banner banner banner
Чудеса арифметики от Пьера Симона де Ферма
Чудеса арифметики от Пьера Симона де Ферма
Оценить:
Рейтинг: 0

Полная версия:

Чудеса арифметики от Пьера Симона де Ферма

скачать книгу бесплатно


+ 3185

; 221

= (195

+ 104

)?(85

+ 204

) = (195?85 + 104?204)

+ (195?204 ? 85?104)

= (195?85 ? 104?204)

+ (195?204 + 85?104)

= 37791

+ 30940

= 4641

+ 48620

; 221

= 221

?221

= (3094

+ 1105

)?(37791

+ 30940

) = (3094?37791 + 1105?30940)

+ (3094?30940 ? 1105?37791)

= (3094?37791 ? 1105?30940)

+ (3094?30940 + 1105?37791)

; 221

= 151114054

+ 53969305

= 82736654

+ 137487415

].

Конечно, подобные задачи могут вызвать настоящий шок у сегодняшних учащихся и особенно у их родителей, которые будут даже требовать не «сушить мозги» детям. Но если детские мозги не заполнять элементарными знаниями и не тренировать их с помощью решения соответствующих задач, то они отсохнут и сами собой. Об этом свидетельствует статистика неуклонного снижения показателя IQ сегодняшних учащихся по сравнению с их предшественниками. Ведь на самом деле приведённые выше задачки – это лишь разминка для юного поколения, а вот настоящий фурор дети могли бы произвести на математиков, предложив им простенькие теоремы Ферма о волшебных числах, (см. п. 4.4.). И это ещё большой вопрос, по силам ли эти теоремы сегодняшним профессорам, или им опять потребуется лет триста и повторится история с ВТФ? Впрочем, шансы у них, в отличие от прежних времён, очень велики, т.к. волшебные числа – это прямое следствие того самого «поистине удивительного» доказательства ВТФ, о существовании которого мы имеем прямое письменное свидетельство от самого Ферма.

Реконструкция этого доказательства в кратком виде была опубликована ещё в 2008 г. [30], однако нечестивый был начеку и обстряпал всё так, что современная наука, дезориентированная ложными представлениями о том, что проблема давно решена, не обратила на это событие никакого внимания. Однако всё тайное рано или поздно станет явным и решающее слово, несмотря ни на что, всё равно останется за наукой. Вопрос теперь только в том, когда она, наконец, опомнится и придёт в себя. Чем дольше она будет находиться в благостном состоянии забытья, тем скорее наступят страшные события, уже сейчас начинающие сотрясать наш мир как никогда прежде.

Для того чтобы наука могла одержать вполне заслуженную ею победу над торжествующим сегодня мраком невежества и массовой дезинформации, ей и нужно-то совсем немного. Для начала просто поискать тот самый тайник, в котором могут обнаружиться такие сокровенные тайны науки, которые за три с половиной столетия ничуть не потеряли своей актуальности [31 - Если были бы найдены рабочие записи Ферма, то оказалось бы, что его способы решения задач гораздо проще, чем те, которые известны сейчас, т.е. сегодняшняя наука еще не достигла того уровня, который имел место в его утраченных работах. Но как же могло случиться, что эти записи пропали? Вероятными могут быть две версии. Первая – это наличие у Ферма тайника, о котором никто, кроме него не знал. Если это было так, то шансов на то, что он сохранился почти нет. Дом в Тулузе, где жил Ферма со своей семьей не сохранился, иначе там был бы музей. Остаются места работы – это тулузский Капитолий, (перестроен в 1750 г.), и здание в городе Кастр, (не сохранилось), где Ферма руководил собранием судей. Только призрачные шансы есть на то, что хотя бы какие-то стены сохранились с тех времен. Другая версия заключается в том, что бумаги Ферма имелись у его семьи, но по каким-то причинам не сохранились, (см. Приложение IV, год 1660, 1663 и 1680).]. Даже если найденные в тайнике бумаги окажутся нечитабельными, то всё равно сам факт существования тайника станет свидетельством того, что наука идёт в нужном направлении и результаты не заставят себя долго ждать.

