
Полная версия:
Живи долго! Научный подход к долгой молодости и здоровью
44
Foreman KJ, Marquez N, Dolgert A, et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016–40 for 195 countries and territories. Lancet. 2018;392(10159):2052–90. https://pubmed.ncbi.nlm.nih.gov/30340847/
45
Kaeberlein M. The biology of aging: citizen scientists and their pets as a bridge between research on model organisms and human subjects. Vet Pathol. 2016;53(2):291–8. https://pubmed.ncbi.nlm.nih.gov/26077786/
46
Zainabadi K. A brief history of modern aging research. Exp Gerontol. 2018;104:35–42. https://pubmed.ncbi.nlm.nih.gov/29355705/
47
Milman S, Barzilai N. Dissecting the mechanisms underlying unusually successful human health span and life span. Cold Spring Harb Perspect Med. 2015;6(1):a025098. https://pubmed.ncbi.nlm.nih.gov/26637439/
48
Iyen B, Qureshi N, Weng S, et al. Sex differences in cardiovascular morbidity associated with familial hypercholesterolaemia: a retrospective cohort study of the UK Simon Broome register linked to national hospital records. Atherosclerosis. 2020;315:131–7. https://pubmed.ncbi.nlm.nih.gov/33187671/
49
Tsao CW, Aday AW, Almarzooq ZI, et al. Heart disease and stroke statistics—2022 update: a report from the American Heart Association. Circulation. 2022;145(8):e153–639. https://pubmed.ncbi.nlm.nih.gov/35078371/
50
Jortveit J, Pripp AH, Langørgen J, Halvorsen S. Incidence, risk factors and outcome of young patients with myocardial infarction. Heart. 2020;106(18):1420–6. https://pubmed.ncbi.nlm.nih.gov/32111640/
51
Giem P, Beeson WL, Fraser GE. The incidence of dementia and intake of animal products: preliminary findings from the Adventist Health Study. Neuroepidemiology. 1993;12(1):28–36. https://pubmed.ncbi.nlm.nih.gov/8327020/
52
Wahl D, Cogger VC, Solon-Biet SM, et al. Nutritional strategies to optimise cognitive function in the aging brain. Ageing Res Rev. 2016;31:80–92. https://pubmed.ncbi.nlm.nih.gov/27355990/
53
Olshansky SJ, Carnes BA, Cassel C. In search of Methuselah: estimating the upper limits to human longevity. Science. 1990;250(4981):634–40. https://pubmed.ncbi.nlm.nih.gov/2237414/
54
Vaiserman A, Koliada A, Lushchak O, Castillo MJ. Repurposing drugs to fight aging: the difficult path from bench to bedside. Med Res Rev. 2021;41(3):1676–700. https://pubmed.ncbi.nlm.nih.gov/33314257/
55
Olshansky SJ, Perry D, Miller RA, Butler RN. In pursuit of the longevity dividend. Scientist (Philadelphia, Pa). 2006;20(3):28–36. https://pubmed.ncbi.nlm.nih.gov/17986572/
56
Blagosklonny MV. Disease or not, aging is easily treatable. Aging (Albany NY). 2018;10(11):3067–78. https://pubmed.ncbi.nlm.nih.gov/30448823/
57
De Winter G. Aging as disease. Med Health Care Philos. 2015;18(2):237–43. https://pubmed.ncbi.nlm.nih.gov/25240472/
58
Zhavoronkov A, Bhullar B. Classifying aging as a disease in the context of ICD-11. Front Genet. 2015;6:326. https://pubmed.ncbi.nlm.nih.gov/26583032/
59
Hodgson J. Consumer, drug firms vie in vitamins. Wall Street Journal. https://www.wsj.com/articles/SB10001424127887323401904578155050445302398. Published December 2, 2012. Accessed January 24, 2023.; https://www.wsj.com/articles/SB10001424127887323401904578155050445302398
60
Davis B. The link between Big Pharma and the supplement industry. Elsevier: Pharma R&D Today. https://web.archive.org/web/20220930062808/ https:/pharma.elsevier.com/pharma-rd/link-big-pharma-supplement-industry/. Published July 28th, 2017. Accessed February 10, 2023.; https://web.archive.org/web/20220930062808/ https://pharma.elsevier.com/pharma-rd/link-big-pharma-supplement-industry/
61
Направление, сформированное на стыке косметологии и фармакологии. – Примеч. ред.
