
Полная версия:
Живи долго! Научный подход к долгой молодости и здоровью
1155
Liu Z, Ho SC, Chen Y, Tang N, Woo J. Effect of whole soy and purified isoflavone daidzein on renal function – a 6-month randomized controlled trial in equol-producing postmenopausal women with prehypertension. Clin Biochem. 2014;47(13–14):1250–6. https://pubmed.ncbi.nlm.nih.gov/24877660/
1156
Fioretto P, Trevisan R, Valerio A, et al. Impaired renal response to a meat meal in insulin-dependent diabetes: role of glucagon and prostaglandins. Am J Physiol. 1990;258(3 Pt 2):F675–83. https://pubmed.ncbi.nlm.nih.gov/2316671/
1157
N-гликолилнейраминовая кислота. – Примеч. ред.
1158
Varki A. Are humans prone to autoimmunity? Implications from evolutionary changes in hominin sialic acid biology. J Autoimmun. 2017;83:134–42. https://pubmed.ncbi.nlm.nih.gov/28755952/
1159
Pham T, Gregg CJ, Karp F, et al. Evidence for a novel human-specific xeno-auto-antibody response against vascular endothelium. Blood. 2009;114(25):5225–35. https://pubmed.ncbi.nlm.nih.gov/19828701/
1160
Alisson-Silva F, Kawanishi K, Varki A. Human risk of diseases associated with red meat intake: analysis of current theories and proposed role for metabolic incorporation of a non-human sialic acid. Mol Aspects Med. 2016;51:16–30. https://pubmed.ncbi.nlm.nih.gov/27421909/
1161
Peri S, Kulkarni A, Feyertag F, Berninsone PM, Alvarez-Ponce D. Phylogenetic distribution of CMP-Neu5Ac hydroxylase (CMAH), the enzyme synthetizing the proinflammatory human xenoantigen Neu5Gc. Genome Biol Evol. 2018;10(1):207–19. https://pubmed.ncbi.nlm.nih.gov/29206915/
1162
Samraj AN, Pearce OMT, Läubli H, et al. A red meat-derived glycan promotes inflammation and cancer progression. Proc Natl Acad Sci U S A. 2015;112(2):542–7. https://pubmed.ncbi.nlm.nih.gov/25548184/
1163
Peri S, Kulkarni A, Feyertag F, Berninsone PM, Alvarez-Ponce D. Phylogenetic distribution of CMP-Neu5Ac hydroxylase (CMAH), the enzyme synthetizing the proinflammatory human xenoantigen Neu5Gc. Genome Biol Evol. 2018;10(1):207–19. https://pubmed.ncbi.nlm.nih.gov/29206915/
1164
Jahan M, Thomson PC, Wynn PC, Wang B. The non-human glycan, N-glycolylneuraminic acid (Neu5Gc), is not expressed in all organs and skeletal muscles of nine animal species. Food Chem. 2021;343:128439. https://pubmed.ncbi.nlm.nih.gov/33127222/
1165
Peri S, Kulkarni A, Feyertag F, Berninsone PM, Alvarez-Ponce D. Phylogenetic distribution of CMP-Neu5Ac hydroxylase (CMAH), the enzyme synthetizing the proinflammatory human xenoantigen Neu5Gc. Genome Biol Evol. 2018;10(1):207–19. https://pubmed.ncbi.nlm.nih.gov/29206915/
1166
Jahan M, Thomson PC, Wynn PC, Wang B. The non-human glycan, N-glycolylneuraminic acid (Neu5Gc), is not expressed in all organs and skeletal muscles of nine animal species. Food Chem. 2021;343:128439. https://pubmed.ncbi.nlm.nih.gov/33127222/
1167
Alisson-Silva F, Kawanishi K, Varki A. Human risk of diseases associated with red meat intake: analysis of current theories and proposed role for metabolic incorporation of a non-human sialic acid. Mol Aspects Med. 2016;51:16–30. https://pubmed.ncbi.nlm.nih.gov/27421909/
1168
MacGregor GA, Markandu ND, Best FE, et al. Double-blind randomised crossover trial of moderate sodium restriction in essential hypertension. Lancet. 1982;1(8268):351–5. https://pubmed.ncbi.nlm.nih.gov/6120346/
1169
Yi B, Titze J, Rykova M, et al. Effects of dietary salt levels on monocytic cells and immune responses in healthy human subjects: a longitudinal study. Transl Res. 2015;166(1):103–10. https://pubmed.ncbi.nlm.nih.gov/25497276/
1170
