
Полная версия:
Живи долго! Научный подход к долгой молодости и здоровью
1218
Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/
1219
Li K, Huang T, Zheng J, Wu K, Li D. Effect of marine-derived n-3 polyunsaturated fatty acids on C-reactive protein, interleukin 6 and tumor necrosis factor a: a meta-analysis. PLoS ONE. 2014;9(2):e88103. https://pubmed.ncbi.nlm.nih.gov/24505395/
1220
Agricultural Research Service, United States Department of Agriculture. Search results: PUFA 22:6 n-3 (DHA) (g). FoodData Central. https://fdc.nal.usda.gov/fdc-app.html#/?component=1272. Published April 1, 2019. Accessed July 19, 2021.; https://fdc.nal.usda.gov/fdc-app.html#/?component=1272
1221
Stella AB, Cappellari GG, Barazzoni R, Zanetti M. Update on the impact of omega 3 fatty acids on inflammation, insulin resistance and sarcopenia: a review. Int J Mol Sci. 2018;19(1):218. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5796167/
1222
Alhassan A, Young J, Lean MEJ, Lara J. Consumption of fish and vascular risk factors: a systematic review and meta-analysis of intervention studies. Atherosclerosis. 2017;266:87–94. https://pubmed.ncbi.nlm.nih.gov/28992469/
1223
Gopinath B, Buyken AE, Flood VM, Empson M, Rochtchina E, Mitchell P. Consumption of polyunsaturated fatty acids, fish, and nuts and risk of inflammatory disease mortality. Am J Clin Nutr. 2011;93(5):1073–9. https://pubmed.ncbi.nlm.nih.gov/21411616/
1224
Raymond MR, Christensen KY, Thompson BA, Anderson HA. Associations between fish consumption and contaminant biomarkers with cardiovascular conditions among older male anglers in Wisconsin. J Occup Environ Med. 2016;58(7):676–82. https://pubmed.ncbi.nlm.nih.gov/27253229/
1225
Tabung FK, Smith-Warner SA, Chavarro JE, et al. Development and validation of an empirical dietary inflammatory index. J Nutr. 2016;146(8):1560–70. https://pubmed.ncbi.nlm.nih.gov/27358416/
1226
Hjartåker A, Knudsen MD, Tretli S, Weiderpass E. Consumption of berries, fruits and vegetables and mortality among 10,000 Norwegian men followed for four decades. Eur J Nutr. 2015;54(4):599–608. https://pubmed.ncbi.nlm.nih.gov/25087093/
1227
Cassidy A, Rogers G, Peterson JJ, Dwyer JT, Lin H, Jacques PF. Higher dietary anthocyanin and flavonol intakes are associated with anti-inflammatory effects in a population of US adults. Am J Clin Nutr. 2015;102(1):172–81. https://pubmed.ncbi.nlm.nih.gov/26016863/
1228
Nair AR, Mariappan N, Stull AJ, Francis J. Blueberry supplementation attenuates oxidative stress within monocytes and modulates immune cell levels in adults with metabolic syndrome: a randomized, double-blind, placebo-controlled trial. Food Funct. 2017;8(11):4118–28. https://pubmed.ncbi.nlm.nih.gov/29019365/
1229
Moazen S, Amani R, Homayouni Rad A, Shahbazian H, Ahmadi K, Taha Jalali M. Effects of freeze-dried strawberry supplementation on metabolic biomarkers of atherosclerosis in subjects with type 2 diabetes: a randomized double-blind controlled trial. Ann Nutr Metab. 2013;63(3):256–64. https://pubmed.ncbi.nlm.nih.gov/24334868/
1230
Moylan S, Berk M, Dean OM, et al. Oxidative & nitrosative stress in depression: why so much stress? Neurosci Biobehav Rev. 2014;45:46–62. https://pubmed.ncbi.nlm.nih.gov/24858007/
1231
Franzini L, Ardigi D, Valtueña S, et al. Food selection based on high total antioxidant capacity improves endothelial function in a low cardiovascular risk population. Nutr Metab Cardiovasc Dis. 2012;22(1):50–7. https://pubmed.ncbi.nlm.nih.gov/20674303/
1232