62
Martin KI, Glaser DA. Cosmeceuticals: the new medicine of beauty. Mo Med. 2011;108(1):60–3. https://pubmed.ncbi.nlm.nih.gov/21462614/
63
Exuviance. Johnson & Johnson. https://www.jnj.com/exuviance. Accessed January 22, 2023.; https://www.jnj.com/exuviance
64
Spencer M. Coca-Cola, Sanofi in beauty venture. Wall Street Journal. https://www.wsj.com/articles/SB10000872396390443854204578060662301872612. Published October 16, 2012. Accessed January 24, 2023.; https://www.wsj.com/articles/SB10000872396390443854204578060662301872612
65
Miller RA. Extending life: scientific prospects and political obstacles. Milbank Q. 2002;80(1):155–74. https://pubmed.ncbi.nlm.nih.gov/11933792/
66
Donner Y, Fortney K, Calimport SRG, Pfleger K, Shah M, Betts-LaCroix J. Great desire for extended life and health amongst the American public. Front Genet. 2016;6:353. https://pubmed.ncbi.nlm.nih.gov/26834780/
67
Eissenberg JC. Hungering for immortality. Mo Med. 2018;115(1):12–7. https://pubmed.ncbi.nlm.nih.gov/30228670/
68
Hall WJ. Centenarians: metaphor becomes reality. Arch Intern Med. 2008;168(3):262–3. https://pubmed.ncbi.nlm.nih.gov/18268165/
69
Faragher RGA. Should we treat aging as a disease? The consequences and dangers of miscategorisation. Front Genet. 2015;6:171. https://pubmed.ncbi.nlm.nih.gov/26236330/
70
Marengoni A, Angleman S, Melis R, et al. Aging with multimorbidity: a systematic review of the literature. Ageing Res Rev. 2011;10(4):430–9. https://pubmed.ncbi.nlm.nih.gov/21402176/
71
Barnett K, Mercer SW, Norbury M, Watt G, Wyke S, Guthrie B. Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet. 2012;380(9836):37–43. https://pubmed.ncbi.nlm.nih.gov/22579043/
72
Smith-Uffen MES, Johnson SB, Martin AJ, et al. Estimating survival in advanced cancer: a comparison of estimates made by oncologists and patients. Support Care Cancer. 2020;28(7):3399–407. https://pubmed.ncbi.nlm.nih.gov/31781946/
73
Hole B, Salem J. How long do patients with chronic disease expect to live? A systematic review of the literature. BMJ Open. 2016;6(12):e012248. https://pubmed.ncbi.nlm.nih.gov/28039288/
74
Kaeberlein M. How healthy is the healthspan concept? GeroScience. 2018;40(4):361–4. https://pubmed.ncbi.nlm.nih.gov/30084059/
75
Около 400 метров. – Примеч. ред.
76
Crimmins EM, Beltrán-Sánchez H. Mortality and morbidity trends: is there compression of morbidity? J Gerontol B Psychol Sci Soc Sci. 2011 Jan;66(1):75–86. https://pubmed.ncbi.nlm.nih.gov/21135070/
77
de Magalhães JP. The scientific quest for lasting youth: prospects for curing aging. Rejuvenation Res. 2014;17(5):458–67. https://pubmed.ncbi.nlm.nih.gov/25132068/
78
Хуан Понсе де Леон (1460–1521) – испанский конкистадор, который основал первое европейское поселение на Пуэрто-Рико и во время поисков источника вечной молодости в 1513 году первым из европейцев высадился на берега Флориды. – Примеч. ред.
