
Полная версия:
Биохакинг
192
Gibson, P & Shepherd, S. (2010). Evidence-based dietary management of functional gastrointestinal symptoms: The FODMAP approach. Journal of Gastroenterology and Hepatology 25 (2): 252–258.
193
Ong, D. et al. (2010). Manipulation of dietary short chain carbohydrates alters the pattern of gas production and genesis of symptoms in irritable bowel syndrome. Journal of Gastroenterology and Hepatology 25 (8): 1366–1373.
194
David, L. et al. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature 505 (7484): 559–563.
195
Xiao, S. et al. (2014). A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome. FEMS Microbiology Ecology 87 (2): 357–367.
196
Fasano, A. (2012). Leaky gut and autoimmune diseases. Clinical Reviews in Allergy and Immunology 42 (1): 71–78. Review.
197
Mu, Q. & Kirby, J. & Reilly, C. M. & Luo, X. (2017). Leaky Gut As a Danger Signal for Autoimmune Diseases. Frontiers in immunology 8: 598.
198
Jenkins, D. & Kendall, C. & Vuksan, V. (1999). Inulin, oligofructose and intestinal function. The Journal of Nutrition 129 (7 Suppl): 1431S–1433S. Review.
199
Kruse, H. & Kleessen, B. & Blaut, M. (1999). Effects of inulin on faecal bifidobacteria in human subjects. British Journal of Nutrition 82 (5): 37582.
200
Savard, P. et al. (2011). Impact of Bifidobacterium animalis subsp. lactis BB-12 and, Lactobacillus acidophilus LA-5-containing yoghurt, on fecal bacterial counts of healthy adults. International Journal of Food Microbiology 149 (1): 50–67.
201
Saxelin, M. (2010). Persistence of probiotic strains in the gastrointestinal tract when administered as capsules, yoghurt, or cheese. International Journal of Food Microbiology 144 (2): 293–300.
202
Haenen, D. (2013). A diet high in resistant starch modulates microbiota composition, SCFA concentrations, and gene expression in pig intestine. The Journal of Nutrition 143 (3): 274–283.
203
Martínez, I. & Kim, J. & Duffy, P. & Schlegel, V. & Walter, J. (2010). Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLoS One 5 (11): e15046.
204
Rastmanesh, R. (2011). High polyphenol, low probiotic diet for weight loss because of intestinal microbiota interaction. Chemico-Biological Interactions 189 (1–2): 1–8. Review.
205
Moore, M. & Goita, M. & Finley, J. (2014). Impact of the Microbiome on Cocoa Polyphenolic Compounds. National Meeting & Exposition of the American Chemical Society. Department of Nutrition and Food Science, Louisiana State University.
206
Ukhanova, M. et al. (2014). Effects of almond and pistachio consumption on gut microbiota composition in a randomised cross-over human feeding study. British Journal of Nutrition 111 (12): 2146–2152.
207
Pérez-Cobas, A. et al. (2013). Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut 62 (11): 1591–1601.
208
Shehata, A. & Schrödl, W. & Aldin, A. & Hafez, H. & Krüger, M. (2013). The effect of glyphosate on potential pathogens and beneficial members of poultry microbiota in vitro. Current Microbiology 66 (4): 350–358.
209
Samsel, A. & Seneff, S. (2013). Glyphosate, pathways to modern diseases II: Celiac sprue and gluten intolerance. Interdisciplinary Toxicology 6 (4): 159–184. Review.
210
Massarrat, S. (2008). Smoking and gut. Archives of Iranian Medicine 11 (3): 293–305.
211
Purohit, V. et al. (2008). Alcohol, intestinal bacterial growth, intestinal permeability to endotoxin, and medical consequences: summary of a symposium. Alcohol (Fayettevlle, N.Y.) 42 (5): 349–361.
212
La Fleur, S. & Wick, E. & Idumalla, P. & Grady, E. & Bhargava, A. (2005). Role of peripheral corticotropin-releasing factor and urocortin II in intestinal inflammation and motility in terminal ileum. Proceedings of the National Academy of Sciences 102: 7647–7652.
213
Maier, S. & Watkins, L. (1998). Cytokines for psychologists: implications of bidirectional immune-to-brain communication for understanding behavior, mood, and cognition. Psychological Reviews 105 (1): 83–107. Review.
214
Forsythe, P. & Sudo, N. & Dinan, T. & Taylor, V. & Bienenstock, J. (2010). Mood and gut feelings. Brain Behavior and Immunity 24 (1): 9–16. Review.
