
Полная версия:
Живи долго! Научный подход к долгой молодости и здоровью
1444
Matusheski NV, Juvik JA, Jeffery EH. Heating decreases epithiospecifier protein activity and increases sulforaphane formation in broccoli. Phytochemistry. 2004;65(9):1273–81. https://pubmed.ncbi.nlm.nih.gov/15184012/
1445
Singh K, Connors SL, Macklin EA, et al. Sulforaphane treatment of autism spectrum disorder (ASD). Proc Natl Acad Sci U S A. 2014;111(43):15550–5. https://pubmed.ncbi.nlm.nih.gov/25313065/
1446
Wanke V, Cameroni E, Uotila A, et al. Caffeine extends yeast lifespan by targeting TORC1. Mol Microbiol. 2008;69(1):277–85. https://pubmed.ncbi.nlm.nih.gov/18513215/
1447
Takahashi K, Yanai S, Shimokado K, Ishigami A. Coffee consumption in aged mice increases energy production and decreases hepatic mTOR levels. Nutrition. 2017;38:1–8. https://pubmed.ncbi.nlm.nih.gov/28526373/
1448
Van Aller GS, Carson JD, Tang W, et al. Epigallocatechin gallate (EGCG), a major component of green tea, is a dual phosphoinositide-3-kinase/mTOR inhibitor. Biochem Biophys Res Commun. 2011;406(2):194–9. https://pubmed.ncbi.nlm.nih.gov/21300025/
1449
Elsaie ML, Abdelhamid MF, Elsaaiee LT, Emam HM. The efficacy of topical 2 % green tea lotion in mild-to-moderate acne vulgaris. J Drugs Dermatol. 2009;8(4):358–64. https://pubmed.ncbi.nlm.nih.gov/19363854/
1450
Cassidy A, Chung M, Zhao N, et al. Dose – response relation between tea consumption and risk of cardiovascular disease and all-cause mortality: a systematic review and meta-analysis of population-based studies. Adv Nutr. 2020;11(4):790–814. https://pubmed.ncbi.nlm.nih.gov/32073596/
1451
Lamming DW. Inhibition of the mechanistic target of rapamycin (mTOR) – rapamycin and beyond. Cold Spring Harb Perspect Med. 2016;6(5). https://pubmed.ncbi.nlm.nih.gov/27048303/
1452
Kennedy BK, Lamming DW. The mechanistic target of rapamycin: the grand conducTOR of metabolism and aging. Cell Metab. 2016;23(6):990–1003. https://pubmed.ncbi.nlm.nih.gov/27304501/
1453
Morley JE. The mTOR conundrum: essential for muscle function, but dangerous for survival. J Am Med Dir Assoc. 2016;17(11):963–6. https://pubmed.ncbi.nlm.nih.gov/27780571/
1454
Blagosklonny MV. Why men age faster but reproduce longer than women: mTOR and evolutionary perspectives. Aging (Albany NY). 2010;2(5):265–73. https://pubmed.ncbi.nlm.nih.gov/20519781/
1455
Markofski MM, Dickinson JM, Drummond MJ, et al. Effect of age on basal muscle protein synthesis and mTORC1 signaling in a large cohort of young and older men and women. Exp Gerontol. 2015;65:1–7. https://pubmed.ncbi.nlm.nih.gov/25735236/
1456
Leenders M, Verdijk LB, van der Hoeven L, et al. Prolonged leucine supplementation does not augment muscle mass or affect glycemic control in elderly type 2 diabetic men. J Nutr. 2011;141(6):1070–6. https://pubmed.ncbi.nlm.nih.gov/21525248/
1457
Verhoeven S, Vanschoonbeek K, Verdijk LB, et al. Long-term leucine supplementation does not increase muscle mass or strength in healthy elderly men. Am J Clin Nutr. 2009;89(5):1468–75. https://pubmed.ncbi.nlm.nih.gov/19321567/
1458
Tang H, Shrager JB, Goldman D. Rapamycin protects aging muscle. Aging (Albany NY). 2019;11(16):5868–70. https://pubmed.ncbi.nlm.nih.gov/31454792/
1459
Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21(4):183–203. https://pubmed.ncbi.nlm.nih.gov/31937935/
1460
Kennedy BK, Lamming DW. The mechanistic target of rapamycin: the grand conducTOR of metabolism and aging. Cell Metab. 2016;23(6):990–1003. https://pubmed.ncbi.nlm.nih.gov/27304501/
1461
Тор (Tor) – в германо-скандинавской мифологии бог грома и молний, защищающий богов и людей от великанов и чудовищ с помощью боевого молота (hammer). – Примеч. ред.