79
Furrer R, Handschin C. Lifestyle vs. pharmacological interventions for healthy aging. Aging (Albany NY). 2020;12(1):5–7. https://pubmed.ncbi.nlm.nih.gov/31937689/
80
Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/
81
de Magalhães JP. The scientific quest for lasting youth: prospects for curing aging. Rejuvenation Res. 2014;17(5):458–67. https://pubmed.ncbi.nlm.nih.gov/25132068/
82
Kirkwood T. Why can’t we live forever? Sci Am. 2010;303(3):42–9. https://pubmed.ncbi.nlm.nih.gov/20812478/
83
Pakkenberg B, Pelvig D, Marner L, et al. Aging and the human neocortex. Exp Gerontol. 2003;38(1–2):95–9. https://pubmed.ncbi.nlm.nih.gov/12543266/
84
Herculano-Houzel S. The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci. 2009;3:31. https://pubmed.ncbi.nlm.nih.gov/19915731/
85
Pakkenberg B, Pelvig D, Marner L, et al. Aging and the human neocortex. Exp Gerontol. 2003;38(1–2):95–9. https://pubmed.ncbi.nlm.nih.gov/12543266/
86
Finlay BB, Pettersson S, Melby MK, Bosch TCG. The microbiome mediates environmental effects on aging. BioEssays. 2019;41(10):1800257. https://pubmed.ncbi.nlm.nih.gov/31157928/
87
Hayflick L. “Anti-aging” is an oxymoron. J Gerontol A Biol Sci Med Sci. 2004;59(6):B573–8. https://pubmed.ncbi.nlm.nih.gov/15215267/
88
Underwood M, Bartlett HP, Hall WD. Professional and personal attitudes of researchers in ageing towards life extension. Biogerontology. 2009;10(1):73–81. https://pubmed.ncbi.nlm.nih.gov/18516699/
89
de Grey ADNJ. Like it or not, life-extension research extends beyond biogerontology. EMBO Rep. 2005;6(11):1000. https://pubmed.ncbi.nlm.nih.gov/16264420/
90
Richmond CR. Population exposure from the fuel cycle: review and future direction. University of North Texas Libraries Government Documents Department. https://digital.library.unt.edu/ark:/67531/metadc1086292/. Published January 1, 1987. Accessed November 28, 2022.; https://digital.library.unt.edu/ark:/67531/metadc1086292/
91
de Grey ADNJ. Like it or not, life-extension research extends beyond biogerontology. EMBO Rep. 2005;6(11):1000. https://pubmed.ncbi.nlm.nih.gov/16264420/
92
Thomson W. Kelvin on science: British lord tells his hopes for wireless telegraphy. The Newark Advocate. https://zapatopi.net/kelvin/papers/interview_aeronautics_and_wireless.html. Published April 26, 1902. Accessed October 24, 2022.; https://zapatopi.net/kelvin/papers/interview_aeronautics_and_wireless.html
93
Ayyadevara S, Alla R, Thaden JJ, Shmookler Reis RJ. Remarkable longevity and stress resistance of nematode PI3K-null mutants. Aging Cell. 2008;7(1):13–22. https://pubmed.ncbi.nlm.nih.gov/17996009/
94
Bartke A, Wright JC, Mattison JA, Ingram DK, Miller RA, Roth GS. Extending the lifespan of long-lived mice. Nature. 2001;414(6862):412. https://pubmed.ncbi.nlm.nih.gov/11719795/
95
Richie JP, Leutzinger Y, Parthasarathy S, Malloy V, Orentreich N, Zimmerman JA. Methionine restriction increases blood glutathione and longevity in F344 rats. FASEB J. 1994;8(15):1302–7. https://pubmed.ncbi.nlm.nih.gov/8001743/
96
Miller RA. Extending life: scientific prospects and political obstacles. Milbank Q. 2002;80(1):155–74. https://pubmed.ncbi.nlm.nih.gov/11933792/
97
Campbell S. Will biotechnology stop aging? IEEE Pulse. 2019;10(2):3–7. https://pubmed.ncbi.nlm.nih.gov/31021750/
98
Faragher RGA. Should we treat aging as a disease? The consequences and dangers of miscategorisation. Front Genet. 2015;6:171. https://pubmed.ncbi.nlm.nih.gov/26236330/
99
de Grey ADNJ. Escape velocity: why the prospect of extreme human life extension matters now. PLoS Biol. 2004;2(6):e187. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC423155/
100
Kurzweil R, Grossman T. Fantastic voyage: live long enough to live forever. The science behind radical life extension questions and answers. Stud Health Technol Inform. 2009;149:187–94. https://pubmed.ncbi.nlm.nih.gov/19745481/