Mickleborough TD, Lindley MR, Ray S. Dietary salt, airway inflammation, and diffusion capacity in exercise-induced asthma. Med Sci Sports Exerc. 2005;37(6):904–14. https://pubmed.ncbi.nlm.nih.gov/15947713/
1171
Farez MF, Fiol MP, Gaitán MI, Quintana FJ, Correale J. Sodium intake is associated with increased disease activity in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2015;86(1):26–31. https://pubmed.ncbi.nlm.nih.gov/28556498/
1172
Krajina I, Stupin A, Šola M, Mihalj M. Oxidative stress induced by high salt diet – possible implications for development and clinical manifestation of cutaneous inflammation and endothelial dysfunction in Psoriasis vulgaris. Antioxidants (Basel). 2022;11(7):1269. https://pubmed.ncbi.nlm.nih.gov/35883760/
1173
Carranza-León DA, Oeser A, Marton A, et al. Tissue sodium content in patients with systemic lupus erythematosus: association with disease activity and markers of inflammation. Lupus. 2020;29(5):455–62. https://pubmed.ncbi.nlm.nih.gov/32070186/
1174
Jung SM, Kim Y, Kim J, et al. Sodium chloride aggravates arthritis via Th17 polarization. Yonsei Med J. 2019;60(1):88–97. https://pubmed.ncbi.nlm.nih.gov/30554495/
1175
Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/
1176
United States Department of Health and Human Services, United States Department of Agriculture. Appendix 13. Food sources of dietary fiber. In: 2015–2020 Dietary Guidelines for Americans. 8th ed. DietaryGuidelines.gov. 2015:114–8.; https://health.gov/our-work/nutrition-physical-activity/dietary-guidelines/previous-dietary-guidelines/2015
1177
Hostetler GL, Ralston RA, Schwartz SJ. Flavones: food sources, bioavailability, metabolism, and bioactivity. Adv Nutr. 2017;8(3):423–35. https://pubmed.ncbi.nlm.nih.gov/28507008/
1178
Haytowitz DB, Bhagwat S, Harnly J, Holden JM, Gebhardt SE. Sources of flavonoids in the U.S. diet using USDA’s updated database on the flavonoid content of selected foods. Agricultural Research Service, United States Department of Agriculture. https://www.ars.usda.gov/ARSUserFiles/80400525/Articles/AICR06_flav.pdf. Published 2006. Accessed July 20, 2021.; https://www.ars.usda.gov/ARSUserFiles/80400525/Articles/AICR06_flav.pdf
1179
Hostetler GL, Ralston RA, Schwartz SJ. Flavones: food sources, bioavailability, metabolism, and bioactivity. Adv Nutr. 2017;8(3):423–35. https://pubmed.ncbi.nlm.nih.gov/28507008/
1180
Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. The role of short-chain fatty acids in health and disease. In: Alt FW, ed. Advances in Immunology. Vol 121. Academic Press, Elsevier; 2014:91–119. https://pubmed.ncbi.nlm.nih.gov/24388214/
1181
Pukatzki S, Provenzano D. Vibrio cholerae as a predator: lessons from evolutionary principles. Front Microbiol. 2013;4. https://pubmed.ncbi.nlm.nih.gov/24368907/
1182
Chang PV, Hao L, Offermanns S, Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A. 2014;111(6):2247–52. https://pubmed.ncbi.nlm.nih.gov/24390544/
1183
McRorie JW. Evidence-based approach to fiber supplements and clinically meaningful health benefits, part 1: what to look for and how to recommend an effective fiber therapy. Nutr Today. 2015;50(2):82–9. https://pubmed.ncbi.nlm.nih.gov/25972618/
1184
Nilsson AC, Östman EM, Knudsen KEB, Holst JJ, Björck IME. A cereal-based evening meal rich in indigestible carbohydrates increases plasma butyrate the next morning. J Nutr. 2010;140(11):1932–6. https://pubmed.ncbi.nlm.nih.gov/20810606/
1185
Meijer K, de Vos P, Priebe MG. Butyrate and other short-chain fatty acids as modulators of immunity: what relevance for health? Curr Opin Clin Nutr Metab Care. 2010;13(6):715–21. https://pubmed.ncbi.nlm.nih.gov/20823773/