215
Dimidi, E. & Christodoulides, S. & Fragkos, K. & Scott, S. & Whelan, K. (2014). The effect of probiotics on functional constipation in adults: a systematic review and meta-analysis of randomized controlled trials. The American Journal of Clinical Nutrition 100 (4): 1075–1084.
216
Salari, P. & Nikfar, S. & Abdollahi, M. (2012). A meta-analysis and systematic review on the effect of probiotics in acute diarrhea. Inflammation and Allergy Drug Targets 11 (1): 3–14. Review.
217
McFarland, L. (2007). Meta-analysis of probiotics for the prevention of traveler’s diarrhea. Travel Medicine and Infectious Disease 5 (2): 97–105.
218
Nikfar, S. & Rahimi, R. & Rahimi, F. & Derakhshani, S. & Abdollahi, M. (2008). Efficacy of probiotics in irritable bowel syndrome: a meta-analysis of randomized, controlled trials. The Diseases of Colon and Rectum 51 (12): 1775–1780.
219
Shen, J. & Zuo, Z. & Mao, A. (2014). Effect of probiotics on inducing remission and maintaining therapy in ulcerative colitis, Crohn’s disease, and pouchitis: meta-analysis of randomized controlled trials. Inflammatory Bowel Diseases 20 (1): 21–35.
220
Sang, L. et al. (2010). Remission induction and maintenance effect of probiotics on ulcerative colitis: a meta-analysis.World Journal of Gastroenterology 16 (15): 1908–1915.
221
Maj, Y. et al. (2013). Effects of probiotics on nonalcoholic fatty liver disease: a meta-analysis. World Journal of Gastroenterology 19 (40): 6911–6918. Review.
222
Kang, E. & Kim, S. & Hwang, H. & Ji, Y. (2013). The effect of probiotics on prevention of common cold: a meta-analysis of randomized controlled trial studies. Korean Journal of Family Medicine 34 (1): 2–10.
223
Hempel, S. et al. (2012). Probiotics for the prevention and treatment of antibiotic-associated diarrhea: a systematic review and meta-analysis. The Journal of the American Medical Association 307 (18): 1959–1969. Review.
224
Plengvidhya, V. & Breidt, F. Jr. & Lu, Z. & Fleming, H. (2007). DNA fingerprinting of lactic acid bacteria in sauerkraut fermentations. Applied and Environmental Microbiology 73 (23): 7697–7702.
225
Scholz-Ahrens, K. & Schrezenmeir, J. (2007). Inulin and oligofructose and mineral metabolism: the evidence from animal trials. The Journal of Nutrition 137 (11 Suppl): 2513S–2523S. Review.
226
Lomax, A. & Calder, P. (2009). Prebiotics, immune function, infection and inflammation: a review of the evidence. British Journal of Nutrition 101 (5): 633–658. Review.
227
Geier, M. & Butler, R. & Howarth, G. (2006). Probiotics, prebiotics and synbiotics: a role in chemoprevention for colorectal cancer? Cancer Biology and Therapy 5 (10): 1265–1269. Review.
228
Grabitske, H. & Slavin, J. (2009). Gastrointestinal effects of low-digestible carbohydrates. Critical Reviews in Food Science and Nutrition (4): 327–360. Review.
229
Harazaki, T. & Inoue, S. & Imai, C. & Mochizuki, K. & Goda, T. (2014). Resistant starch improves insulin resistance and reduces adipose tissue weight and CD11c expression in rat OLETF adipose tissue. Nutrition 30 (5): 590–595.
230
Higgins, J. (2011). Resistant starch and exercise independently attenuate weight regain on a high fat diet in a rat model of obesity. Nutrition and Metabolism 8: 49.
231
Belobrajdic, D. & King, R. & Christophersen, C. & Bird, A. (2012). Dietary resistant starch dose-dependently reduces adiposity in obesity-prone and obesity-resistant male rats. Nutrition and Metabolism 9 (1): 93.
232
Robertson, M. (2012). Insulin-sensitizing effects on muscle and adipose tissue after dietary fiber intake in men and women with metabolic syndrome. The Journal of Clinical Endocrinology and Metabolism 97 (9): 3326–3332.
233
Higgins, J. (2014). Resistant starch and energy balance: impact on weight loss and maintenance. Critical Reviews in Food Science and Nutrition 54 (9): 1158–1566. Review.