1462
Lamming DW, Salmon AB. TORwards a victory over aging. J Gerontol A Biol Sci Med Sci. 2020;75(1):1–3. https://pubmed.ncbi.nlm.nih.gov/31544928/
1463
Caldana C, Martins MCM, Mubeen U, Urrea-Castellanos R. The magic “hammer” of TOR: the multiple faces of a single pathway in the metabolic regulation of plant growth and development. J Exp Bot. 2019;70(8):2217–25. https://pubmed.ncbi.nlm.nih.gov/30722050/
1464
Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21(4):183–203. https://pubmed.ncbi.nlm.nih.gov/31937935/
1465
Kaeberlein M, Galvan V. Rapamycin and Alzheimer’s disease: time for a clinical trial? Sci Transl Med. 2019;11(476):eaar4289. https://pubmed.ncbi.nlm.nih.gov/30674654/
1466
Kapahi P, Chen D, Rogers AN, et al. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab. 2010;11(6):453–65. https://pubmed.ncbi.nlm.nih.gov/20519118/
1467
Sansevero TB. The Profit Machine. Cultiva Libros; 2009.
1468
Harman D. The biologic clock: the mitochondria? J Am Geriatr Soc. 1972;20(4):145–7. https://pubmed.ncbi.nlm.nih.gov/5016631/
1469
Talaulikar VS, Manyonda IT. Vitamin C as an antioxidant supplement in women’s health: a myth in need of urgent burial. Eur J Obstet Gynecol Reprod Biol. 2011;157(1):10–3. https://pubmed.ncbi.nlm.nih.gov/21507551/
1470
Liebman SE, Le TH. Eat your broccoli: oxidative stress, NRF2, and sulforaphane in chronic kidney disease. Nutrients. 2021;13(1):266. https://pubmed.ncbi.nlm.nih.gov/33477669/
1471
Peng C, Wang X, Chen J, et al. Biology of ageing and role of dietary antioxidants. Biomed Res Int. 2014;2014:831841. https://pubmed.ncbi.nlm.nih.gov/24804252/
1472
Maes M, Galecki P, Chang YS, Berk M. A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(3):676–92. https://pubmed.ncbi.nlm.nih.gov/20471444/
1473
Peng C, Wang X, Chen J, et al. Biology of ageing and role of dietary antioxidants. Biomed Res Int. 2014;2014:831841. https://pubmed.ncbi.nlm.nih.gov/24804252/
1474
Rinnerthaler M, Bischof J, Streubel MK, Trost A, Richter K. Oxidative stress in aging human skin. Biomolecules. 2015;5(2):545–89. https://pubmed.ncbi.nlm.nih.gov/25906193/
1475
Logan S, Royce GH, Owen D, et al. Accelerated decline in cognition in a mouse model of increased oxidative stress. GeroScience. 2019;41(5):591–607. https://pubmed.ncbi.nlm.nih.gov/31641924/
1476
Hensley K, Floyd RA. Reactive oxygen species and protein oxidation in aging: a look back, a look ahead. Arch Biochem Biophys. 2002;397(2):377–83. https://pubmed.ncbi.nlm.nih.gov/11795897/
1477
Yeung AWK, Tzvetkov NT, El-Tawil OS, Bungau SG, Abdel-Daim MM, Atanasov AG. Antioxidants: scientific literature landscape analysis. Oxid Med Cell Longev. 2019;2019:8278454. https://pubmed.ncbi.nlm.nih.gov/30728893/
1478
Bast A, Haenen GRMM. Ten misconceptions about antioxidants. Trends Pharmacol Sci. 2013;34(8):430–6. https://pubmed.ncbi.nlm.nih.gov/23806765/
1479
Medvedev ZA. An attempt at a rational classification of theories of ageing. Biol Rev. 1990;65(3):375–98. https://pubmed.ncbi.nlm.nih.gov/2205304/
1480
Fusco D, Colloca G, Lo Monaco MR, Cesari M. Effects of antioxidant supplementation on the aging process. Clin Interv Aging. 2007;2(3):377–87. https://pubmed.ncbi.nlm.nih.gov/18044188/
1481
Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/
1482