101
Raghavachari N. The impact of apolipoprotein E genetic variability in health and life span. J Gerontol A Biol Sci Med Sci. 2020;75(10):1855–7. https://pubmed.ncbi.nlm.nih.gov/32789475/
102
Medvedev ZA. An attempt at a rational classification of theories of ageing. Biol Rev Camb Philos Soc. 1990;65(3):375–98. https://pubmed.ncbi.nlm.nih.gov/2205304/
103
Willcox DC, Willcox BJ, Poon LW. Centenarian studies: important contributors to our understanding of the aging process and longevity. Curr Gerontol Geriatr Res. 2010;2010:484529. https://pubmed.ncbi.nlm.nih.gov/21804821/
104
Steves CJ, Spector TD, Jackson SHD. Ageing, genes, environment and epigenetics: what twin studies tell us now, and in the future. Age Ageing. 2012;41(5):581–6. https://pubmed.ncbi.nlm.nih.gov/22826292/
105
Kirkwood T. How can we live forever? BMJ. 1996;313(7072):1571. https://pubmed.ncbi.nlm.nih.gov/8990987/
106
Milman S, Barzilai N. Dissecting the mechanisms underlying unusually successful human health span and life span. Cold Spring Harb Perspect Med. 2015;6(1):a025098. https://pubmed.ncbi.nlm.nih.gov/26637439/
107
Ruby JG, Wright KM, Rand KA, et al. Estimates of the heritability of human longevity are substantially inflated due to assortative mating. Genetics. 2018;210(3):1109–24. https://pubmed.ncbi.nlm.nih.gov/30401766/
108
Herskind AM, McGue M, Holm NV, Sørensen TIA, Harvald B, Vaupel JW. The heritability of human longevity: a population-based study of 2872 Danish twin pairs born 1870–1900. Hum Genet. 1996;97(3):319–23. https://link.springer.com/article/10.1007/bf02185763
109
Skytthe A, Pedersen NL, Kaprio J, et al. Longevity studies in GenomEUtwin. Twin Res. 2003;6(5):448–54. https://pubmed.ncbi.nlm.nih.gov/14624729/
110
Ruby JG, Wright KM, Rand KA, et al. Estimates of the heritability of human longevity are substantially inflated due to assortative mating. Genetics. 2018;210(3):1109–24. https://pubmed.ncbi.nlm.nih.gov/30401766/
111
Lee MB, Hill CM, Bitto A, Kaeberlein M. Antiaging diets: separating fact from fiction. Science. 2021;374(6570):eabe7365. https://pubmed.ncbi.nlm.nih.gov/34793210/
112
Search results: “the hallmarks of aging.” WebofScience.com. Accessed February 15, 2023.; https://www.webofscience.com/wos/woscc/summary/55559f9d-7ef6-429d-98f8-f41bc4c102d7-84135d71/relevance/1
113
Levine M, Crimmins E. Not all smokers die young: a model for hidden heterogeneity within the human population. PLoS ONE. 2014;9(2):e87403. https://pubmed.ncbi.nlm.nih.gov/24520332/
114
Devi AS, Thokchom S, Devi AM. Children living with Progeria. Nurs Care Open Access J. 2017;3(4):275–8. https://medcraveonline.com/NCOAJ/children-living-with-progeria.html
115
Ahmed MS, Ikram S, Bibi N, Mir A. Hutchinson-Gilford progeria syndrome: a premature aging disease. Mol Neurobiol. 2018;55(5):4417–27. https://pubmed.ncbi.nlm.nih.gov/28660486/
116
Sosnowska D, Richardson C, Sonntag WE, Csiszar A, Ungvari Z, Ridgway I. A heart that beats for 500 years: age-related changes in cardiac proteasome activity, oxidative protein damage and expression of heat shock proteins, inflammatory factors, and mitochondrial complexes in Arctica islandica, the longest-living noncolonial animal. J Gerontol A Biol Sci Med Sci. 2014;69(12):1448–61. https://pubmed.ncbi.nlm.nih.gov/24347613/
117
Taormina G, Ferrante F, Vieni S, Grassi N, Russo A, Mirisola MG. Longevity: lesson from model organisms. Genes (Basel). 2019;10(7):518. https://pubmed.ncbi.nlm.nih.gov/31324014/
118
Концепция проведения научных исследований с привлечением широкого круга добровольцев-любителей (неспециалистов). – Примеч. ред.
119
Имя Мафусаила, прожившего 960 лет, стало синонимом долгожительства. «Собаками Мафусаила» традиционно называют собак-долгожителей. – Примеч. ред.
