.gov/24804252/

1474

Rinnerthaler M, Bischof J, Streubel MK, Trost A, Richter K. Oxidative stress in aging human skin. Biomolecules. 2015;5(2):545–89. https://pubmed.ncbi.nlm.nih.gov/25906193/

1475

Logan S, Royce GH, Owen D, et al. Accelerated decline in cognition in a mouse model of increased oxidative stress. GeroScience. 2019;41(5):591–607. https://pubmed.ncbi.nlm.nih.gov/31641924/

1476

Hensley K, Floyd RA. Reactive oxygen species and protein oxidation in aging: a look back, a look ahead. Arch Biochem Biophys. 2002;397(2):377–83. https://pubmed.ncbi.nlm.nih.gov/11795897/

1477

Yeung AWK, Tzvetkov NT, El-Tawil OS, Bungau SG, Abdel-Daim MM, Atanasov AG. Antioxidants: scientific literature landscape analysis. Oxid Med Cell Longev. 2019;2019:8278454. https://pubmed.ncbi.nlm.nih.gov/30728893/

1478

Bast A, Haenen GRMM. Ten misconceptions about antioxidants. Trends Pharmacol Sci. 2013;34(8):430–6. https://pubmed.ncbi.nlm.nih.gov/23806765/

1479

Medvedev ZA. An attempt at a rational classification of theories of ageing. Biol Rev. 1990;65(3):375–98. https://pubmed.ncbi.nlm.nih.gov/2205304/

1480

Fusco D, Colloca G, Lo Monaco MR, Cesari M. Effects of antioxidant supplementation on the aging process. Clin Interv Aging. 2007;2(3):377–87. https://pubmed.ncbi.nlm.nih.gov/18044188/

1481

Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/

1482

Golubev A, Hanson AD, Gladyshev VN. A tale of two concepts: harmonizing the free radical and antagonistic pleiotropy theories of aging. Antioxid Redox Signal. 2018;29(10):1003–17. https://pubmed.ncbi.nlm.nih.gov/28874059/

1483

Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11(3):298–300. https://pubmed.ncbi.nlm.nih.gov/13332224/

1484

Biesalski HK. Free radical theory of aging. Curr Opin Clin Nutr Metab Care. 2002;5(1):5–10. https://pubmed.ncbi.nlm.nih.gov/11790942/

1485

Keane M, Semeiks J, Webb AE, et al. Insights into the evolution of longevity from the bowhead whale genome. Cell Rep. 2015;10(1):112–22. https://pubmed.ncbi.nlm.nih.gov/25565328/

1486

.

1487

Butler PG, Wanamaker AD Jr, Scourse JD, Richardson CA, Reynolds DJ. Variability of marine climate on the North Icelandic shelf in a 1357-year proxy archive based on growth increments in the bivalve Arctica islandica. Palaeogeogr, Palaeoclimatol, Palaeoecol. 2013;373:141–51. https://www.sciencedirect.com/science/article/abs/pii/S0031018212000302?via%3Dihub

1488

Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/

1489

Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/

1490

Capt C, Passamonti M, Breton S. The human mitochondrial genome may code for more than 13 proteins. Mitochondrial DNA Part A. 2016;27(5):3098–101. https://pubmed.ncbi.nlm.nih.gov/25630734/

1491

Willyard C. New human gene tally reignites debate. Nature. 2018;558(7710):354–5. https://pubmed.ncbi.nlm.nih.gov/29921859/

1492

Venditti P, Masullo P, Di Meo S. Effect of training on H2O2 release by mitochondria from rat skeletal muscle. Arch Biochem Biophys. 1999;372(2):315–20. https://pubmed.ncbi.nlm.nih.gov/10600170/

1493

Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/

1494

Ruiz MC, Ayala V, Portero-Otín M, Requena JR, Barja G, Pamplona R. Protein methionine content and MDA-lysine adducts are inversely related to maximum life span in the heart of mammals. Mech Ageing Dev. 2005;126(10):1106–14. https://pubmed.ncbi.nlm.nih.gov/15955547/

1495

Gomez J, Sanchez-Roman I, Gomez A, et al. Methionine and homocysteine modulate the rate of ROS generation of isolated mitochondria in vitro. J Bioenerg Biomembr. 2011;43(4):377–86. https://pubmed.ncbi.nlm.nih.gov/21748404/

1496

Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/

1497

Barja G. The mitochondrial free radical theory of aging. Prog Mol Biol Transl Sci. 2014;127:1–27. https://pubmed.ncbi.nlm.nih.gov/25149212/