Golubev A, Hanson AD, Gladyshev VN. A tale of two concepts: harmonizing the free radical and antagonistic pleiotropy theories of aging. Antioxid Redox Signal. 2018;29(10):1003–17. https://pubmed.ncbi.nlm.nih.gov/28874059/
1483
Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11(3):298–300. https://pubmed.ncbi.nlm.nih.gov/13332224/
1484
Biesalski HK. Free radical theory of aging. Curr Opin Clin Nutr Metab Care. 2002;5(1):5–10. https://pubmed.ncbi.nlm.nih.gov/11790942/
1485
Keane M, Semeiks J, Webb AE, et al. Insights into the evolution of longevity from the bowhead whale genome. Cell Rep. 2015;10(1):112–22. https://pubmed.ncbi.nlm.nih.gov/25565328/
1486
.
1487
Butler PG, Wanamaker AD Jr, Scourse JD, Richardson CA, Reynolds DJ. Variability of marine climate on the North Icelandic shelf in a 1357-year proxy archive based on growth increments in the bivalve Arctica islandica. Palaeogeogr, Palaeoclimatol, Palaeoecol. 2013;373:141–51. https://www.sciencedirect.com/science/article/abs/pii/S0031018212000302?via%3Dihub
1488
Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/
1489
Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/
1490
Capt C, Passamonti M, Breton S. The human mitochondrial genome may code for more than 13 proteins. Mitochondrial DNA Part A. 2016;27(5):3098–101. https://pubmed.ncbi.nlm.nih.gov/25630734/
1491
Willyard C. New human gene tally reignites debate. Nature. 2018;558(7710):354–5. https://pubmed.ncbi.nlm.nih.gov/29921859/
1492
Venditti P, Masullo P, Di Meo S. Effect of training on H2O2 release by mitochondria from rat skeletal muscle. Arch Biochem Biophys. 1999;372(2):315–20. https://pubmed.ncbi.nlm.nih.gov/10600170/
1493
Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/
1494
Ruiz MC, Ayala V, Portero-Otín M, Requena JR, Barja G, Pamplona R. Protein methionine content and MDA-lysine adducts are inversely related to maximum life span in the heart of mammals. Mech Ageing Dev. 2005;126(10):1106–14. https://pubmed.ncbi.nlm.nih.gov/15955547/
1495
Gomez J, Sanchez-Roman I, Gomez A, et al. Methionine and homocysteine modulate the rate of ROS generation of isolated mitochondria in vitro. J Bioenerg Biomembr. 2011;43(4):377–86. https://pubmed.ncbi.nlm.nih.gov/21748404/
1496
Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/
1497
Barja G. The mitochondrial free radical theory of aging. Prog Mol Biol Transl Sci. 2014;127:1–27. https://pubmed.ncbi.nlm.nih.gov/25149212/
1498
Sanz A, Stefanatos RKA. The mitochondrial free radical theory of aging: a critical view. Curr Aging Sci. 2008;1(1):10–21. https://pubmed.ncbi.nlm.nih.gov/20021368/
1499
Sanz A, Caro P, Ayala V, Portero-Otin M, Pamplona R, Barja G. Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins. FASEB J. 2006;20(8):1064–73. https://pubmed.ncbi.nlm.nih.gov/16770005/
1500
Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/
1501
Barja G. The mitochondrial free radical theory of aging. Prog Mol Biol Transl Sci. 2014;127:1–27. https://pubmed.ncbi.nlm.nih.gov/25149212/
1502
López-Torres M, Barja G. Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction possible implications for humans. Biochim Biophys Acta. 2008;1780(11):1337–47. https://pubmed.ncbi.nlm.nih.gov/18252204/
1503