Кое-что в этом направлении мы уже сделали, когда восстановили запись ВТФ на полях «Арифметики» Диофанта (см. рис. 5 и перевод в конце п. 1). Теперь нужно во что бы то ни стало получить полную картину всей последовательности событий, приведших к открытию ВТФ в её конечной формулировке, опубликованной в 1670 г. Это будет совсем не просто, но раз уж мы ввязались в эту историю, то отступать теперь некуда и придётся поднапрячь все наши силы, чтобы достичь цели. Благо, что у нас есть для этого все дарованные нам свыше возможности получить вожделенный доступ к тайнику тулузского сенатора.

3. Что такое число?

3.1. Определение понятия числа

Вопрос о сущности понятия числа во все времена был для учёных некоей вещью в себе. Подспудно они, конечно, понимали, что не могут чётко ответить на этот вопрос, но и признаться в этом они тоже не могут, поскольку это плохо отразилось бы на поддержании престижа науки. В чём тут проблема? Да в том, что число во всех случаях должно получаться из других чисел, иначе оно не сможет восприниматься как число. Чтобы понять, например, число 365, нужно сложить три сотни, шесть десятков и пять единиц. Отсюда, следует, что понятие числа не раскладывается на качественно отличные от него компоненты и таким вот обычным для науки способом, т.е. путем анализа проникнуть в тайну его сущности не удаётся.

Учёные, которые задавались вопросом о сущности числа сразу упирались в эту проблему и приходили к выводу, что общего определения понятия числа просто не существует. Но не таков был Пьер Ферма, который подошёл к этой проблеме с другой стороны. Он задался вопросом: «Откуда вообще появляется понятие числа?», и пришёл к выводу о том, что его предшественниками были понятия «больше», «меньше» и «равно» как результаты сравнений некоторых свойств, присущих разным предметам [30].

Если разные предметы сравниваются по некоторому свойству с одним и тем же предметом, то появляется такое понятие как измерение и тогда может быть через измерение и следует выявлять сущность числа? Однако это не так. По отношению к измерению число первично, т.е. если нет чисел, то не может быть и никаких измерений. Понимание сущности числа становится возможно только после установления того, что число неразрывно связано понятием «функция». А вот это понятие определить совсем не сложно:

Функция – это заданная последовательность действий с её аргументами.

В свою очередь, действия не могут существовать сами по себе, т.е. в состав функции, кроме них должны входить компоненты, с которыми эти действия выполняются. Эти компоненты называются «аргументы функции». Отсюда следует и общее определение понятия числа:

Число есть объективная реальность, существующая как счётная величина, которая состоит из аргументов функциии действий между ними.

Например, a + b + c = d, где a, b, c – аргументы, d – счётная величина или числовое значение[32 - Для математиков и программистов понятие аргумента функции вполне обычно и уже давно общепринято. В частности, как f(x,y,z) обозначают функцию с переменными аргументами x,y,z. Определение сущности числа через понятие аргументов функции делает его очень простым, понятным и действенным, поскольку всё, что известно о числе, исходит отсюда, а то, что этому определению не соответствует должно подвергаться сомнению. Это не просто необходимая осторожность, но и эффективный способ проверки на прочность всякого рода конструкций, незаметно подменяющих сущность числа на сомнительные нововведения, делающие науку бестолковой и непригодной для обучения.].

Чтобы понять, какая пропасть отделяет Пьера Ферма от остального учёного мира, достаточно сравнить это простое определение с тем пониманием, которое есть в сегодняшней науке [13, 29]. А вот понимание, явно присутствующее в научном творчестве Ферма, позволило ему ещё в те далёкие времена достигать результатов, которые для других учёных оказывались либо сопряжены с чрезвычайными трудностями, либо вообще недостижимы.

Можно дать и более широкое определение понятия числа, а именно:

Число есть разновидность данных, представляемых в виде функций.

Это расширенное определение понятия числа выходит за рамки математики, поэтому его можно назвать общим, а предыдущее определение – математическим. Во втором определении нужно ещё разъяснить сущность понятия «данные», однако для науки этот вопрос не менее трудный, чем вопрос о сущности понятия числа[33 - Точного определения понятия «данные» не существует, если не относить к нему описание из толкового словаря. Отсюда следует и неопределённость производных от него понятий, таких как «форматы данных», «обработка данных», «операции с данными» и т.п. Такая неопределённая терминология порождает шаблонное мышление, указывающее на то, что разум не развивается, а тупеет и, достигая в этой мешанине из пустых слов некоторой критической точки, просто перестает соображать. В данной работе это определение понятия «данные» дано в п. 5.3.2, но для этого требуется дать самое общее определение понятия «информация», которое по своей трудности будет ещё и покруче определения понятия числа, поскольку и само число есть информация. Подвижки в этом вопросе настолько значимы, что за ними следует реальный технологический прорыв с таким потенциалом эффективности, который будет несопоставимо выше того, что был обусловлен появлением компьютеров.].