234
Nichenametla, S. et al. (2014). Resistant starch type 4-enriched diet lowered blood cholesterols and improved body composition in a double blind controlled cross-over intervention. Molecular Nutrition and Food Research 58 (6): 1365–1369.
235
Kwak, J. et al. (2012). Dietary treatment with rice containing resistant starch improves markers of endothelialfunction with reduction of postprandial blood glucose and oxidative stress in patients with prediabetes or newly diagnosed type 2 diabetes. Atherosclerosis 224 (2): 457–464.
236
Moshfegh, A. & Friday, J. & Goldman, J. & Ahuja, J. (1999). Presence of inulin and oligofructose in the diets of Americans. The Journal of Nutrition 129 (7 Suppl): 1407S–1411S.
237
Masri, O. & Chalhoub, J. & Sharara, A. (2015). Role of vitamins in gastrointestinal diseases. World Journal of Gastroenterology 21 (17): 5191–5209.
238
Rao, R. & Samak, G. (2012). Role of Glutamine in Protection of Intestinal Epithelial Tight Junctions. Journal of Epithelial Biology & Pharmacology 5 (Suppl M1-M7): 47–54.
239
Uehleke, B. & Ortiz, M. & Stange, R. (2012). Silicea gastrointestinal gel improves gastrointestinal disorders: a non-controlled, pilot clinical study. Gastroenterology Research and Practice 2012: 750750.
240
Vermeulen, M. & Klöpping-Ketelaars, I. & van den Berg, R. & Vaes, W. (2008). Bioavailability and kinetics of sulforaphane in humans after consumption of cooked versus raw broccoli. Journal of Agricultural and Food Chemistry 56 (22): 10505–10509.
241
Dewanto, V. & Wu, X. & Adom, K. K. & Liu, R. H. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agricultural and Food Chemistry 50 (10): 3010–3014.
242
Seiquer, I. et al. (2006). Diets rich in Maillard reaction products affect protein digestibility in adolescent males aged 11–14 y. The American Journal of Clinical Nutrition 83 (5): 1082–1088.
243
Stadler, R. et al. (2002). Acrylamide from Maillard reaction products. Nature 419 (6906): 449–450.
244
Yamagishi, S. et al. (2012). Role of advanced glycation end products (AGEs) and oxidative stress in vascular complications in diabetes. Biochimica et Biophysica Acta 1820 (5): 663–671.
245
Birlouez-Aragon, I. et al. (2010). A diet based on high-heat-treated foods promotes risk factors for diabetes mellitus and cardiovascular diseases. The American Journal of Clinical Nutrition 91 (5): 1220–1226.
246
Uribarri, J. et al. (2010). Advanced glycation end products in foods and a practical guide to their reduction in the diet. Journal of the American Dietic Association 110 (6): 911–916.e12.
247
Bassioni, G. & Mohammed, F. S. & Al Zubaidy, E. & Kobrsi, I. (2012). Risk Assessment of Using Aluminum Foil in Food Preparation. International Journal of Electrochemical Science 7: 4498–4509.
248
Viegas, O. & Amaro, L. F. & Ferreira, I. M. & Pinho, O. (2012). Inhibitory effect of antioxidant-rich marinades on the formation of heterocyclic aromatic amines in pan-fried beef. Journal of Agricultural Food and Chemistry 60 (24): 6235–6240.
249
Melo, A. & Viegas, O. & Petisca, C. & Pinho, O. & Ferreira, I. M. (2008). Effect of beer/red wine marinades on the formation of heterocyclic aromatic amines in pan-fried beef. Journal of Agricultural and Food Chemistry 56 (22): 10625–10632.
250
Platt, K. L. & Edenharder, R. & Aderhold, S. & Muckel, E. & Glatt, H. (2010). Fruits and vegetables protect against the genotoxicity of heterocyclic aromatic amines activated by human xenobiotic-metabolizing enzymes expressed in immortal mammalian cells. Mutation Research 703 (2): 90–98.
251
Balogh, Z. & Gray, J. I. & Gomaa, E. A. & Booren, A. M. (2000). Formation and inhibition of heterocyclic aromatic amines in fried ground beef patties. Food and Chemical Toxicology 38 (5): 395–401.
252
Vinson, J. & Howard, T. B. (1996). Inhibition of protein glycation and advanced glycation end products by ascorbic acid and other vitamins and nutrients. The Journal of Nutritional Biochemistry 12 (7): 659–663.
253
Tang, Y. & Chen, A. (2014). Curcumin eliminates the effect of advanced glycation end-products (AGEs) on the divergent regulation of gene expression of receptors of AGEs by interrupting leptin signaling. Laboratory Investigation 94 (5): 503–516.