What we eat in America, NHANES 2017–2018. Agricultural Research Service, United States Department of Agriculture. https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/1718/tables_1–36%20and%2041–56_2017–2018.pdf. Published 2020. Accessed July 6, 2021.; https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/1718/wweia_2017_2018_data.pdf
1504
López-Torres M, Barja G. Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction possible implications for humans. Biochim Biophys Acta. 2008;1780(11):1337–47. https://pubmed.ncbi.nlm.nih.gov/18252204/
1505
Fontana L, Cummings NE, Arriola Apelo SI, et al. Decreased consumption of branched-chain amino acids improves metabolic health. Cell Rep. 2016;16(2):520–30. https://pubmed.ncbi.nlm.nih.gov/27346343/
1506
Barja G. The mitochondrial free radical theory of aging. Prog Mol Biol Transl Sci. 2014;127:1–27. https://pubmed.ncbi.nlm.nih.gov/25149212/
1507
López-Torres M, Barja G. Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction possible implications for humans. Biochim Biophys Acta. 2008;1780(11):1337–47. https://pubmed.ncbi.nlm.nih.gov/18252204/
1508
Darmadi-Blackberry I, Wahlqvist ML, Kouris-Blazos A, et al. Legumes: the most important dietary predictor of survival in older people of different ethnicities. Asia Pac J Clin Nutr. 2004;13(2):217–20. https://pubmed.ncbi.nlm.nih.gov/15228991/
1509
Buettner D. The Blue Zones: 9 Lessons for Living Longer from the People Who’ve Lived the Longest. 2nd ed. National Geographic Books; 2012. https://www.worldcat.org/title/777659970
1510
McCarty MF, Barroso-Aranda J, Contreras F. The low-methionine content of vegan diets may make methionine restriction feasible as a life extension strategy. Med Hypotheses. 2009;72(2):125–8. https://pubmed.ncbi.nlm.nih.gov/18789600/
1511
Scudellari M. Myths that will not die. Nature. 2015;528(7582):322–5. https://pubmed.ncbi.nlm.nih.gov/26672537/
1512
Stuart JA, Maddalena LA, Merilovich M, Robb EL. A midlife crisis for the mitochondrial free radical theory of aging. Longev Healthspan. 2014;3(1):4. https://pubmed.ncbi.nlm.nih.gov/24690218/
1513
Golubev A, Hanson AD, Gladyshev VN. A tale of two concepts: harmonizing the free radical and antagonistic pleiotropy theories of aging. Antioxid Redox Signal. 2018;29(10):1003–17. https://pubmed.ncbi.nlm.nih.gov/28874059/
1514
Bjelakovic G, Nikolova D, Gluud C. Antioxidant supplements and mortality. Curr Opin Clin Nutr Metab Care. 2014;17(1):40–4. https://pubmed.ncbi.nlm.nih.gov/24241129/
1515
Bjelakovic G, Nikolova D, Simonetti RG, Gluud C. Antioxidant supplements for prevention of gastrointestinal cancers: a systematic review and meta-analysis. Lancet. 2004;364(9441):1219–28. https://pubmed.ncbi.nlm.nih.gov/15464182/
1516
Serafini M, Jakszyn P, Luján-Barroso L, et al. Dietary total antioxidant capacity and gastric cancer risk in the European prospective investigation into cancer and nutrition study. Int J Cancer. 2012;131(4):E544–54. https://pubmed.ncbi.nlm.nih.gov/22072493/
1517
Jacobs DR, Tapsell LC. Food synergy: the key to a healthy diet. Proc Nutr Soc. 2013;72(2):200–6. https://pubmed.ncbi.nlm.nih.gov/23312372/
1518
Cömert ED, Gökmen V. Evolution of food antioxidants as a core topic of food science for a century. Food Res Int. 2018;105:76–93. https://pubmed.ncbi.nlm.nih.gov/29433271/
1519
Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/