1498

Sanz A, Stefanatos RKA. The mitochondrial free radical theory of aging: a critical view. Curr Aging Sci. 2008;1(1):10–21. https://pubmed.ncbi.nlm.nih.gov/20021368/

1499

Sanz A, Caro P, Ayala V, Portero-Otin M, Pamplona R, Barja G. Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins. FASEB J. 2006;20(8):1064–73. https://pubmed.ncbi.nlm.nih.gov/16770005/

1500

Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/

1501

Barja G. The mitochondrial free radical theory of aging. Prog Mol Biol Transl Sci. 2014;127:1–27. https://pubmed.ncbi.nlm.nih.gov/25149212/

1502

López-Torres M, Barja G. Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction possible implications for humans. Biochim Biophys Acta. 2008;1780(11):1337–47. https://pubmed.ncbi.nlm.nih.gov/18252204/

1503

What we eat in America, NHANES 2017–2018. Agricultural Research Service, United States Department of Agriculture. https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/1718/tables_1–36%20and%2041–56_2017–2018.pdf. Published 2020. Accessed July 6, 2021.; https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/1718/wweia_2017_2018_data.pdf

1504

López-Torres M, Barja G. Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction possible implications for humans. Biochim Biophys Acta. 2008;1780(11):1337–47. https://pubmed.ncbi.nlm.nih.gov/18252204/

1505

Fontana L, Cummings NE, Arriola Apelo SI, et al. Decreased consumption of branched-chain amino acids improves metabolic health. Cell Rep. 2016;16(2):520–30. https://pubmed.ncbi.nlm.nih.gov/27346343/

1506

Barja G. The mitochondrial free radical theory of aging. Prog Mol Biol Transl Sci. 2014;127:1–27. https://pubmed.ncbi.nlm.nih.gov/25149212/

1507

López-Torres M, Barja G. Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction possible implications for humans. Biochim Biophys Acta. 2008;1780(11):1337–47. https://pubmed.ncbi.nlm.nih.gov/18252204/

1508

Darmadi-Blackberry I, Wahlqvist ML, Kouris-Blazos A, et al. Legumes: the most important dietary predictor of survival in older people of different ethnicities. Asia Pac J Clin Nutr. 2004;13(2):217–20. https://pubmed.ncbi.nlm.nih.gov/15228991/

1509

Buettner D. The Blue Zones: 9 Lessons for Living Longer from the People Who’ve Lived the Longest. 2nd ed. National Geographic Books; 2012. https://www.worldcat.org/title/777659970

1510

McCarty MF, Barroso-Aranda J, Contreras F. The low-methionine content of vegan diets may make methionine restriction feasible as a life extension strategy. Med Hypotheses. 2009;72(2):125–8. https://pubmed.ncbi.nlm.nih.gov/18789600/

1511

Scudellari M. Myths that will not die. Nature. 2015;528(7582):322–5. https://pubmed.ncbi.nlm.nih.gov/26672537/

1512

Stuart JA, Maddalena LA, Merilovich M, Robb EL. A midlife crisis for the mitochondrial free radical theory of aging. Longev Healthspan. 2014;3(1):4. https://pubmed.ncbi.nlm.nih.gov/24690218/

1513

Golubev A, Hanson AD, Gladyshev VN. A tale of two concepts: harmonizing the free radical and antagonistic pleiotropy theories of aging. Antioxid Redox Signal. 2018;29(10):1003–17. https://pubmed.ncbi.nlm.nih.gov/28874059/

1514

Bjelakovic G, Nikolova D, Gluud C. Antioxidant supplements and mortality. Curr Opin Clin Nutr Metab Care. 2014;17(1):40–4. https://pubmed.ncbi.nlm.nih.gov/24241129/

1515

Bjelakovic G, Nikolova D, Simonetti RG, Gluud C. Antioxidant supplements for prevention of gastrointestinal cancers: a systematic review and meta-analysis. Lancet. 2004;364(9441):1219–28. https://pubmed.ncbi.nlm.nih.gov/15464182/

1516

Serafini M, Jakszyn P, Luján-Barroso L, et al. Dietary total antioxidant capacity and gastric cancer risk in the European prospective investigation into cancer and nutrition study. Int J Cancer. 2012;131(4):E544–54. https://pubmed.ncbi.nlm.nih.gov/22072493/

bannerbanner