Рису. 30. Пифагор

Из общего определения понятия числа следует истинность знаменитого утверждения Пифагора о том, что всё сущее может отображаться как число. Действительно, если число – это особая разновидность информации, то вот это очень смелое по тем временам утверждение не только обосновано, но и подтверждено современной практикой его применения на компьютерах, где реализуются три известных способа представления данных: числовой, (или оцифрованный), символьный, (или текстовый), и аналоговый (изображения, звук и видео). Все три способа существуют одновременно.

Рис. 31. Готфрид Лейбниц

Поразительно смелое даже по нынешним временам утверждение о том, что мышление есть неосознанный процесс вычислений, высказал ещё в XVII веке Готфрид Лейбниц (Gottfried Leibniz). Под мышлением здесь явно понимается процесс обработки данных, которые во всех случаях могут представляться как числа. Тогда понятно, как появляются вычисления, но понимание сути этого процесса у современной науки пока отсутствует [34 - Вычисления – это не только действия с числами, но и применение методов достижения конечного результата. С действиями справляется даже машина, если разум оснащает её соответствующими методами. Но если разум сам становится подобием машины, т.е. не осознаёт методов вычислений, то он способен создавать только чудовища, которые его же и уничтожат. Именно к этому всё сейчас и идёт из-за полного отсутствия решения проблемы обеспечения безопасности данных. А вся эта проблема в том, что информатика как наука просто не существует.].

У всех данных здесь определений понятия числа есть одна общая основа:

Числа существуют объективно в том смысле, что они присутствуют в законах окружающего мира, познавать которые можно только через числа.

Со школьной скамьи все узнают о числах из детской считалки: раз, два три, четыре, пять и т.д. Откуда взялась эта считалка, один Господь ведает. Впрочем, были и попытки объяснить её происхождение с помощью аксиом. Однако происхождение их такое же непонятное, как и считалки. Скорее это похоже на некое подражание «Началам» Евклида, чтобы придать знаниям образ науки и внешнюю видимость солидности и фундаментальности.

Ситуация совсем иная, когда есть математическое определение сущности числа. Тогда для более полного его понимания становятся необходимостью и аксиомы, и считалка. Действительно, данное определение сущности числа включает в себя аргументы, действия и счётную величину. Но аргументы – это тоже числа, и они должны представляться не конкретно каждое из них, а по умолчанию, т.е. в форме общепринятой и неизменной функции, которая называется системой счисления, а она-то никак уже не может появиться без такого понятия как счёт. Вот теперь уже по отношению к счёту, аксиомы оказываются весьма кстати и без них он может появиться разве только от пришельцев. Да, собственно, в действительности это так и было, поскольку такие источники знаний как «Начала» Евклида или «Арифметика» Диофанта созданы явно не нашей, а совсем другой цивилизацией[35 - Специалисты, комментирующие древние, по их мнению, «Начала» Евклида и «Арифметику» Диофанта, будто завороженные видят, но никак не могут признать очевидное. Ни Евклид, ни Диофант не могут быть создателями содержания этих книг, это не под силу даже современной науке. Более того, эти книги появились только в эпоху позднего средневековья, когда уже развилась необходимая для этого письменность. Авторы этих книг были всего лишь переводчиками действительно древних источников, принадлежавших другой цивилизации. В наше время людей с такими способностями называют экстрасенсами.].

Если аксиомы регламентируют счёт, то они первичны по отношению к нему. Однако нет никакой надобности определять их сущность через введение новых понятий, т.к. смысл любых аксиом как раз в их изначальности т.е. они всегда по сути есть границы знаний. Таким образом, аксиомы получают ещё более основополагающий статус, чем до сих пор, когда они ограничивались лишь обоснованием какой-либо конкретной системы.