1520
Chial H, Craig J. mtDNA and mitochondrial diseases. Nature Education. 2008;1(1):217. https://www.nature.com/scitable/topicpage/mtdna-and-mitochondrial-diseases-903/
1521
Tubbs A, Nussenzweig A. Endogenous DNA damage as a source of genomic instability in cancer. Cell. 2017;168(4):644–56. https://pubmed.ncbi.nlm.nih.gov/28187286/
1522
Patel J, Baptiste BA, Kim E, Hussain M, Croteau DL, Bohr VA. DNA damage and mitochondria in cancer and aging. Carcinogenesis. 2020;41(12):1625–34. https://pubmed.ncbi.nlm.nih.gov/33146705/
1523
Soares JP, Cortinhas A, Bento T, et al. Aging and DNA damage in humans: a meta-analysis study. Aging (Albany NY). 2014;6(6):432–9. https://pubmed.ncbi.nlm.nih.gov/25140379/
1524
Belenguer-Varea Á, Tarazona-Santabalbina FJ, Avellana-Zaragoza JA, Martínez-Reig M, Mas-Bargues C, Inglés M. Oxidative stress and exceptional human longevity: systematic review. Free Radic Biol Med. 2020;149:51–63. https://pubmed.ncbi.nlm.nih.gov/31550529/
1525
Patel J, Baptiste BA, Kim E, Hussain M, Croteau DL, Bohr VA. DNA damage and mitochondria in cancer and aging. Carcinogenesis. 2020;41(12):1625–34. https://pubmed.ncbi.nlm.nih.gov/33146705/
1526
Yousefzadeh M, Henpita C, Vyas R, Soto-Palma C, Robbins P, Niedernhofer L. DNA damage – how and why we age? Elife. 2021;10:e62852. https://pubmed.ncbi.nlm.nih.gov/33512317/
1527
Liochev SI. Reflections on the theories of aging, of oxidative stress, and of science in general. Is it time to abandon the free radical (oxidative stress) theory of aging? Antioxid Redox Signal. 2015;23(3):187–207. https://pubmed.ncbi.nlm.nih.gov/24949668/
1528
Belenguer-Varea Á, Tarazona-Santabalbina FJ, Avellana-Zaragoza JA, Martínez-Reig M, Mas-Bargues C, Inglés M. Oxidative stress and exceptional human longevity: systematic review. Free Radic Biol Med. 2020;149:51–63. https://pubmed.ncbi.nlm.nih.gov/31550529/
1529
Liguori I, Russo G, Curcio F, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757–72. https://pubmed.ncbi.nlm.nih.gov/29731617/
1530
Belenguer-Varea Á, Tarazona-Santabalbina FJ, Avellana-Zaragoza JA, Martínez-Reig M, Mas-Bargues C, Inglés M. Oxidative stress and exceptional human longevity: systematic review. Free Radic Biol Med. 2020;149:51–63. https://pubmed.ncbi.nlm.nih.gov/31550529/
1531
Salmon AB, Richardson A, Pérez VI. Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging? Free Radic Biol Med. 2010;48(5):642–55. https://pubmed.ncbi.nlm.nih.gov/20036736/
1532
Edrey YH, Salmon AB. Revisiting an age-old question regarding oxidative stress. Free Radic Biol Med. 2014;71:368–78. https://pubmed.ncbi.nlm.nih.gov/24704971/
1533
Cannon G. Nutritional science for this century. Public Health Nutr. 2005;8(4):344–7. https://pubmed.ncbi.nlm.nih.gov/15975178/
1534
Andrews P. Last common ancestor of apes and humans: morphology and environment. FPR. 2020;91(2):122–48. https://pubmed.ncbi.nlm.nih.gov/31533109/
1535
Milton K. Nutritional characteristics of wild primate foods: do the diets of our closest living relatives have lessons for us? Nutrition. 1999;15(6):488–98. https://pubmed.ncbi.nlm.nih.gov/10378206/
1536
Milton K. Back to basics: why foods of wild primates have relevance for modern human health. Nutrition. 2000;16(7–8):480–3. https://pubmed.ncbi.nlm.nih.gov/10906529/
