banner banner banner
Чудеса арифметики от Пьера Симона де Ферма
Чудеса арифметики от Пьера Симона де Ферма
Оценить:
Рейтинг: 0

Полная версия:

Чудеса арифметики от Пьера Симона де Ферма

скачать книгу бесплатно


+y

имеет единственное решение в целых числах. А все остальные простые числа, относящиеся к типу 4n?1, не могут быть разложены таким же образом.

В письме-завещании Ферма показано, как это удивительное утверждение может быть доказано методом спуска. Однако доказательство Ферма не сохранилось и эту задачу решил Эйлер, которому пришлось для этого в течение целых семи лет задействовать всю свою интеллектуальную мощь[54 - Доказательство Эйлера неконструктивно, т.е. оно не дает метода вычисления двух квадратов, из которых состоит простое число типа 4n+1 (см Приложение III). Пока у этой задачи есть только решение Гаусса, но оно получено в рамках очень сложной системы «Арифметики вычетов». Решение, о котором сообщал Ферма, до сих пор остаётся неизвестным. Впрочем, см. комментарий 172 в Приложении IV (Год 1680).]. Теперь уже решение задачи Диофанта выглядит очевидным. Если среди простых множителей числа c нет ни одного относящегося к типу 4n+1, то и число c

не может быть разложено на сумму двух квадратов. А если хотя бы одно такое число p

есть, то через тождество пифагорейцев можно получить:

c

= N

p

=(Nx)

+(Ny)

где x=u

?v

; y=2uv; a=N(u

?v

); b=N2uv

Решение получено, однако Ферма оно явно не устраивает, поскольку чтобы вычислить число N, нужно разложить число c на простые множители, а эта задача во все времена считалась едва ли не самой трудной из всех задач в арифметики[55 - Способы вычислений простых чисел были предметом поисков ещё с древних времен. Наиболее известный способ получил название «Решето Эратосфена». Многие другие способы также были разработаны, но широкого применения не получили. Сохранился обрывок письма Ферма с описанием созданного им метода – письмо LVII 1643 г. [36]. В п.7 письма-завещания он отмечает: «Я признаюсь, что моё изобретение для установления того, будет ли данное число простым или нет, несовершенно. Но у меня есть много путей и методов для того, чтобы сократить число делений и значительно их уменьшить, облегчая обычную работу». См. также п. 5.1 с комментариями 73-74.]. Затем нужно ещё вычислить числа x, y, т.е. решить задачу о разложении простого числа типа 4n+1 на сумму двух квадратов. Над решением этой задачи Ферма работал почти до конца своей жизни.

Вполне естественно, что, когда есть желание упростить решение задачи Диофанта, появляется и новая идея получения общего решения уравнения Пифагора a

+b

=c

способом, отличным от тождества пифагорейцев. Как это зачастую бывает, новая идея вдруг неожиданно возникает после пережитых сильных потрясений. Видимо, так и случилось в период эпидемии чумы 1652 года, когда Ферма только каким-то чудом удалось выжить, но именно после этого он уже вполне отчётливо представлял себе, как можно решить уравнение Пифагора новым способом.

Впрочем, способ ключевой формулы для Ферма не был новым, но когда он эту формулу вывел и сразу же получил новое решение уравнения Пифагора, то был настолько этим поражён, что долго не мог прийти в себя. Ведь до этого для получения одного решения нужно задать в тождестве пифагорейцев два целых числа, а при новом способе получается, как минимум три решения, если задать только одно целое число.

Но самое удивительное здесь то, что применение этого нового способа не зависит от показателя степени и его можно применить для решения уравнения с более высокими степенями, т.е. вместе с уравнением a

+b

=c

можно решать таким же способом и a

+b

=c

с любыми степенями n>2.

