
Полная версия:
Биохакинг
300
Huang, W. et al. (2013). Red and processed meat intake and risk of esophageal adenocarcinoma: a meta-analysis of observational studies. Cancer Causes and Control 24 (1): 193–201.
301
Zhu, H. et al. (2013). Red and processed meat intake is associated with higher gastric cancer risk: a meta-analysis of epidemiological observational studies. PLoS One 8 (8): e70955.
302
O’Sullivan, T. et al. (2013). Food sources of saturated fat and the association with mortality: a meta-analysis. American Journal of Public Health 103: e31–42.
303
McDaniel, J. & Askew, W. & Bennett, D. (2013). Bison meat has a lower atherogenic risk than beef in healthy men. Nutrition Research 33 (4): 293–302.
304
Leheska, J. et al. (2008). Effects of conventional and grass-feeding systems on the nutrient composition of beef. Journal of Animal Sciences 86 (12): 3575–3585.
305
Sun, L. & Sadighi Akha A. & Miller, R. & Harper, J. (2009). Life-span extension in mice by preweaning food restriction and by methionine restriction in middle age. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 64 (7): 711–722.
306
López-Torres, M. & Barja, G. (2008). Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction possible implications for humans. Biochimica et Biophysica Acta 1780 (11): 1337–1347. Review.
307
Sanchez-Roman, I. & Barja, G. (2013). Regulation of longevity and oxidative stress by nutritional interventions: role of methionine restriction. Experimental Gerontology 48 (10): 1030–1042. Review.
308
Brind, J. et al. (2011). Dietary glycine supplementation mimics lifespan extension by dietary restriction in Fisher 344 rats. The FASEB Journal 25 (1): Supplement 528.2.
309
Díaz-Flores, M. et al. (2013). Oral supplementation with glycine reduces oxidative stress in patients with metabolic syndrome, improving their systolic blood pressure. Canadian Journal of Physiology and Pharmacology 91 (10): 855–860.
310
White, D. & Collinson, A. (2013). Red meat, dietary heme iron, and risk of type 2 diabetes: the involvement of advanced lipoxidation endproducts. Advances in Nutrition 4 (4): 403–411. Review.
311
Petsini, F. & Fragopoulou, E. & Antonopoulou, S. (2018). Fish consumption and cardiovascular disease related biomarkers: A review of clinical trials. Critical Reviews in Food Science and Nutrition 8: 1–11.
312
Raatz, S. & Silverstein, J. & Jahns, L., & Picklo, M. (2013). Issues of fish consumption for cardiovascular disease risk reduction. Nutrients 5 (4): 1081–1097.
313
United Nations Environment Programme. (2013). Minamata Convention on Mercury (19.1.2013, Geneva, Switzerland) www.mercuryconvention.org [date of reference: 12.10.2014]
314
Sidhu, K. (2003). Health benefits and potential risks related to consumption of fish or fish oil. Regulatory Toxicology and Pharmacology 38 (3): 336–344.
315
Leung Yinko, S. & Stark, K. & Thanassoulis, G. & Pilote, L. (2014). Fish consumption and acute coronary syndrome: a meta-analysis. The American Journal of Medicine 127 (9): 848–857.e2.
316
Song, J. & Su, H &, Wang, B. & Zhou, Y. & Guo, L. (2014). Fish consumption and lung cancer risk: systematic review and meta-analysis. Nutrition and Cancer (4): 539–549.
317
Zhang, M. & Picard-Deland, E. & Marette, A. (2013). Fish and marine omega-3 polyunsatured Fatty Acid consumption and incidence of type 2 diabetes: a systematic review and meta-analysis. International Journal of Endocrinology 2013: 501015. Review.
318
Rylander, C. & Sandanger, T. & Engeset D, Lund E. (2014). Consumption of lean fish reduces the risk of type 2 diabetes mellitus: a prospective population based cohort study of Norwegian women. PLoS One 9 (2): e89845.
319
Wu, J. & Cahill, L. & Mozaffarian, D. (2013). Effect of fish oil on circulating adiponectin: a systematic review and meta-analysis of randomized controlled trials. The Journal of Clinical Endocrinology and Metabolism 98 (6): 2451–2459. Review.
320
Iwabu, M. et al. (2010). Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1. Nature 464 (7293): 1313–1319.
321
Foran J. et al. (2005). Quantitative analysis of the benefits and risks of consuming farmed and wild salmon. The Journal of Nutrition 135 (11): 2639–2643.