1186
Dai Z, Lu N, Niu J, Felson DT, Zhang Y. Dietary fiber intake in relation to knee pain trajectory. Arthritis Care Res (Hoboken). 2017;69(9):1331–9. https://pubmed.ncbi.nlm.nih.gov/27899003/
1187
Dai Z, Niu J, Zhang Y, Jacques P, Felson DT. Dietary intake of fibre and risk of knee osteoarthritis in two US prospective cohorts [published correction appears in Ann Rheum Dis. 2017;76(12):2103]. Ann Rheum Dis. 2017;76(8):1411–9. https://pubmed.ncbi.nlm.nih.gov/28536116/
1188
Vaughan A, Frazer ZA, Hansbro PM, Yang IA. COPD and the gut-lung axis: the therapeutic potential of fibre. J Thorac Dis. 2019;11(Suppl 17):S2173–80. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6831926/
1189
Reynolds A, Mann J, Cummings J, Winter N, Mete E, Te Morenga L. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet. 2019;393(10170):434-45. https://pubmed.ncbi.nlm.nih.gov/30638909/
1190
Brewer RA, Gibbs VK, Smith DL Jr. Targeting glucose metabolism for healthy aging. Nutr Healthy Aging. 2016;4(1):31–46. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5166514/
1191
Su B, Liu H, Li J, et al. Acarbose treatment affects the serum levels of inflammatory cytokines and the gut content of bifidobacteria in Chinese patients with type 2 diabetes mellitus. J Diabetes. 2015;7(5):729–39. https://pubmed.ncbi.nlm.nih.gov/25327485/
1192
Zhang X, Fang Z, Zhang C, et al. Effects of acarbose on the gut microbiota of prediabetic patients: a randomized, double-blind, controlled crossover trial. Diabetes Ther. 2017;8(2):293–307. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5380489/
1193
Wolever TMS, Chiasson JL. Acarbose raises serum butyrate in human subjects with impaired glucose tolerance. Br J Nutr. 2000;84(1):57–61. https://pubmed.ncbi.nlm.nih.gov/10961161/
1194
McCay CM, Ku CC, Woodward JC, Sehgal BS. Cellulose in the diet of rats and mice: two figures. J Nutr. 1934;8(4):435–47. https://academic.oup.com/jn/article-abstract/8/4/435/4727178
1195
Smith BJ, Miller RA, Ericsson AC, Harrison DC, Strong R, Schmidt TM. Changes in the gut microbiome and fermentation products concurrent with enhanced longevity in acarbose-treated mice. BMC Microbiol. 2019;19(1):130. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6567620/
1196
Hovey AL, Jones GP, Devereux HM, Walker KZ. Whole cereal and legume seeds increase faecal short chain fatty acids compared to ground seeds. Asia Pac J Clin Nutr. 2003;12(4):477–82. https://pubmed.ncbi.nlm.nih.gov/14672874/
1197
Stephen AM, Cummings JH. The microbial contribution to human faecal mass. J Med Microbiol. 1980;13(1):45–56. https://pubmed.ncbi.nlm.nih.gov/7359576/
1198
Singh RK, Chang HW, Yan D, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15(1):73. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5385025/
1199
Franceschi C, Ostan R, Santoro A. Nutrition and inflammation: are centenarians similar to individuals on calorie-restricted diets? Annu Rev Nutr. 2018;38(1):329–56. https://pubmed.ncbi.nlm.nih.gov/29852087/
1200
Minciullo PL, Catalano A, Mandraffino G, et al. Inflammaging and anti-inflammaging: the role of cytokines in extreme longevity. Arch Immunol Ther Exp (Warsz). 2016;64(2):111–26. https://pubmed.ncbi.nlm.nih.gov/26658771/
1201
Minciullo PL, Catalano A, Mandraffino G, et al. Inflammaging and anti-inflammaging: the role of cytokines in extreme longevity. Arch Immunol Ther Exp (Warsz). 2016;64(2):111–26. https://pubmed.ncbi.nlm.nih.gov/26658771/
1202