Sun CH, Li Y, Zhang YB, Wang F, Zhou XL, Wang F. The effect of vitamin – mineral supplementation on CRP and IL-6: a systemic review and meta-analysis of randomised controlled trials. Nutr Metab Cardiovasc Dis. 2011;21(8):576–83. https://pubmed.ncbi.nlm.nih.gov/20399082/
1233
Fallah AA, Sarmast E, Fatehi P, Jafari T. Impact of dietary anthocyanins on systemic and vascular inflammation: systematic review and meta-analysis on randomised clinical trials. Food Chem Toxicol. 2020;135:110922. https://pubmed.ncbi.nlm.nih.gov/31669599/
1234
do Rosario VA, Chang C, Spencer J, et al. Anthocyanins attenuate vascular and inflammatory responses to a high fat high energy meal challenge in overweight older adults: a cross-over, randomized, double-blind clinical trial. Clin Nutr. 2021;40(3):879–89. https://pubmed.ncbi.nlm.nih.gov/33071012/
1235
O’Hara C, Ojo B, Emerson SR, et al. Acute freeze-dried mango consumption with a high-fat meal has minimal effects on postprandial metabolism, inflammation and antioxidant enzymes. Nutr Metab Insights. 2019;12:1178638819869946. https://pubmed.ncbi.nlm.nih.gov/31452602/
1236
Wang P, Zhang Q, Hou H, et al. The effects of pomegranate supplementation on biomarkers of inflammation and endothelial dysfunction: a meta-analysis and systematic review. Complement Ther Med. 2020;49:102358. https://pubmed.ncbi.nlm.nih.gov/32147056/
1237
Aptekmann NP, Cesar TB. Orange juice improved lipid profile and blood lactate of overweight middle-aged women subjected to aerobic training. Maturitas. 2010;67(4):343–7. https://pubmed.ncbi.nlm.nih.gov/20729016/
1238
McAnulty LS, Nieman DC, Dumke CL, et al. Effect of blueberry ingestion on natural killer cell counts, oxidative stress, and inflammation prior to and after 2.5 h of running. Appl Physiol Nutr Metab. 2011;36(6):976–84. https://pubmed.ncbi.nlm.nih.gov/22111516/
1239
Connolly DA, McHugh MP, Padilla-Zakour OI, Carlson L, Sayers SP. Efficacy of a tart cherry juice blend in preventing the symptoms of muscle damage. Br J Sports Med. 2006;40(8):679–83. https://pubmed.ncbi.nlm.nih.gov/16790484/
1240
Peake JM, Suzuki K, Coombes JS. The influence of antioxidant supplementation on markers of inflammation and the relationship to oxidative stress after exercise. J Nutr Biochem. 2007;18(6):357–71. https://pubmed.ncbi.nlm.nih.gov/17156994/
1241
Childs A, Jacobs C, Kaminski T, Halliwell B, Leeuwenburgh C. Supplementation with vitamin C and N-acetyl-cysteine increases oxidative stress in humans after an acute muscle injury induced by eccentric exercise. Free Radic Biol Med. 2001;31(6):745–53. https://pubmed.ncbi.nlm.nih.gov/11557312/
1242
McHugh M. The health benefits of cherries and potential applications in sports. Scand J Med Sci Sports. 2011;21(5):615–6. https://pubmed.ncbi.nlm.nih.gov/21917014/
1243
Blau LW. Cherry diet control for gout and arthritis. Tex Rep Biol Med. 1950;8(3):309–11. https://pubmed.ncbi.nlm.nih.gov/14776685/
1244
Overman T. Pegloticase: a new treatment for gout. Pharmacotherapy Update. 2011;14(2):1–3. https://pubmed.ncbi.nlm.nih.gov/29204266/
1245
Finkelstein Y, Aks SE, Hutson JR, et al. Colchicine poisoning: the dark side of an ancient drug. Clin Toxicol (Phila). 2010;48(5):407–14. https://pubmed.ncbi.nlm.nih.gov/20586571/
1246
Fritsch PO, Sidoroff A. Drug-induced Stevens-Johnson syndrome/toxic epidermal necrolysis. Am J Clin Dermatol. 2000;1(6):349–60. https://pubmed.ncbi.nlm.nih.gov/11702611/
1247
Wang M, Jiang X, Wu W, Zhang D. A meta-analysis of alcohol consumption and the risk of gout. Clin Rheumatol. 2013;32(11):1641–8. https://pubmed.ncbi.nlm.nih.gov/23881436/
1248
Zhang Y, Chen C, Choi H, et al. Purine-rich foods intake and recurrent gout attacks. Ann Rheum Dis. 2012;71(9):1448–53. https://pubmed.ncbi.nlm.nih.gov/22648933/