322
Hites, R. et al. (2004). Global assessment of organic contaminants in farmed salmon. Science 303 (5655): 226–229.
323
Foran, J. et al. (2005). Risk-based consumption advice for farmed Atlantic and wild Pacific salmon contaminated with dioxins and dioxin-like compounds. Environmental Health Perspectives 113 (5): 552–526.
324
Fineli. (2014). Osteri, punnittu kuorineen. Terveyden ja hyvinvoinnin laitos, ravitsemusyksikkö. www.fineli.fi [date of reference: 18.10.2014]
325
Holmström, K. (2003). Antibiotic use in shrimp farming and implications for environmental impacts and human health. International Journal of Food Science and Technology 38 (3): 255–256.
326
Vishwanathan, R. et al. (2009). Consumption of 2 and 4 egg yolks/d for 5 wk increases macular pigment concentrations in older adults with low macular pigment taking cholesterol-lowering statins. The American Journal of Clinical Nutrition 90 (5): 1272–1279.
327
National Eye Institute. (2018). Facts About Age-Related Macular Degeneration. https://nei.nih.gov/health/maculardegen/armd_facts [date of reference: 21.11.2018]
328
Fernandez, M. (2006). Dietary cholesterol provided by eggs and plasma lipoproteins in healthy populations. Current Opinions in Clinical Nutrition and Metabolic Care 9 (1): 8–12. Review.
329
Rong, Y. et al. (2013). Egg consumption and risk of coronary heart disease and stroke: dose-response meta-analysis of prospective cohort studies. British Medical Journal 346: e8539. Review.
330
Shin, J. & Xun, P. & Nakamura, Y. & He, K. (2013). Egg consumption in relation to risk of cardiovascular disease and diabetes: a systematic review and meta-analysis. The American Journal of Clinical Nutrition 98 (1): 146–159. Review.
331
Goodrow, E. (2006). Consumption of one egg per day increases serum lutein and zeaxanthin concentrations in older adults without altering serum lipid and lipoprotein cholesterol concentrations. The Journal of Nutrition 136 (10): 2519–2524.
332
Virtanen, J. et al. (2016). Associations of egg and cholesterol intakes with carotid intima-media thickness and risk of incident coronary artery disease according to apolipoprotein E phenotype in men: the Kuopio Ischaemic Heart Disease Risk Factor Study. American Journal of Clinical Nutrition 103 (3): 895–901.
333
Segall, J. (1994). Dietary lactose as a possible risk factor for ischaemic heart disease: review of epidemiology. International Journal of Cardiology 46 (3): 197–207.
334
Segall, J. (2002). Plausibility of dietary lactose as a coronary risk factor. Journal of Nutritional and Environmental Medicine 12: 217–229.
335
Moss M. & Freed. D. (2003). The cow and the coronary: epidemiology, biochemistry and immunology. International Journal of Cardiology 87: 203–216.
336
Bonthuis, M. & Hughes, M. & Ibiebele, T. & Green, A. & van der Pols, J. (2010). Dairy consumption and patterns of mortality of Australian adults. European Journal of Clinical Nutrition 64 (6): 569–577.
337
Holmberg, S. & Thelin, A. (2013). High dairy fat intake related to less central obesity: a male cohort study with 12 years’ follow-up. Scandinavian Journal of Primary Health Care 31 (2): 89–94.
338
Ericson, U. et al. (2014). Food sources of fat may clarify the earlier inconsistent role of dietary fat intake for incidence of type 2 diabetes. The American Journal of Clinical Nutrition 101 (5): 1065–1080.
339
Mozaffarian, D. et al. (2010). Trans-Palmitoleic Acid, Metabolic Risk Factors, and New-Onset Diabetes in U.S. Adults. Annals of Internal Medicine 12: 790–799.
340
Bartley, J. & McGlashan, S. (2010). Does milk increase mucus production? Medical Hypotheses 74 (4): 732–734.
341
Lill, C. et al. (2011). Milk allergy is frequent in patients with chronic sinusitis and nasal polyposis. American Journal of Rhinology and Allergy 25 (6): e221–224.
342
Bolland, M. et al. (2010). Effect of calcium supplements on risk of myocardial infarction and cardiovascular events: meta-analysis. British Medical Journal 341: c3691.
343
Del Gobbo, L. et al. (2013). Circulating and dietary magnesium and risk of cardiovascular disease: a systematic review and meta-analysis of prospective studies. The American Journal of Clinical Nutrition (1): 160–173. Review.