254
Persson, E. & Graziani, G. & Ferracane, R. & Fogliano, V. & Skog, K. (2003). Influence of antioxidants in virgin olive oil on the formation of heterocyclic amines in fried beefburgers. Food and Chemical Toxicology 41 (11): 1587–1597.
255
Uribarri, J. et al. (2010). Advanced glycation end products in foods and a practical guide to their reduction in the diet. Journal of the American Dietetic Association 110 (6): 911–16.e12.
256
Skog, K. (1993). Cooking procedures and food mutagens: a literature review. Food and Chemical Toxicology 31 (9): 655–675. Review.
257
Skog, K. & Viklund, G. & Olsson, K. & Sjöholm, I. (2008). Acrylamide in home-prepared roasted potatoes. Molecular Nutrition & Food Research 52 (3): 307–312.
258
Bråthen, E. & Kita, A. & Knutsen, S. H. & Wicklund, T. (2005). Addition of glycine reduces the content of acrylamide in cereal and potato products. Journal of Agricultural and Food Chemistry 53 (8): 3259–3264.
259
Chiavaro, E. & Mazzeo, T. & Visconti, A. & Manzi, C. & Fogliano, V. & Pellegrini, N. (2012). Nutritional quality of sous vide cooked carrots and brussels sprouts. Journal of Agricultural and Food Chemistry 60 (23): 6019–6025.
260
Horn, B. & Hewitt, J. (2016). Review of Microbial Pathogen Inactivation Relevant to Sous Vide Cooking at Temperatures below 55°C. ESR Report FW1503. Institute of Environmental Science and Research Limited. [date of reference: 20.11.2018]
261
Shishu & Kaur, I. (2003). Inhibition of mutagenicity of food-derived heterocyclic amines by sulforaphane, a constituent of broccoli. Indian Journal of Experimental Biology 41 (3): 216–219.
262
Ghawi, S. & Methven, L. & Niranjan, K. (2013). The potential to intensify sulforaphane formation in cooked broccoli (Brassica oleracea var. italica) using mustard seeds (Sinapis alba). Food Chemistry 138 (2–3): 1734–1741.
263
Narciso-Gaytán, C. et al. (2011). Lipid oxidation stability of omega-3- and conjugated linoleic acid-enriched sous vide chicken meat. Poultry Science 90 (2): 473–480.
264
Valtion ravitsemusneuvottelukunta. Ravitsemussuositukset kuvaavat väestöjen ja ihmisryhmien energian ja ravintoaineiden tarvetta tai suositeltavaa saantia. Helsinki: Maa- ja metsätalousministeriö. [date of reference: 9.10.2014]
265
Stover, P. (2006). Influence of human genetic variation on nutritional requirements. The American Journal Clinical Nutrition 83 (2): 436S–442S. Review.
266
Zeisel, S. (2011). Nutritional genomics: defining the dietary requirement and effects of choline. The Journal of Nutrition 141 (3): 531–534. Review.
267
Ames, B. & Atamna, H. & Killilea, D. (2005). Mineral and vitamin deficiencies can accelerate the mitochondrial decay of aging. Molecular Aspects of Medicine 26 (4–5): 363–378. Review.
268
Ames, B. (2006). Low micronutrient intake may accelerate the degenerative diseases of aging through allocation of scarce micronutrients by triage. Proceedings of the National Academy of Sciences of the United States of America 103 (47): 17589–17594. Review.
269
Hargrove, J. (2006). History of the calorie in nutrition. The Journal of Nutrition 136 (12): 2957–2961.
270
Peters, L. (1918). Diet and health with key to the calories. Chicago: Reilly and Lee.
271
Hopkins, F. (1912). Feeding experiments illustrating the importance of accessory factors in normal dietaries. The Journal of Physiology 44: 425–460.
272
Semba, R. (2012). The historical evolution of thought regarding multiple micronutrient nutrition. The Journal of Nutrition 142 (1): 143S–156S. Review.
273
The Norwegian University of Science and Technology (NTNU). (2011). Feed your genes: How our genes respond to the foods we eat. ScienceDaily. http://www.sciencedaily.com/releases/2011/09/110919073845.htm
274
Calton, J. (2010). Prevalence of micronutrient deficiency in popular diet plans. Journal of the International Society of Sports Nutrition 7: 24.