В частности, система аксиом, разработанная итальянским математиком Джузеппе Пеано (Giuseppe Peano), очень близко соответствуют решению задачи построения системы счёта, хотя вот это основное их предназначение никак не разъяснялось, видимо, с намёком на обоснование сущности понятия числа. Научное сообщество воспринимало их только как некую «формализацию арифметики», совершенно не замечая, что эти аксиомы ни коим образом не отражают сущность чисел, а только создают основы для их представления по умолчанию, т.е. через счёт.

Рис. 32. Джузеппе Пеано

Если основное содержание аксиом – это определение границ знаний, относящихся к общепринятым способам представления чисел, то их следует выстраивать как из определения сущности понятия числа, так и с целью обеспечения прочности и устойчивости всего здания науки. До сих пор из-за отсутствия такого понимания способов построения основ знаний вопрос о сущности числа никогда даже и не ставился, а только усложнялся и запутывался. Но теперь, когда он проясняется, причём без каких-либо особенных затруднений, вся наука может получить новый и очень мощный импульс для своего развития. И вот тогда именно на такой прочной основе она приобретает способности с невероятной лёгкостью преодолевать такие сложнейшие преграды, которые в прежние времена, когда понимания сущности числа не было, представлялись науке как совершенно неприступные крепости [36 - Если мы с самого начала не определились с понятием числа и имеем представление о нём только через прототипы, (количество пальцев рук, или дней недели и др.), то рано или поздно мы обнаружим, что вообще ничего о числах не знаем и при вычислениях следуем необъятному множеству способов и правил, полученных эмпирическим путем. Но если же изначально мы имеем точное определение понятия числа, то при любых вычислениях сможем следовать только одному этому определению и вытекающему из него относительно небольшому перечню правил. Если мы сами создаём требуемые числа, то сможем это делать через аргументы функции, представляемые в общепринятой системе счисления. А вот когда нужно вычислить неизвестные числа, соответствующие заданной функции и условиям задачи, то зачастую потребуются особые методы, которые без понимания сущности чисел будут очень трудными.].

3.2. Аксиомы арифметики

3.2.1. Аксиомы счёта

Этот путь впервые был проложен в конце XIX столетия аксиомами Пеано[37 - Содержание аксиом Пеано следующее:(А1) 1 есть натуральное число.(А2) Для любого натурального числа n есть натуральное число, обозначаемое n' и называемое числом, следующим за n.(А3) Если m' = n' для каких-либо натуральных чисел m,n, то m = n.(А4) Число 1 не следует ни за каким натуральным числом, т.е. n' никогда не равно 1.(А5) Если число 1 обладает некоторым свойством P, и для любого числа n, обладающего свойством P, следующее за ним число n' также обладает свойством P, то всякое натуральное число обладает свойством P.]. Мы внесём в них изменения, исходя из нашего понимания сущности числа.

Аксиома 1. Натуральным является число, сложенное из единиц[38 - В «Началах» Евклида есть нечто похожее на эту аксиому:«1. Единица есть <то>, через что каждое из существующих считается единым. 2. Число же – множество, составленное из единиц», (Книга VII, Определения.).].

Аксиома 2. Единица является исходным натуральным числом.

Аксиома 3. Все натуральные числа образуют бесконечный ряд, в котором каждое следующее число образуется путём прибавления к предыдущему числу единицы.

Аксиома 4. Единица не следует ни за каким натуральным числом.

Аксиома 5. Если какое-либо предложение доказано для единицы, (начало индукции), и если из допущения, что оно верно для натурального числа N, вытекает, что оно верно также для следующего за N натурального числа, (индукционное предположение), то это предложение будет верно для всех натуральных чисел.

Аксиома 6. Кроме натуральных могут существовать и другие производные от них числа, но только в том случае, если они обладают всеми без исключения базовыми свойствами натуральных чисел.

Первая аксиома является прямым следствием определения сущности числа, поэтому у Пеано её просто не могло быть. Теперь эта первая аксиома передаёт смысл определения понятия числа всем остальным аксиомам.

Вторая, четвертая и пятая аксиомы сохраняются, как и у Пеано почти без изменений, но из этой новой системы полностью изъята четвертая аксиома Пеано как избыточная. Вторая аксиома имеет тот же смысл, что и первая в списке Пеано, но уточняется, чтобы стать следствием новой первой аксиомы.