120
Jónás D, Sándor S, Tátrai K, Egyed B, Kubinyi E. A preliminary study to investigate the genetic background of longevity based on whole-genome sequence data of two Methuselah dogs. Front Genet. 2020;11:315. https://pubmed.ncbi.nlm.nih.gov/32373156/
121
Kaeberlein M, Creevy KE, Promislow DEL. The Dog Aging Project: translational geroscience in companion animals. Mamm Genome. 2016;27(7–8):279–88. https://pubmed.ncbi.nlm.nih.gov/27143112/
122
Pitt JN, Kaeberlein M. Why is aging conserved and what can we do about it? PLoS Biol. 2015;13(4):e1002131. https://pubmed.ncbi.nlm.nih.gov/25923592/
123
López M. Hypothalamic AMPK: a golden target against obesity? Eur J Endocrinol. 2017;176(5):R235–46. https://pubmed.ncbi.nlm.nih.gov/28232370/
124
Steinberg GR, Macaulay SL, Febbraio MA, Kemp BE. AMP-activated protein kinase – the fat controller of the energy railroad. Can J Physiol Pharmacol. 2006;84(7):655–65. https://pubmed.ncbi.nlm.nih.gov/16998529/
125
Salminen A, Kaarniranta K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev. 2012;11(2):230–41. https://pubmed.ncbi.nlm.nih.gov/22186033/
126
Vazirian M, Nabavi SM, Jafari S, Manayi A. Natural activators of adenosine 5’-monophosphate (AMP)-activated protein kinase (AMPK) and their pharmacological activities. Food Chem Toxicol. 2018;122:69–79. https://pubmed.ncbi.nlm.nih.gov/30290216/
127
Jiang S, Li T, Yang Z, et al. AMPK orchestrates an elaborate cascade protecting tissue from fibrosis and aging. Ageing Res Rev. 2017;38:18–27. https://pubmed.ncbi.nlm.nih.gov/28709692/
128
Burkewitz K, Weir HJM, Mair WB. AMPK as a pro-longevity target. In: Cordero MD, Viollet B, eds. AMP-activated Protein Kinase. Experientia Supplementum. Vol 107. Springer; 2016:227–56. https://pubmed.ncbi.nlm.nih.gov/27812983/
129
Ruiz R, Pérez-Villegas EM, Manuel Carrión Á. AMPK function in aging process. Curr Drug Targets. 2016;17(8):932–41. https://pubmed.ncbi.nlm.nih.gov/26521771/
130
Salminen A, Kaarniranta K, Kauppinen A. Age-related changes in AMPK activation: role for AMPK phosphatases and inhibitory phosphorylation by upstream signaling pathways. Ageing Res Rev. 2016;28:15–26. https://pubmed.ncbi.nlm.nih.gov/27060201/
131
Wang S, Kandadi MR, Ren J. Double knockout of Akt2 and AMPK predisposes cardiac aging without affecting lifespan: role of autophagy and mitophagy. Biochim Biophys Acta Mol Basis Dis. 2019;1865(7):1865–75. https://pubmed.ncbi.nlm.nih.gov/31109453/
132
Ruiz R, Pérez-Villegas EM, Manuel Carrión Á. AMPK function in aging process. Curr Drug Targets. 2016;17(8):932–41. https://pubmed.ncbi.nlm.nih.gov/26521771/
133
Mair W, Morantte I, Rodrigues APC, et al. Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB. Nature. 2011;470(7334):404–8. https://pubmed.ncbi.nlm.nih.gov/21331044/
134
Sokolov SS, Severin FF. Manipulating cellular energetics to slow aging of tissues and organs. Biochemistry (Mosc). 2020;85(6):651–9. https://pubmed.ncbi.nlm.nih.gov/32586228/
135
Burkewitz K, Weir HJM, Mair WB. AMPK as a pro-longevity target. In: Cordero MD, Viollet B, eds. AMP-activated Protein Kinase. Experientia Supplementum. Vol 107. Springer; 2016:227–56. https://pubmed.ncbi.nlm.nih.gov/27812983/
136
Миметики – это лекарственные вещества, биохимически имитирующие естественное синтезируемое в организме вещество или вызывающие в организме изменения, сходные с теми, которые проявляются под действием какого-либо внешнего фактора. – Примеч. ред.