Чтобы получить итоговый результат оставалось преодолеть лишь некоторые технические трудности, с которыми Ферма справился успешно. Вот так и появилось ставшее знаменитым его замечание к задаче 8 книги II «Арифметики» Диофанта:

Cubum autem in duos cubos, aut quadrato-quadratum in duos quadrato-quadratos, et generaliter nullam in infinitum ultra quadratum potestatem in duas eiusdem nominis fas est dividere cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.

См. рис. 3 и перевод в конце п. 1.

4.2. Доказательство Ферма

Представленное здесь реконструированное доказательство ВТФ содержит неизвестные сегодняшней науке новые открытия. Однако от этого оно ничуть не становится трудным для понимания. Наоборот, именно эти открытия и позволяют решить эту проблему наиболее просто и доступно. Сам феномен недоказуемой ВТФ вообще не появился бы, если бы Французская Академия наук была создана ещё при жизни П. Ферма. Тогда он стал бы академиком и публиковал свои научные исследования, а среди его теорем во всех учебниках по арифметике была бы и вот такая самая обычная теорема:

Для любого заданного натурального числа n>2 не существует ни одной тройки натуральных чисел a, b, c согласно уравнению

a

+ b

= c

(1)

Для доказательства этого утверждения, предположим, что числа a, b, c, удовлетворяющие (1), существуют и тогда, исходя из этого, мы можем получить все без исключения решения этого уравнения в общем виде. С этой целью мы задействуем метод ключевой формулы, при котором к исходному уравнению добавляется ещё одно уравнение, чтобы стало возможно получить решение (1) в системе из двух уравнений. В нашем случае ключевая формула имеет вид:

a + b = c + 2m (2)

где m натуральное число.

Для получения формулы (2) отмечаем, что a?b, т.к. иначе 2a

=c

, что очевидно невозможно. Следовательно, a<b<c и можно констатировать, что (a

+b

)>c

, откуда (a+b)>c. Поскольку в (1) случаи с тремя нечётными a, b, c, а также с одним нечётным и двумя чётными невозможны, то числа a, b, c могут быть либо все чётные, либо два нечётных и одно чётное. Тогда из (a+b)>c следует формула (2), где число 2m чётное[56 - Ферма обнаружил формулу (2) после преобразования уравнения Пифагора в алгебраическое квадратное уравнение см. Приложение IV рассказ Год 1652. Однако алгебраическое решение не даёт понимания сути полученной формулы. Впервые этот способ был опубликован в 2008 г. [30].].

Вначале проверим действенность метода для случая n=2, или уравнения Пифагора a

+b

=c

. Здесь действует ключевая формула (2) и можно получить решение системы уравнений (1), (2), если сделать подстановку одного в другое. Чтобы её упростить, возведём в квадрат обе стороны (2), чтобы сделать числа в (1) и (2) соразмерными. Тогда (2) принимает вид:

{a

+b

?c

}+2(c?b)(c?a)=4m

(3)

Подставляя уравнение Пифагора в (3), получаем:

A

B

=2m

(4),

где с учетом формулы (2): A

=c?b=a?2m; B

=c?a=b?2m (5)

Теперь раскладываем на простые множители число 2m

, чтобы получить все варианты A

B

. Для простых чисел m всегда есть только три варианта: 1?2m

=2?m

=m?2m. В этом случае A

=1; B

=2m

; A

=2; B

=m

; A

=m; B

=2m. Поскольку из (5) следует a=A

+2m; b=B

+2m; а из (2) c=a+b?2m; то в итоге получаем три решения:

1. a

=2m+1; b

=2m(m+1); c

=2m(m+1)+1

2. a

=2(m+1); b

=m(m+2); c

= m(m+2)+2 (6)

3. a

=3m b

=4m; c

=5m

Уравнения (6) являются решениями уравнения Пифагора для любого натурального числа m. Если же число m составное, то соответственно увеличивается и число решений. В частности, если m состоит из двух простых множителей, то число решений возрастает до девяти[57 - Например, если m=p

p

, то кроме первых трех решений будут ещё другие:A

=p

; B

=2p

p

; A