344
Sahmoun, A. & Singh, B. (2010). Does a higher ratio of serum calcium to magnesium increase the risk for postmenopausal breast cancer? Medical Hypotheses 75 (3): 315–318
345
Kousa, A. et al. (2006). Calcium: magnesium ratio in local groundwater and incidence of acute myocardial infarction among males in rural Finland. Environmental Health Perspectives 114 (5): 730–734.
346
Michaëlsson K. et al. (2014). Milk intake and risk of mortality and fractures in women and men: cohort studies. British Medical Journal 349: g6015.
347
Mullie, P. & Pizot, C. & & Autier, P. (2016). Daily milk consumption and all-cause mortality, coronary heart disease and stroke: a systematic review and meta-analysis of observational cohort studies. BMC Public Health 16 (1): 1236.
348
Sodhi, M. & Mukesh, M. & Kataria, R. & Mishra, B. & Joshii, B. (2012). Milk proteins and human health: A1/A2 milk hypothesis. Indian Journal Endocrinology and Metabolism 16 (5): 856.
349
Ho, S. & Woodford, K. & Kukuljan, S. & Pal, S. (2014). Comparative effects of A1 versus A2 beta-casein on gastrointestinal measures: a blinded randomised cross-over pilot study. European Journal of Clinical Nutrition 68 (9): 994–1000.
350
Ul Haq, M. & Kapila, R. & Sharma, R. & Saliganti, V. & Kapila, S. (2014). Comparative evaluation of cow β-casein variants (A1/A2) consumption on Th2-mediated inflammatory response in mouse gut. European Journal of Nutrition 53 (4): 1039–1049.
351
Hebeisen, D. (1993). Increased concentrations of omega-3 fatty acids in milk and platelet rich plasma of grass-fed cows. International Journal of Vitamin and Nutrition Research 63 (3): 229–233.
352
Couvreur, S. et al. (2006). The linear relationship between the proportion of fresh grass in the cow diet, milk fatty acid composition, and butter properties. Journal of Dairy Science 89 (6): 1956–1969.
353
Palupi, E. & Jayanegara, A. & Ploeger, A. & Kahl, J. (2012). Comparison of nutritional quality between conventional and organic dairy products: a meta-analysis. Journal of the Science of Food and Agriculture 92 (14): 2774–2781. Review.
354
Esmaillzadeh, A. & Mirmiran, P. & Azizi, F. (2005). Whole-grain consumption and the metabolicsyndrome: a favorable association in Tehranian adults. European Journal of Clinical Nutrition 59 (3): 353–362. [table 2]
355
Andersson, A. et al. (2007). Whole-grain foods do not affect insulin sensitivity or markers of lipid peroxidation and inflammation in healthy, moderately overweight subjects. The Journal of Nutrition 137 (6): 1401–1407.
356
Steffen L. et al. (2003). Associations of whole-grain, refined-grain, and fruit and vegetable consumption with risks of all-cause mortality and incident coronary artery disease and ischemic stroke: the Atherosclerosis Risk in Communities (ARIC) Study. The American Journal of Clinical Nutrition 78 (3): 383–390.
357
Heber, D. (2004). Vegetables, fruits and phytoestrogens in the prevention of diseases. Journal of Postgraduate Medicine 50 (2): 145–149. Review.
358
Fasano, A. (2011). Leaky gut and autoimmune diseases. Clinical Reviews in Allergy and Immunology 42 (1): 71–78.
359
Fasano, A. (2009). Surprises from celiac disease. Scientific American 301: 54–61
360
Brenchley, J. & Douek, D. (2012). Microbial Translocation Across the GI Tract. Annual Review of Immunology 30: 149–173.
361
Sapone, A. et al. (2011). Divergence of gut permeability and mucosal immune gene expression in two gluten-associated conditions: celiac disease and gluten sensitivity. BMC Medicine 9: 23.
362
Catassi, C. et al. (2013). Non-Celiac Gluten sensitivity: the new frontier of gluten related disorders. Nutrients 5 (10): 3839–3853.
363
Biesiekierski, J. & Muir, J. & Gibson, P. (2013). Is gluten a cause of gastrointestinal symptoms in people without celiac disease? Current Allergy and Asthma Reports 13 (6): 631–638.
364
Sofi, F. et al. (2014). Effect of Triticum turgidum subsp. turanicum wheat on irritable bowel syndrome: a double-blinded randomised dietary intervention trial. British Journal of Nutrition 111 (11): 1992–1999.