1249
Menzel J, Jabakhanji A, Biemann R, Mai K, Abraham K, Weikert C. Systematic review and meta-analysis of the associations of vegan and vegetarian diets with inflammatory biomarkers. Sci Rep. 2020;10:21736. https://pubmed.ncbi.nlm.nih.gov/33303765/
1250
Eichelmann F, Schwingshackl L, Fedirko V, Aleksandrova K. Effect of plant-based diets on obesity-related inflammatory profiles: a systematic review and meta-analysis of intervention trials. Obes Rev. 2016;17(11):1067–79. https://pubmed.ncbi.nlm.nih.gov/27405372/
1251
Tran E, Dale HF, Jensen C, Lied GA. Effects of plant-based diets on weight status: a systematic review. Diabetes Metab Syndr Obes. 2020;13:3433–48. https://pubmed.ncbi.nlm.nih.gov/33061504/
1252
Shah B, Newman JD, Woolf K, et al. Anti-inflammatory effects of a vegan diet versus the American Heart Association – recommended diet in coronary artery disease trial. J Am Heart Assoc. 2018;7(23):e011367. https://pubmed.ncbi.nlm.nih.gov/30571591/
1253
Margolis KL, Manson JE, Greenland P, et al. Leukocyte count as a predictor of cardiovascular events and mortality in postmenopausal women: the Women’s Health Initiative Observational Study. Arch Intern Med. 2005;165(5):500–8. https://pubmed.ncbi.nlm.nih.gov/15767524/
1254
Leng SX, Xue QL, Huang Y, Ferrucci L, Fried LP, Walston JD. Baseline total and specific differential white blood cell counts and 5-year all-cause mortality in community-dwelling older women. Exp Gerontol. 2005;40(12):982–7. https://pubmed.ncbi.nlm.nih.gov/16183235/
1255
Gkrania-Klotsas E, Ye Z, Cooper AJ, et al. Differential white blood cell count and type 2 diabetes: systematic review and meta-analysis of cross-sectional and prospective studies. PLoS One. 2010;5(10):e13405. https://pubmed.ncbi.nlm.nih.gov/20976133/
1256
Leng SX, Xue QL, Huang Y, Ferrucci L, Fried LP, Walston JD. Baseline total and specific differential white blood cell counts and 5-year all-cause mortality in community-dwelling older women. Exp Gerontol. 2005;40(12):982–7. https://pubmed.ncbi.nlm.nih.gov/16183235/
1257
de Labry LO, Campion EW, Glynn RJ, Vokonas PS. White blood cell count as a predictor of mortality: results over 18 years from the Normative Aging Study. J Clin Epidemiol. 1990;43(2):153–7. https://pubmed.ncbi.nlm.nih.gov/2303845/
1258
Panagiotakos DB, Pitsavos C, Chrysohoou C, et al. Effect of exposure to secondhand smoke on markers of inflammation: the ATTICA study. Am J Med. 2004;116(3):145–50. https://pubmed.ncbi.nlm.nih.gov/14749157/
1259
Swanson E. Prospective clinical study reveals significant reduction in triglyceride level and white blood cell count after liposuction and abdominoplasty and no change in cholesterol levels. Plast Reconstr Surg. 2011;128(3):182e-97e. https://pubmed.ncbi.nlm.nih.gov/21865992/
1260
Domene PA, Moir HJ, Pummell E, Knox A, Easton C. The health-enhancing efficacy of Zumba® fitness: an 8-week randomised controlled study. J Sports Sci. 2016;34(15):1396–404. https://pubmed.ncbi.nlm.nih.gov/26571136/
1261
Kjeldsen-Kragh J. Rheumatoid arthritis treated with vegetarian diets. Am J Clin Nutr. 1999;70(3 Suppl):594S-600S. https://pubmed.ncbi.nlm.nih.gov/10479237/
1262
Schultz H, Ying GS, Dunaief JL, Dunaief DM. Rising plasma beta-carotene is associated with diminishing C-reactive protein in patients consuming a dark green leafy vegetable – rich, Low Inflammatory Foods Everyday (LIFE) diet. Am J Lifestyle Med. https://journals.sagepub.com/doi/10.1177/1559827619894954. Published December 21, 2019. Accessed June 26, 2021.; https://pubmed.ncbi.nlm.nih.gov/34916884/
1263