1537
Milton K. Hunter-gatherer diets: a different perspective. Am J Clin Nutr. 2000;71(3):665–7. https://pubmed.ncbi.nlm.nih.gov/10702155/
1538
Milton K. Micronutrient intakes of wild primates: are humans different? Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):47–59. https://pubmed.ncbi.nlm.nih.gov/14527629/
1539
Benzie IFF. Evolution of dietary antioxidants. Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):113–26. https://pubmed.ncbi.nlm.nih.gov/14527634/
1540
Milton K. Nutritional characteristics of wild primate foods: do the diets of our closest living relatives have lessons for us? Nutrition. 1999;15(6):488–98. https://pubmed.ncbi.nlm.nih.gov/10378206/
1541
Benzie IFF. Evolution of dietary antioxidants. Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):113–26. https://pubmed.ncbi.nlm.nih.gov/14527634/
1542
Milton K. Nutritional characteristics of wild primate foods: do the diets of our closest living relatives have lessons for us? Nutrition. 1999;15(6):488–98. https://pubmed.ncbi.nlm.nih.gov/10378206/
1543
Milton K. Micronutrient intakes of wild primates: are humans different? Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):47–59. https://pubmed.ncbi.nlm.nih.gov/14527629/
1544
Benzie IFF. Evolution of dietary antioxidants. Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):113–26. https://pubmed.ncbi.nlm.nih.gov/14527634/
1545
Schuch AP, Moreno NC, Schuch NJ, Menck CFM, Garcia CCM. Sunlight damage to cellular DNA: focus on oxidatively generated lesions. Free Radic Biol Med. 2017;107:110–24. https://pubmed.ncbi.nlm.nih.gov/28109890/
1546
Benzie IFF. Evolution of dietary antioxidants. Comp Biochem Physiol Part A Mol Integr Physiol. 2003;136(1):113–26. https://pubmed.ncbi.nlm.nih.gov/14527634/
1547
Benzie IFF. Evolution of dietary antioxidants. Comp Biochem Physiol Part A Mol Integr Physiol. 2003;136(1):113–26. https://pubmed.ncbi.nlm.nih.gov/14527634/
1548
Coffey DS. Similarities of prostate and breast cancer: evolution, diet, and estrogens. Urology. 2001;57(4 Suppl 1):31–8. https://pubmed.ncbi.nlm.nih.gov/11295592/
1549
Jallinoja P, Niva M, Helakorpi S, Kahma N. Food choices, perceptions of healthiness, and eating motives of self-identified followers of a low-carbohydrate diet. Food Nutr Res. 2014;58:23552. https://pubmed.ncbi.nlm.nih.gov/25490960/
1550
Nestle M. Paleolithic diets: a sceptical view. Nutr Bull. 2000;25:43–7. https://nyuscholars.nyu.edu/en/publications/paleolithic-diets-a-sceptical-view
1551
Vatner SF, Zhang J, Oydanich M, Berkman T, Naftalovich R, Vatner DE. Healthful aging mediated by inhibition of oxidative stress. Ageing Res Rev. 2020;64:101194. https://pubmed.ncbi.nlm.nih.gov/33091597/
1552
Abbasalizad Farhangi M, Vajdi M. Dietary total antioxidant capacity (TAC) significantly reduces the risk of site-specific cancers: an updated systematic review and meta-analysis. Nutr Cancer. 2021;73(5):721–39. https://pubmed.ncbi.nlm.nih.gov/32462920/
1553
Parohan M, Anjom-Shoae J, Nasiri M, Khodadost M, Khatibi SR, Sadeghi O. Dietary total antioxidant capacity and mortality from all causes, cardiovascular disease and cancer: a systematic review and dose-response meta-analysis of prospective cohort studies. Eur J Nutr. 2019;58(6):2175–89. https://pubmed.ncbi.nlm.nih.gov/30756144/