365
Eswaran, S. & Goel, A. & Chey, W. (2013). What role does wheat play in the symptoms of irritable bowel syndrome? Gastroenterology and Hepatology 9 (2): 85–91.
366
Behall, K. & Howe, J. (1995). Effect of long-term consumption of amylose vs amylopectin starch on metabolic variables in human subjects. The American Journal of Clinical Nutrition 61 (2): 334–340.
367
Matsuoka, Y. et al. (2002). A single domestication for maize shown by multilocus microsatellite genotyping. Proceedings of the National Academy of Sciences of the United States of America 99 (9): 6080–6084.
368
Barton, B. & Clark, S. (2014). Water and climate risks facing U.S. corn production. How companies and investors can cultivate sustainability. Ceres Report. [date of reference: 25.4.2016]
369
International Grains Council. (2016). Grain Market Report. GMR 465 – 28 April 2016. [date of reference: 28.4.2016]
370
Ortiz-Sánchez, J. & Cabrera-Chávez, F. & Calderón de la Barca, AM. (2013). Maize Prolamins Could Induce a Gluten-Like Cellular Immune Response in Some Celiac Disease Patients. Nutrients. 25 (10): 4174–4183.
371
Goran, M. &, Ulijaszek, S. & Ventura, E. (2013). High fructose corn syrup and diabetes prevalence: a global perspective. Global Public Health 8 (1): 55–64.
372
Bray, G. (2013). Potential Health Risks From Beverages Containing Fructose Found in Sugar or High-Fructose Corn Syrup. Diabetes Care 36 (1): 11–12.
373
Van Buul, V. & Tappy, L. & Brouns, F. (2014). Misconceptions about fructose-containing sugars and their role in the obesity epidemic. Nutrition Research Reviews 27 (1): 119–130.
374
Stanhope, K. et al. (2015). A dose-response study of consuming high-fructose corn syrup-sweetened beverages on lipid/lipoprotein risk factors for cardiovascular disease in young adults. The American Journal of Clinical Nutrition 101 (6): 1144–1154.
375
Esmaillzadeh, A. & Azadbakht, L. (2008). Home use of vegetable oils, markers of systemic inflammation, and endothelial dysfunction among women. The American Journal of Clinical Nutrition 88 (4): 913–921.
376
Kotimaiset kasvikset ry. (2015). Kasvisten ravintosisältö, juurekset. www.kasvikset.fi [date of reference: 26.10.2014]
377
King, J. & Slavin, J. (2013). White potatoes, human health, and dietary guidance. Advances in Nutrition 4 (3): 393S–401S. Review.
378
Erdmann, J. & Hebeisen, Y. & Lippl, F. & Wagenpfeil, S., & Schusdziarra, V. (2007). Food intake and plasma ghrelin response during potato-, rice- and pasta-rich test meals. European Journal of Nutrition 46 (4): 196–203.
379
Mensinga, T. et al. (2005). Potato glycoalkaloids and adverse effects in humans: an ascending dose study. Regulatory Toxicology and Pharmacology 41 (1): 66–72.
380
Bovell-Benjamin, A. (2007). Sweet potato: a review of its past, present, and future role in human nutrition. Advances in Food and Nutrition Research 52: 1–59. Review.
381
Scott-Dixon, K. & St.Pierre, B. (2014). Sweet vs. regular potatoes. Which are really healthier? Precision Nutrition. [date of reference: 26.10.2014]
382
Helldán, A. et al. (2012). Finravinto 2012 -tutkimus. Terveyden ja hyvinvoinnin laitos. [date of reference: 5.11.2014]
383
Wang, X. et al. (2014). Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. British Medical Journal 349: g4490. Review.
384
Schweiggert, R. et al. (2014). Carotenoids are more bioavailable from papaya than from tomato and carrot in humans: a randomised cross-over study. British Journal of Nutrition 111 (3): 490–498.
385
Brown, M. et al. (2004). Carotenoid bioavailability is higher from salads ingested with full-fat than with fat-reduced salad dressings as measured with electrochemical detection. The American Journal of Clinical Nutrition 80 (2): 396–403.
386
Lee, Y. & Low, K. & Siah, K. & Drummond, L. & Gwee, K. (2012). Kiwifruit (Actinidia deliciosa) changes intestinal microbial profile. Microbial Ecology in Health and Disease 23.
387
Chang, C. et al. (2010). Kiwifruit improves bowel function in patients with irritable bowel syndrome with constipation. Asia Pacific Journal of Clinical Nutrition 19 (4): 451–457.