Perzia B, Ying GS, Dunaief JL, Dunaief DM. Once-daily Low Inflammatory Foods Everyday (LIFE) smoothie or the full LIFE diet lowers C-reactive protein and raises plasma beta-carotene in 7 days. Am J Lifestyle Med. https://journals.sagepub.com/doi/10.1177/1559827620962458. Published October 5, 2020. Accessed June 26, 2021.; https://pubmed.ncbi.nlm.nih.gov/36389047/
1264
Castenmiller JJM, West CE, Linssen JPH, van het Hof KH, Voragen AGJ. The food matrix of spinach is a limiting factor in determining the bioavailability of ß-carotene and to a lesser extent of lutein in humans. J Nutr. 1999;129(2):349–55. https://pubmed.ncbi.nlm.nih.gov/10024612/
1265
Lin KH, Hsu CY, Huang YP, et al. Chlorophyll-related compounds inhibit cell adhesion and inflammation in human aortic cells. J Med Food. 2013;16(10):886–98. https://pubmed.ncbi.nlm.nih.gov/24066944/
1266
Subramoniam A, Asha VV, Nair SA, et al. Chlorophyll revisited: anti-inflammatory activities of chlorophyll a and inhibition of expression of TNF-a gene by the same. Inflammation. 2012;35(3):959–66. https://pubmed.ncbi.nlm.nih.gov/22038065/
1267
Jiang Y, Wu SH, Shu XO, et al. Cruciferous vegetable intake is inversely correlated with circulating levels of proinflammatory markers in women. J Acad Nutr Diet. 2014;114(5):700–8.e2. https://pubmed.ncbi.nlm.nih.gov/25165394/
1268
Zhang X, Shu XO, Xiang YB, et al. Cruciferous vegetable consumption is associated with a reduced risk of total and cardiovascular disease mortality. Am J Clin Nutr. 2011;94(1):240–6. https://pubmed.ncbi.nlm.nih.gov/21593509/
1269
Navarro SL, Schwarz Y, Song X, et al. Cruciferous vegetables have variable effects on biomarkers of systemic inflammation in a randomized controlled trial in healthy young adults. J Nutr. 2014;144(11):1850–7. https://pubmed.ncbi.nlm.nih.gov/25165394/
1270
López-Chillón MT, Carazo-Díaz C, Prieto-Merino D, Zafrilla P, Moreno DA, Villaño D. Effects of long-term consumption of broccoli sprouts on inflammatory markers in overweight subjects. Clin Nutr. 2019;38(2):745–52. https://pubmed.ncbi.nlm.nih.gov/29573889/
1271
Bentley J. Potatoes and tomatoes account for over half of U.S. vegetable availability. Economic Research Service, United States Department of Agriculture. https://www.ers.usda.gov/amber-waves/2015/september/potatoes-and-tomatoes-account-for-over-half-of-us-vegetable-availability. Published September 8, 2015. Accessed June 20, 2021.; https://www.ers.usda.gov/amber-waves/2015/september/potatoes-and-tomatoes-account-for-over-half-of-us-vegetable-availability/
1272
Ghavipour M, Saedisomeolia A, Djalali M, et al. Tomato juice consumption reduces systemic inflammation in overweight and obese females. Br J Nutr. 2013;109(11):2031–5. https://pubmed.ncbi.nlm.nih.gov/23069270/
1273
Burton-Freeman B, Talbot J, Park E, Krishnankutty S, Edirisinghe I. Protective activity of processed tomato products on postprandial oxidation and inflammation: a clinical trial in healthy weight men and women. Mol Nutr Food Res. 2012;56(4):622–31. https://pubmed.ncbi.nlm.nih.gov/22331646/
1274
Markovits N, Ben Amotz A, Levy Y. The effect of tomato-derived lycopene on low carotenoids and enhanced systemic inflammation and oxidation in severe obesity. Isr Med Assoc J. 2009;11(10):598–601. https://pubmed.ncbi.nlm.nih.gov/20077945/
1275
Dai X, Stanilka JM, Rowe CA, et al. Consuming Lentinula edodes (shiitake) mushrooms daily improves human immunity: a randomized dietary intervention in healthy young adults. J Am Coll Nutr. 2015;34(6):478–87. https://pubmed.ncbi.nlm.nih.gov/25866155/
1276