Säemann MD, Böhmig GA, Österreicher CH, et al. Anti-inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and up-regulation of IL-10 production. FASEB J. 2000;14(15):2380–2. https://pubmed.ncbi.nlm.nih.gov/11024006/
1203
Vitaglione P, Mennella I, Ferracane R, et al. Whole-grain wheat consumption reduces inflammation in a randomized controlled trial on overweight and obese subjects with unhealthy dietary and lifestyle behaviors: role of polyphenols bound to cereal dietary fiber. Am J Clin Nutr. 2015;101(2):251–61. https://pubmed.ncbi.nlm.nih.gov/25646321/
1204
Kohl A, Gögebakan Ö, Möhlig M, et al. Increased interleukin-10 but unchanged insulin sensitivity after 4 weeks of (1, 3)(1, 6)-ß-glycan consumption in overweight humans. Nutr Res. 2009;29(4):248–54. https://pubmed.ncbi.nlm.nih.gov/19410976/
1205
Barclay GR, McKenzie H, Pennington J, Parratt D, Pennington CR. The effect of dietary yeast on the activity of stable chronic Crohn’s disease. Scand J Gastroenterol. 1992;27(3):196–200. https://pubmed.ncbi.nlm.nih.gov/1502481/
1206
Cannistrà C, Finocchi V, Trivisonno A, Tambasco D. New perspectives in the treatment of hidradenitis suppurativa: surgery and brewer’s yeast-exclusion diet. Surgery. 2013;154(5):1126–30. https://pubmed.ncbi.nlm.nih.gov/23891479/
1207
Franceschi C, Ostan R, Santoro A. Nutrition and inflammation: are centenarians similar to individuals on calorie-restricted diets? Annu Rev Nutr. 2018;38(1):329–56. https://pubmed.ncbi.nlm.nih.gov/29852087/
1208
Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/
1209
Barbaresko J, Koch M, Schulze MB, Nöthlings U. Dietary pattern analysis and biomarkers of low-grade inflammation: a systematic literature review. Nutr Rev. 2013;71(8):511–27. https://pubmed.ncbi.nlm.nih.gov/23865797/
1210
Eichelmann F, Schwingshackl L, Fedirko V, Aleksandrova K. Effect of plant-based diets on obesity-related inflammatory profiles: a systematic review and meta-analysis of intervention trials. Obes Rev. 2016;17(11):1067–79. https://pubmed.ncbi.nlm.nih.gov/27405372/
1211
Sutliffe JT, Wilson LD, de Heer HD, Foster RL, Carnot MJ. C-reactive protein response to a vegan lifestyle intervention. Complement Ther Med. 2015;23(1):32–7. https://pubmed.ncbi.nlm.nih.gov/25637150/
1212
Macknin M, Kong T, Weier A, et al. Plant-based, no-added-fat or American Heart Association diets: impact on cardiovascular risk in obese children with hypercholesterolemia and their parents. J Pediatr. 2015;166(4):953–9.e1–3. https://pubmed.ncbi.nlm.nih.gov/25684089/
1213
Hosseinpour-Niazi S, Mirmiran P, Fallah-Ghohroudi A, Azizi F. Non-soya legume-based therapeutic lifestyle change diet reduces inflammatory status in diabetic patients: a randomised cross-over clinical trial. Br J Nutr. 2015;114(2):213–9. https://pubmed.ncbi.nlm.nih.gov/26077375/
1214
Watzl B, Kulling SE, Möseneder J, Barth SW, Bub A. A 4-wk intervention with high intake of carotenoid-rich vegetables and fruit reduces plasma C-reactive protein in healthy, nonsmoking men. Am J Clin Nutr. 2005;82(5):1052–8. https://pubmed.ncbi.nlm.nih.gov/16280438/
1215
Lee-Kwan SH, Moore LV, Blanck HM, Harris DM, Galuska D. Disparities in state-specific adult fruit and vegetable consumption – United States, 2015. MMWR Morb Mortal Wkly Rep. 2017;66:1241–7. https://pubmed.ncbi.nlm.nih.gov/29145355/
1216
Baden MY, Satija A, Hu FB, Huang T. Change in plant-based diet quality is associated with changes in plasma adiposity-associated biomarker concentrations in women. J Nutr. 2019;149(4):676–86. https://pubmed.ncbi.nlm.nih.gov/30927000/
1217
Ricker MA, Haas WC. Anti-inflammatory diet in clinical practice: a review. Nutr Clin Pract. 2017;32(3):318–25. https://pubmed.ncbi.nlm.nih.gov/28350517/