275
Baranski, M. et al. (2014). Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: a systematic literature review and meta-analyses. The British Journal of Nutrition 26: 1–18.
276
Sarkkinen, E. et al. (2011). Feasibility and antihypertensive effect of replacing regular salt with mineral salt -rich in magnesium and potassium- in subjects with mildly elevated blood pressure. Nutrition Journal 10: 88, 1–9.
277
O’Donnell, M. et al. (2014). Urinary sodium and potassium excretion, mortality, and cardiovascular events. The New England Journal of Medicine 371 (7): 612–623.
278
Malik, V. et al. (2010). Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis. Diabetes Care 33 (11): 2477–2483.
279
Malik, V. et al. (2010). Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation 121 (11): 1356–1364. Review.
280
Brown, C. & Dulloo, A. & Montani, J. (2008). Sugary drinks in the pathogenesis of obesity and cardiovascular diseases. International Journal of Obesity 32 Suppl 6: S28–34. Review.
281
Welsh, J. & Sharma, A. & Cunningham, S. & Vos, M. (2011). Consumption of added sugars and indicators of cardiovascular disease risk among US adolescents. Circulation 123 (3): 249–257.
282
de la Monte, S. & Wands, J. (2008). Alzheimer’s disease is type 3 diabetes-evidence reviewed. Journal of Diabetes Science and Technology 2 (6): 1101–1113.
283
Moreira, P. (2013). High-sugar diets, type 2 diabetes and Alzheimer’s disease. Current Opinion in Clinical Nutrition and Metabolic Care 16 (4): 440–445. Review.
284
Chiu, S. et al. (2014). Effect of fructose on markers of non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of controlled feeding trials. European Journal of Clinical Nutrition 68 (4): 416–423.
285
Avena, N. & Rada, P. & Hoebel, B. (2008). Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neuroscience and Behavioral Reviews 32 (1): 20–39. Review.
286
Miceli Sopo, S. & Greco, M. & Monaco, S. & Varrasi, G. & Di Lorenzo, G. & Simeone, G. (2014). Effect of multiple honey doses on non-specific acute cough in children. An open randomised study and literature review. Allergologia et Immunopathologia 43 (5): 449–455.
287
Wagner, J. & Pine, H. (2013). Chronic cough in children. Pediatric Clinics of North America 60 (4): 951–967.
288
Убедитесь в отсутствии у вас аллергии на мед и пчелопродукты. – Прим. науч. ред.
289
Постоянный прием подсластителей должен контролироваться лечащим врачом. – Прим. науч. ред.
290
Mishra, S. & Palanivelu, K. (2008). The effect of curcumin (turmeric) on Alzheimer’s disease: An overview. Annals of Indian Academy of Neurology 11 (1): 13–19.
291
Chandran, B. & Goel, A. (2012). A randomized, pilot study to assess the efficacy and safety of curcumin in patients with active rheumatoid arthritis. Phytotherapy Research 26 (11): 1719–1725.
292
Park, C. et al. (2007). Curcumin induces apoptosis and inhibits prostaglandin E(2) production in synovial fibroblasts of patients with rheumatoid arthritis. International Journal of Molecular Medicine 20 (3): 365–372.
293
Hanai, H. & Sugimoto, K. (2009). Curcumin has bright prospects for the treatment of inflammatory bowel disease. Current Pharmacological Design 15 (18): 2087–2094. Review.
294
Moghadamtousi, S. et al. (2014). A review on antibacterial, antiviral, and antifungal activity of curcumin. Biomed Research International 2014: 186864.
295
Bar-Sela, G. & Epelbaum, R. & Schaffer, M. (2010). Curcumin as an anti-cancer agent: review of the gap between basic and clinical applications. Current Medical Chemistry 17 (3): 190–197. Review.
296
Wilken, R. & Veena, M. & Wang, M. & Srivatsan, E. (2011). Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Molecular Cancer 10: 12. Review.
297
Larsson, S. & Wolk, A. (2006). Meat consumption and risk of colorectal cancer: a meta-analysis of prospective studies. International Journal of Cancer 119 (11): 2657–2664.
298
Micha, R. & Mozaffarian, D. (2012). Unprocessed Red and Processed Meats and Risk of Coronary Artery Disease and Type 2 Diabetes – An Updated Review of the Evidence. Current Atherosclerosis Reports 14 (6): 515–552.
299
Kaluza, J. & Wolk, A. & Larsson, S. (2012). Red meat consumption and risk of stroke: a meta-analysis of prospective studies. Stroke 43 (10): 2556–2560.