World Cancer Research Fund / American Institute for Cancer Research. Food, Nutrition, Physical Activity, and the Prevention of Cancer: a Global Perspective. American Institute for Cancer Research; 2007. https://www.researchgate.net/publication/315725512_Food_Nutrition_Physical_Activity_and_the_Prevention_of_Cancer_A_Global_Perspective_Summary
1277
American Heart Association. Types of whole grains. Heart.org. https://www.heart.org/en/healthy-living/healthy-eating/eat-smart/nutrition-basics/types-of-whole-grains. Published January 1, 2015. Accessed November 5, 2021.; https://www.heart.org/en/healthy-living/healthy-eating/eat-smart/nutrition-basics/types-of-whole-grains
1278
Aune D, Keum N, Giovannucci E, et al. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies. BMJ. 2016;353:i2716. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908315/
1279
Jacobs DR, Andersen LF, Blomhoff R. Whole-grain consumption is associated with a reduced risk of noncardiovascular, noncancer death attributed to inflammatory diseases in the Iowa Women’s Health Study. Am J Clin Nutr. 2007;85(6):1606–14. https://pubmed.ncbi.nlm.nih.gov/17556700/
1280
Aune D, Keum N, Giovannucci E, et al. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies. BMJ. 2016;353:i2716. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908315/
1281
Afshin A, Sun PJ, Fay KA, et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;393(10184):1958–72. https://pubmed.ncbi.nlm.nih.gov/30954305/
1282
Yu Z, Malik VS, Keum NN, et al. Associations between nut consumption and inflammatory biomarkers. Am J Clin Nutr. 2016;104(3):722–8. https://pubmed.ncbi.nlm.nih.gov/27465378/
1283
Gopinath B, Buyken AE, Flood VM, Empson M, Rochtchina E, Mitchell P. Consumption of polyunsaturated fatty acids, fish, and nuts and risk of inflammatory disease mortality. Am J Clin Nutr. 2011;93(5):1073–9. https://pubmed.ncbi.nlm.nih.gov/21411616/
1284
Chen GC, Zhang R, Martínez-González MA, et al. Nut consumption in relation to all-cause and cause-specific mortality: a meta-analysis 18 prospective studies. Food Funct. 2017;8(11):3893–905. https://pubmed.ncbi.nlm.nih.gov/28875220/
1285
Xiao Y, Xia J, Ke Y, et al. Effects of nut consumption on selected inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. Nutrition. 2018;54:129–43. https://pubmed.ncbi.nlm.nih.gov/29852452/
1286
Eftekhar Sadat B, Khadem Haghighian M, Alipoor B, Malek Mahdavi A, Asghari Jafarabadi M, Moghaddam A. Effects of sesame seed supplementation on clinical signs and symptoms in patients with knee osteoarthritis. Int J Rheum Dis. 2013;16(5):578–82. https://pubmed.ncbi.nlm.nih.gov/24164846/
1287
Rodriguez-Leyva D, Weighell W, Edel AL, et al. Potent antihypertensive action of dietary flaxseed in hypertensive patients. Hypertension. 2013;62(6):1081–9. https://pubmed.ncbi.nlm.nih.gov/24126178/
1288
Rahimlou M, Jahromi NB, Hasanyani N, Ahmadi AR. Effects of flaxseed interventions on circulating inflammatory biomarkers: a systematic review and meta-analysis of randomized controlled trials. Adv Nutr. 2019;10(6):1108–19. https://pubmed.ncbi.nlm.nih.gov/31115436/
1289
Caligiuri SPB, Parikh M, Stamenkovic A, Pierce GN, Aukema HM. Dietary modulation of oxylipins in cardiovascular disease and aging. Am J Physiol Heart Circ Physiol. 2017;313(5):H903–18. https://pubmed.ncbi.nlm.nih.gov/28801523/
1290
Caligiuri SPB, Aukema HM, Ravandi A, Pierce GN. Elevated levels of pro-inflammatory oxylipins in older subjects are normalized by flaxseed consumption. Exp Gerontol. 2014;59:51–7. https://pubmed.ncbi.nlm.nih.gov/24747581/
1291