1218
Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/
1219
Li K, Huang T, Zheng J, Wu K, Li D. Effect of marine-derived n-3 polyunsaturated fatty acids on C-reactive protein, interleukin 6 and tumor necrosis factor a: a meta-analysis. PLoS ONE. 2014;9(2):e88103. https://pubmed.ncbi.nlm.nih.gov/24505395/
1220
Agricultural Research Service, United States Department of Agriculture. Search results: PUFA 22:6 n-3 (DHA) (g). FoodData Central. https://fdc.nal.usda.gov/fdc-app.html#/?component=1272. Published April 1, 2019. Accessed July 19, 2021.; https://fdc.nal.usda.gov/fdc-app.html#/?component=1272
1221
Stella AB, Cappellari GG, Barazzoni R, Zanetti M. Update on the impact of omega 3 fatty acids on inflammation, insulin resistance and sarcopenia: a review. Int J Mol Sci. 2018;19(1):218. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5796167/
1222
Alhassan A, Young J, Lean MEJ, Lara J. Consumption of fish and vascular risk factors: a systematic review and meta-analysis of intervention studies. Atherosclerosis. 2017;266:87–94. https://pubmed.ncbi.nlm.nih.gov/28992469/
1223
Gopinath B, Buyken AE, Flood VM, Empson M, Rochtchina E, Mitchell P. Consumption of polyunsaturated fatty acids, fish, and nuts and risk of inflammatory disease mortality. Am J Clin Nutr. 2011;93(5):1073–9. https://pubmed.ncbi.nlm.nih.gov/21411616/
1224
Raymond MR, Christensen KY, Thompson BA, Anderson HA. Associations between fish consumption and contaminant biomarkers with cardiovascular conditions among older male anglers in Wisconsin. J Occup Environ Med. 2016;58(7):676–82. https://pubmed.ncbi.nlm.nih.gov/27253229/
1225
Tabung FK, Smith-Warner SA, Chavarro JE, et al. Development and validation of an empirical dietary inflammatory index. J Nutr. 2016;146(8):1560–70. https://pubmed.ncbi.nlm.nih.gov/27358416/
1226
Hjartåker A, Knudsen MD, Tretli S, Weiderpass E. Consumption of berries, fruits and vegetables and mortality among 10,000 Norwegian men followed for four decades. Eur J Nutr. 2015;54(4):599–608. https://pubmed.ncbi.nlm.nih.gov/25087093/
1227
Cassidy A, Rogers G, Peterson JJ, Dwyer JT, Lin H, Jacques PF. Higher dietary anthocyanin and flavonol intakes are associated with anti-inflammatory effects in a population of US adults. Am J Clin Nutr. 2015;102(1):172–81. https://pubmed.ncbi.nlm.nih.gov/26016863/
1228
Nair AR, Mariappan N, Stull AJ, Francis J. Blueberry supplementation attenuates oxidative stress within monocytes and modulates immune cell levels in adults with metabolic syndrome: a randomized, double-blind, placebo-controlled trial. Food Funct. 2017;8(11):4118–28. https://pubmed.ncbi.nlm.nih.gov/29019365/
1229
Moazen S, Amani R, Homayouni Rad A, Shahbazian H, Ahmadi K, Taha Jalali M. Effects of freeze-dried strawberry supplementation on metabolic biomarkers of atherosclerosis in subjects with type 2 diabetes: a randomized double-blind controlled trial. Ann Nutr Metab. 2013;63(3):256–64. https://pubmed.ncbi.nlm.nih.gov/24334868/
1230
Moylan S, Berk M, Dean OM, et al. Oxidative & nitrosative stress in depression: why so much stress? Neurosci Biobehav Rev. 2014;45:46–62. https://pubmed.ncbi.nlm.nih.gov/24858007/
1231
Franzini L, Ardigi D, Valtueña S, et al. Food selection based on high total antioxidant capacity improves endothelial function in a low cardiovascular risk population. Nutr Metab Cardiovasc Dis. 2012;22(1):50–7. https://pubmed.ncbi.nlm.nih.gov/20674303/
1232
Sun CH, Li Y, Zhang YB, Wang F, Zhou XL, Wang F. The effect of vitamin – mineral supplementation on CRP and IL-6: a systemic review and meta-analysis of randomised controlled trials. Nutr Metab Cardiovasc Dis. 2011;21(8):576–83. https://pubmed.ncbi.nlm.nih.gov/20399082/