388
Iwasawa, H. & Morita, E. & Yui, S. & Yamazaki, M. (2011). Anti-oxidant effects of kiwi fruit in vitro and in vivo. Biological and Pharmaceutical Bulletin 34 (1): 128–134.
389
Kortelainen, A. (2007). Kotimaisten ja maahantuotujen elintarvikkeiden kemiallinen turvallisuus. Pro gradu -tutkielma. Kuopion yliopisto. [date of reference: 4.11.2014]
390
Можно использовать только с осторожностью. – Прим. науч. ред.
391
Kortelainen, A. (2007). Kotimaisten ja maahantuotujen elintarvikkeiden kemiallinen turvallisuus. Pro gradu -tutkielma. Kuopion yliopisto. [date of reference: 24.11.2014]
392
Törhönen, R. & Riihinen, K. & Sarkkinen, E. (2013). Selvitys marjojen terveysvaikutusten kliinisestä tutkimusnäytöstä. Itä-Suomen yliopisto. [date of reference: 22.11.2014]
393
Andres-Lacueva, C. et al. (2005). Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory. Nutritional Neuroscience 8 (2): 111–120.
394
Basu, A. et al. (2010). Blueberries decrease cardiovascular risk factors in obese men and women with metabolic syndrome. The Journal of Nutrition 140 (9): 1582–1587.
395
Lacombe, A. et al. (2013). Lowbush wild blueberries have the potential to modify gut microbiota and xenobiotic metabolism in the rat colon. PLoS One 8 (6): e67497.
396
Nakaishi, H. & Matsumoto, H. & Tominaga, S. & Hirayama, M. (2000). Effects of black current anthocyanoside intake on dark adaptation and VDT work-induced transient refractive alteration in healthy humans. Alternative Medicine Review 5 (6): 553–562.
397
Kalt, W. & Hanneken, A. & Milbury, P. & Tremblay F. (2010). Recent research on polyphenolics in vision and eye health. Journal of Agricultural and Food Chemistry 58 (7): 4001–4007.
398
Evira. (2015). Ulkomaiset pakastemarjat. www.evira.fi/portal/64508 [date of reference: 17.9.2015]
399
Story, E. & Kopec, R. & Schwartz, S. & Harris, G. (2010). An update on the health effects of tomato lycopene. Annual Review of Food Science and Technology 1: 189–210. Review.
400
Macready, A. et al. (2014). Flavonoid-rich fruit and vegetables improve microvascular reactivity and inflammatory status in men at risk of cardiovascular disease – FLAVURS: a randomized controlled trial. The American Journal of Clinical Nutrition 99 (3): 479–489.
401
Park, E. & Pezzuto, J. (2002). Botanicals in cancer chemoprevention. Cancer Metastasis Reviews 21 (3-4): 231–255.
402
Carter, P. et al. (2010). Fruit and vegetable intake and incidence of type 2 diabetes mellitus: systematic review and meta-analysis. British Medical Journal 341: c4229.
403
Esposito, K. & Giugliano, D. (2011). Increased consumption of green leafy vegetables, but not fruit, vegetables or fruit and vegetables combined is associated with reduced incidence of type 2 diabetes. Evidence Based Medicine 16: 27–28.
404
Villegas, R. et al. (2008). Vegetable but not fruit consumption reduces the risk of type 2 diabetes in Chinese women. The Journal of Nutrition 138 (3): 574–580.
405
Dauchet, L. & Amouyel, P. & Hercberg, S. & Dallongeville, J. (2006). Fruit and vegetable consumption and risk of coronary heart disease: a meta-analysis of cohort studies. The Journal of Nutrition 136 (10): 2588–2593.
406
He, F. & Nowson, C. & MacGregor, G. (2006). Fruit and vegetable consumption and stroke: meta-analysis of cohort studies. The Lancet 367 (9507): 320–326. Review.
407
Wu, Q. & Yang, Y. & Wang, J. & Han, L. & Xiang, Y. (2013). Cruciferous vegetable consumption and gastric cancer risk: a meta-analysis of epidemiological studies. Cancer Science 104 (8): 1067–1073.
408
Lam, T. et al. (2010). Cruciferous vegetable intake and lung cancer risk: a nested case-control study matched on cigarette smoking. Cancer Epidemiology Biomarkers and Prevention 19 (10): 2534–2540.
409
Li Y. et al. (2010). Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. Clinical Cancer Research 16 (9): 2580–2590.