Srinivasan K. Anti-inflammatory influences of culinary spices and their bioactives. Food Rev Int. 2020;Nov:1–17. https://www.tandfonline.com/doi/abs/10.1080/87559129.2020.1839761?journalCode=lfri20
1292
Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/
1293
Allijn IE, Vaessen SF, Quarles van Ufford LC, et al. Head-to-head comparison of anti-inflammatory performance of known natural products in vitro. PLoS ONE. 2016;11(5):e0155325. https://pubmed.ncbi.nlm.nih.gov/27163931/
1294
Daily JW, Yang M, Park S. Efficacy of turmeric extracts and curcumin for alleviating the symptoms of joint arthritis: a systematic review and meta-analysis of randomized clinical trials. J Med Food. 2016;19(8):717–29. https://pubmed.ncbi.nlm.nih.gov/27533649/
1295
Abidi A, Gupta S, Agarwal M, Bhalla HL, Saluja M. Evaluation of efficacy of curcumin as an add-on therapy in patients of bronchial asthma. J Clin Diagn Res. 2014;8(8):HC19–24. https://pubmed.ncbi.nlm.nih.gov/25302215/
1296
Panahi Y, Sahebkar A, Parvin S, Saadat A. A randomized controlled trial on the anti-inflammatory effects of curcumin in patients with chronic sulphur mustard-induced cutaneous complications. Ann Clin Biochem. 2012;49(Pt 6):580–8. https://pubmed.ncbi.nlm.nih.gov/23038702/
1297
Garg SK, Ahuja V, Sankar MJ, Kumar A, Moss AC. Curcumin for maintenance of remission in ulcerative colitis. Cochrane Database Syst Rev. 2012;10:CD008424. https://pubmed.ncbi.nlm.nih.gov/23076948/
1298
Khajehdehi P, Zanjaninejad B, Aflaki E, et al. Oral supplementation of turmeric decreases proteinuria, hematuria, and systolic blood pressure in patients suffering from relapsing or refractory lupus nephritis: a randomized and placebo-controlled study. J Ren Nutr. 2012;22(1):50–7. https://pubmed.ncbi.nlm.nih.gov/21742514/
1299
Vors C, Couillard C, Paradis ME, et al. Supplementation with resveratrol and curcumin does not affect the inflammatory response to a high-fat meal in older adults with abdominal obesity: a randomized, placebo-controlled crossover trial. J Nutr. 2018;148(3):379–88. https://pubmed.ncbi.nlm.nih.gov/29546309/
1300
Derosa G, Maffioli P, Simental-Mendía LE, Bo S, Sahebkar A. Effect of curcumin on circulating interleukin-6 concentrations: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2016;111:394–404. https://pubmed.ncbi.nlm.nih.gov/27392742/
1301
Sahebkar A, Cicero AFG, Simental-Mendía LE, Aggarwal BB, Gupta SC. Curcumin downregulates human tumor necrosis factor-a levels: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2016;107:234–42. https://pubmed.ncbi.nlm.nih.gov/27025786/
1302
Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/
1303
Morvaridzadeh M, Fazelian S, Agah S, et al. Effect of ginger (Zingiber officinale) on inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. Cytokine. 2020;135:155224. https://pubmed.ncbi.nlm.nih.gov/32763761/
1304
Aryaeian N, Shahram F, Mahmoudi M, et al. The effect of ginger supplementation on some immunity and inflammation intermediate genes expression in patients with active Rheumatoid Arthritis. Gene. 2019;698:179–185. https://pubmed.ncbi.nlm.nih.gov/30844477/
1305
Bartels EM, Folmer VN, Bliddal H, et al. Efficacy and safety of ginger in osteoarthritis patients: a meta-analysis of randomized placebo-controlled trials. Osteoar Cartil. 2015;23(1):13–21. https://pubmed.ncbi.nlm.nih.gov/25300574/
1306
Haghighi M, Khalvat A, Toliat T, Jallaei SH. Comparing the effects of ginger (Zingiber officinale) extract and ibuprofen on patients with osteoarthritis. Arch Iran Med. 2005;8(4):267–71. https://www.researchgate.net/publication/235007127_Comparing_the_Effects_of_ginger_Zingiber_officinale_extract_and_ibuprofen_On_patients_with_osteoarthritis