Третья аксиома – это новая редакция второй аксиомы Пеано. Понятие натурального ряда дано здесь проще, чем у Пеано, где нужно догадываться о нём через понятие «следующего» числа.

Четвертая аксиома точно такая же, как и третья аксиома Пеано.

Пятая аксиома такая же, как у Пеано, которая считается главным итогом всей системы. По сути, эта аксиома является формулировкой очень ценного для науки метода индукции, который в данном случае позволяет обосновать и построить систему счёта. Однако счёт присутствует в том или ином виде не только в натуральных, но и в любых других числах, следовательно, необходима ещё одна заключительная аксиома.

Шестая аксиома распространяет базовые свойства натуральных чисел на любые производные от них числа, поскольку если окажется, что какие-либо величины, полученные вычислениями из натуральных чисел, противоречат их базовым свойствам, то эти величины не могут относиться к категории чисел.

Вот теперь арифметика получает все предпосылки для того, чтобы иметь статус самой фундаментальной из всех научных дисциплин. С точки зрения сущности счёта всё становится намного проще и понятнее, чем до сих пор. На основе этой обновлённой системы аксиом нет нужды «создавать» одно за другим натуральные числа, а затем «доказывать» для начальных чисел действия сложения и умножения. Теперь достаточно только дать имена этим начальным числам в рамках общепринятой системы счисления.

Если эта система десятичная, то символы от 0 до 9 должны получить статус начальных чисел, сложенных из единиц, в частности: число «один» обозначается как 1=1, число «два» – как 2=1+1, число «три» – как 3=1+1+1 и т.д. до числа «девять». Числа после 9 и до 99 складываются из десятков и единиц, например, 23=(10+10)+(1+1+1) и получают соответствующие имена: «десять», «одиннадцать», «двенадцать» … «девяносто девять». Числа после 99 складываются из сотен, десятков и единиц и т.д. Таким образом, имена только начальных чисел должны быть заранее сосчитаны из единиц. Все остальные числа именуются так, чтобы их величину можно было сосчитать, используя только начальные числа[39 - Итак, считалка – это именованные начальные числа в готовом, (сосчитанном), виде, чтобы на их основе стало возможно, используя аналогичный метод, именовать также любые другие числа. Всё это, конечно, совсем не сложно, но почему же этому не учат в школе, а просто заставляют всё заучивать без объяснений? Ответ очень простой – потому что наука просто не знает, что есть число, а признаться в этом никак не может.].

3.2.2. Аксиомы действий

Все арифметические действия входят составной частью в определение сущности числа. В компактном виде они представляются следующим образом:

1. Сложение: n = (1+1…)+(1+1+1…) = (1+1+1+1+1…)

2. Умножение: a+a+a+…+a=a?b=c

3. Возведение в степень: a?a?a?…?a=a

=c

4. Вычитание: a+b=c ? b=c?a

5. Деление: a?b=c ? b=c : a

6. Логарифм: a

= c ? b=log

c

Отсюда можно сформулировать все нужные определения в виде аксиом.

Аксиома 1. Действие сложения нескольких чисел (слагаемых) – это их соединение в одно число (сумму).

Аксиома 2. Все арифметические действия являются либо сложением, либо производными от сложения.

Аксиома 3. Существуют прямые и обратные арифметические действия.

Аксиома 4. Прямые действия – это разновидности сложения. Кроме самого сложения к ним относятся также умножение и возведение в степень.

Аксиома 5. Обратные действия – это вычисление аргументов функций. К ним относятся вычитание, деление и логарифм.

Аксиома 6. Не существуют иные действия с числами, кроме комбинаций из шести арифметических действий[40 - Аксиомы действий, которые до сих пор отдельно не выделялись, также являются прямым следствием определения сущности понятия числа. Они, как способствуют обучению, так и устанавливают определенную ответственность за обоснованность любых научных изысканий в области чисел. В этом смысле последняя 6-я аксиома выглядит даже слишком категоричной. Но без такого рода ограничений в систему знаний можно протаскивать любую тарабарщину и затем называть это «прорывом в науке».].

3.2.3. Базовые свойства чисел

Следствием аксиом действий являются следующие базовые свойства чисел, обусловленные необходимостью практических вычислений:

1. Наполнение: a+1>a

2. Нейтральность единицы:      a?1=a:1=a

3. Коммутативность: a+b=b+a; ab=ba