banner banner banner
Чудеса арифметики от Пьера Симона де Ферма
Чудеса арифметики от Пьера Симона де Ферма
Оценить:
Рейтинг: 0

Полная версия:

Чудеса арифметики от Пьера Симона де Ферма

скачать книгу бесплатно


P>p=3, Q>q=5, которое удовлетворяет уравнению

P

=Q

+2 (1)

Поскольку очевидно, что Q>P, то пусть

Q=P+? (2)

Подставляя (2) в (1), получим:

P

(P–1)–2?P–?

=2 (3)

Здесь нам потребуется самая малость «остроты ума», чтобы заметить, что ?>P, иначе уравнение (3) невыполнимо. Действительно, если сделать пробу ?=P, то слева (3) будет:

P

(P–4)>2, что не подходит, следовательно, должно существовать число ?

=?–P. Тогда, подставляя ?=P+?

в (3), получим

P

(P–4)–4?

P–?

= 2 (4)

Теперь-то мы непременно заметим, что ?

>P, иначе по той же логике, что и выше, слева (4) мы получим:

P

(P–9)>2, что опять-таки не подходит, тогда, должно существовать число ?

=?

–P, и подставляя ?

=P+?

в (4), получим:

P

(P–9)–6?

P–?

=2 (5)

Вот здесь-то уже можно совсем не сомневаться, что так будет продолжаться без конца и края. Действительно, путем проб ?

=P каждый раз мы получаем P

(P?K

)>2. Каким бы ни было число K

, это уравнение невыполнимо, поскольку если K

<P и P>3, то P

(P?K

)>2, а если K

?P, то такой вариант исключается, т.к. тогда P

(P?K

)?0. Продолжать так бесконечно явно бессмысленно, следовательно, наше начальное предположение о существовании других решений P>3, Q>5 неверно и эта теорема Ферма доказана.

В часто упоминаемой нами книге Сингха эта задача приводится как пример «головоломок», которые «придумывал» Ферма. Но теперь выясняется, что универсальный метод спуска и простой приём с пробами приравненных чисел делают эту задачу одним из очень эффективных примеров для обучения в школе. Имея это доказательство, школьники без труда смогут доказать ещё одну теорему из письма-завещания Ферма, которую в своё время мог решить только такой знаменитый на весь мир учёный, как Леонард Эйлер:

Существуют только два целочисленных квадрата, которые, увеличенные на 4, дают кубы, эти квадраты будут 4 и 121.

Иными словами, уравнение p

=q

+4 имеет только два решения в целых числах.

3.4.2 Золотая теорема Ферма

Напомним, что в известном нам письме-завещании Ферма, (п. 3.3.1), изложен только частный случай этой теоремы для квадратов. Но и этот упрощённый вариант задачи оказался не по силам не только представителям высшей французской аристократии Баше и Декарту, но даже и королевско-императорскому математику Эйлеру.

Другой королевский математик Лагранж, благодаря тождеству, найденному Эйлером, всё же сумел справиться с квадратами и его доказательство только одного этого частного случая ЗТФ тиражируется до сих пор чуть ли не во всех учебниках. Однако, не поддаётся никакому разумному объяснению то, что общее доказательство ЗТФ для всех многоугольных чисел, полученное Коши в 1815 г., было просто проигнорировано научным сообществом.

Наше исследование мы начнём с формулировки ЗТФ из письма Ферма к Мерсенну 1636 г. следующим образом:

Всякое <натуральное> число равно

одному, двум или трём треугольникам,

одному, 2, 3 или 4 квадратам,

одному, 2, 3, 4 или 5 пятиугольникам, и так до бесконечности [31].

Поскольку многоугольные числа явно не в почёте у сегодняшней науки, мы дадим здесь все необходимые разъяснения. Формула вычисления любого многоугольного числа представляется как m

=i+(k?2)(i?1)i/2 где m – многоугольное число, i – порядковый номер, k – количество углов.

Таким образом, m

=1; m

=k; а для всех остальных i значения m

варьируются в широких пределах, как показано в Табл. 1.

Для вычисления m

достаточно получить по формуле только треугольные числа, что очень легко, поскольку разница между ними с каждым шагом растёт на единицу. А все остальные m

можно вычислять путём прибавления в столбцах предыдущего треугольного числа. Например, в столбце i=2 числа увеличиваются на единицу, в столбце i=3 – на три, в столбце i=4 – на шесть и т.д., т.е. как раз на величину треугольного числа из предыдущего столбца.

Табл. 1. Многоугольные числа

Убедиться в том, что любое натуральное число представляется суммой не более чем k k-угольных чисел, довольно легко. Например, треугольное число 10, состоит из одного слагаемого. Далее 11=10+1, 12=6+6, 13=10+1 из двух, 14=10+3+1 из трёх, 15 вновь из одного слагаемого. И так будет происходить регулярно со всеми натуральными числами. Удивительно то, что количество необходимых слагаемых ограничивается именно числом k. Так что же это за чудодейственная сила, которая неизменно даёт такой результат?

Для примера возьмём натуральное число 41. Если в качестве слагаемого будет ближайшее к нему треугольное число 36, то уложиться в три многоугольных числа не получится никак, поскольку иначе как из 4-х слагаемых, т.е. 41=36+3+1+1 это число не получается. Однако, если мы вместо 36 возьмём другие треугольные числа, например, 41=28+10+3, или 41=21+10+10, то опять каким-то неведомым чудесным образом всё будет так, как утверждает ЗТФ.

На первый взгляд представляется просто невероятным, что можно как-то с этим разобраться? Но мы всё же обратим внимание на существование особых натуральных чисел, которые представляются не менее, чем из k k-угольных чисел и обозначим их как S-числа. Такие числа легко найти, например, для треугольников – это 5, 8, 14, для квадратов – 7, 15, 23, для пятиугольников – 9, 16, 31 и т.д. И вот такое простое наше наблюдение позволяет двигаться к цели напрямую, т.е. не задействуя хитроумные приёмы или мощную «остроту ума».

Теперь, чтобы доказать ЗТФ, предположим обратное, т.е. что существует некое минимальное натуральное число N, представляемое не менее, чем из k+1 k-угольных чисел. Тогда понятно, что это наше предполагаемое число должно находиться между какими-нибудь k-угольными числами m

и m

и может представляться как

N = m

+ ?

, где ?

= N? m

(1)

Вполне очевидно, что ?

должно быть S-числом, поскольку иначе это будет противоречить нашему предположению о числе N. Далее мы поступаем также, как и в нашей пробе с числом 41, т.е. представляем предполагаемое число как N = m

+ ?

= m

+ ?

; где ?

= N ? m

; ?

= N ? m

и т.д. Теперь ?

, ?

и т.д. также должны быть S-числами. И вот так мы будем двигаться по спуску до самого конца, т.е. до

?

= N ? m

= N ? k и ?

= N ? m

= N – 1 (2).

Таким образом, в последовательности чисел от ?

до ?

все они должны быть S-числами, в то время как наше предполагаемое число N будет состоять не менее чем из k+1 k-угольных чисел. Из (1) и (2) следует: N?m

=S

(3).

Следовательно, если отнимать от нашего предполагаемого числа N любое меньшее его многоугольное число m

, то согласно нашему предположению, в результате должно получаться только S-число. Конечно, это условие выглядит просто невероятным и создаётся впечатление, что мы уже у цели, но как же тогда доказать, что это невозможно?