1233
Fallah AA, Sarmast E, Fatehi P, Jafari T. Impact of dietary anthocyanins on systemic and vascular inflammation: systematic review and meta-analysis on randomised clinical trials. Food Chem Toxicol. 2020;135:110922. https://pubmed.ncbi.nlm.nih.gov/31669599/
1234
do Rosario VA, Chang C, Spencer J, et al. Anthocyanins attenuate vascular and inflammatory responses to a high fat high energy meal challenge in overweight older adults: a cross-over, randomized, double-blind clinical trial. Clin Nutr. 2021;40(3):879–89. https://pubmed.ncbi.nlm.nih.gov/33071012/
1235
O’Hara C, Ojo B, Emerson SR, et al. Acute freeze-dried mango consumption with a high-fat meal has minimal effects on postprandial metabolism, inflammation and antioxidant enzymes. Nutr Metab Insights. 2019;12:1178638819869946. https://pubmed.ncbi.nlm.nih.gov/31452602/
1236
Wang P, Zhang Q, Hou H, et al. The effects of pomegranate supplementation on biomarkers of inflammation and endothelial dysfunction: a meta-analysis and systematic review. Complement Ther Med. 2020;49:102358. https://pubmed.ncbi.nlm.nih.gov/32147056/
1237
Aptekmann NP, Cesar TB. Orange juice improved lipid profile and blood lactate of overweight middle-aged women subjected to aerobic training. Maturitas. 2010;67(4):343–7. https://pubmed.ncbi.nlm.nih.gov/20729016/
1238
McAnulty LS, Nieman DC, Dumke CL, et al. Effect of blueberry ingestion on natural killer cell counts, oxidative stress, and inflammation prior to and after 2.5 h of running. Appl Physiol Nutr Metab. 2011;36(6):976–84. https://pubmed.ncbi.nlm.nih.gov/22111516/
1239
Connolly DA, McHugh MP, Padilla-Zakour OI, Carlson L, Sayers SP. Efficacy of a tart cherry juice blend in preventing the symptoms of muscle damage. Br J Sports Med. 2006;40(8):679–83. https://pubmed.ncbi.nlm.nih.gov/16790484/
1240
Peake JM, Suzuki K, Coombes JS. The influence of antioxidant supplementation on markers of inflammation and the relationship to oxidative stress after exercise. J Nutr Biochem. 2007;18(6):357–71. https://pubmed.ncbi.nlm.nih.gov/17156994/
1241
Childs A, Jacobs C, Kaminski T, Halliwell B, Leeuwenburgh C. Supplementation with vitamin C and N-acetyl-cysteine increases oxidative stress in humans after an acute muscle injury induced by eccentric exercise. Free Radic Biol Med. 2001;31(6):745–53. https://pubmed.ncbi.nlm.nih.gov/11557312/
1242
McHugh M. The health benefits of cherries and potential applications in sports. Scand J Med Sci Sports. 2011;21(5):615–6. https://pubmed.ncbi.nlm.nih.gov/21917014/
1243
Blau LW. Cherry diet control for gout and arthritis. Tex Rep Biol Med. 1950;8(3):309–11. https://pubmed.ncbi.nlm.nih.gov/14776685/
1244
Overman T. Pegloticase: a new treatment for gout. Pharmacotherapy Update. 2011;14(2):1–3. https://pubmed.ncbi.nlm.nih.gov/29204266/
1245
Finkelstein Y, Aks SE, Hutson JR, et al. Colchicine poisoning: the dark side of an ancient drug. Clin Toxicol (Phila). 2010;48(5):407–14. https://pubmed.ncbi.nlm.nih.gov/20586571/
1246
Fritsch PO, Sidoroff A. Drug-induced Stevens-Johnson syndrome/toxic epidermal necrolysis. Am J Clin Dermatol. 2000;1(6):349–60. https://pubmed.ncbi.nlm.nih.gov/11702611/
1247
Wang M, Jiang X, Wu W, Zhang D. A meta-analysis of alcohol consumption and the risk of gout. Clin Rheumatol. 2013;32(11):1641–8. https://pubmed.ncbi.nlm.nih.gov/23881436/
1248
Zhang Y, Chen C, Choi H, et al. Purine-rich foods intake and recurrent gout attacks. Ann Rheum Dis. 2012;71(9):1448–53. https://pubmed.ncbi.nlm.nih.gov/22648933/