137
Burkewitz K, Zhang Y, Mair WB. AMPK at the nexus of energetics and aging. Cell Metab. 2014;20(1):10–25. https://pubmed.ncbi.nlm.nih.gov/24726383/
138
Musi N, Fujii N, Hirshman MF, et al. AMP-activated protein kinase (AMPK) is activated in muscle of subjects with type 2 diabetes during exercise. Diabetes. 2001;50(5):921–7. https://pubmed.ncbi.nlm.nih.gov/11334434/
139
Kola B, Grossman AB, Korbonits M. The role of AMP-activated protein kinase in obesity. Front Horm Res. 2008;36:198–211. https://pubmed.ncbi.nlm.nih.gov/18230904/
140
Narkar VA, Downes M, Yu RT, et al. AMPK and PPARdelta agonists are exercise mimetics. Cell. 2008;134(3):405–15. https://pubmed.ncbi.nlm.nih.gov/18674809/
141
Benkimoun P. Police find range of drugs after trawling bins used by Tour de France cyclists. BMJ. 2009;339:b4201. https://pubmed.ncbi.nlm.nih.gov/19825964/
142
Niederberger E, King TS, Russe OQ, Geisslinger G. Activation of AMPK and its impact on exercise capacity. Sports Med. 2015;45(11):1497–509. https://pubmed.ncbi.nlm.nih.gov/26186961/
143
Niederberger E, King TS, Russe OQ, Geisslinger G. Activation of AMPK and its impact on exercise capacity. Sports Med. 2015;45(11):1497–509. https://pubmed.ncbi.nlm.nih.gov/26186961/
144
Hawley JA, Joyner MJ, Green DJ. Mimicking exercise: what matters most and where to next? J Physiol. 2021;599(3):791–802. https://pubmed.ncbi.nlm.nih.gov/31749163/
145
López-Lluch G, Santos-Ocaña C, Sánchez-Alcázar JA, et al. Mitochondrial responsibility in ageing process: innocent, suspect or guilty. Biogerontology. 2015;16(5):599–620. https://pubmed.ncbi.nlm.nih.gov/26105157/
146
Sharma A, Smith HJ, Yao P, Mair WB. Causal roles of mitochondrial dynamics in longevity and healthy aging. EMBO Rep. 2019;20(12):e48395. https://pubmed.ncbi.nlm.nih.gov/31667999/
147
Hill S, Van Remmen H. Mitochondrial stress signaling in longevity: a new role for mitochondrial function in aging. Redox Biol. 2014;2:936–44. https://pubmed.ncbi.nlm.nih.gov/25180170/
148
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217. https://pubmed.ncbi.nlm.nih.gov/23746838/
149
Gonzalez-Freire M, de Cabo R, Bernier M, et al. Reconsidering the role of mitochondria in aging. J Gerontol A Biol Sci Med Sci. 2015;70(11):1334–42. https://pubmed.ncbi.nlm.nih.gov/25995290/
150
Sgarbi G, Matarrese P, Pinti M, et al. Mitochondria hyperfusion and elevated autophagic activity are key mechanisms for cellular bioenergetic preservation in centenarians. Aging (Albany NY). 2014;6(4):296–310. https://pubmed.ncbi.nlm.nih.gov/24799450/
151
Sengupta P. The laboratory rat: relating its age with human’s. Int J Prev Med. 2013;4(6):624–30. https://pubmed.ncbi.nlm.nih.gov/23930179/
152
Corbisier P, Remacle J. Influence of the energetic pattern of mitochondria in cell ageing. Mech Ageing Dev. 1993;71(1):47–58. https://pubmed.ncbi.nlm.nih.gov/8309283/
153
Burkewitz K, Zhang Y, Mair WB. AMPK at the nexus of energetics and aging. Cell Metab. 2014;20(1):10–25. https://pubmed.ncbi.nlm.nih.gov/24726383/
154
Ruiz R, Pérez-Villegas EM, Manuel Carrión Á. AMPK function in aging process. Curr Drug Targets. 2016;17(8):932–41. https://pubmed.ncbi.nlm.nih.gov/26521771/
155
Wu S, Zou MH. AMPK, mitochondrial function, and cardiovascular disease. Int J Mol Sci. 2020;21(14):4987. https://pubmed.ncbi.nlm.nih.gov/32679729/
156
Agency for Healthcare Research and Quality (AHRQ). Medical Expenditure Panel Survey (MEPS) 2013–2019. ClinCalc DrugStats Database version 2021.10. https://clincalc.com/DrugStats/. Accessed May 22, 2023.; https://clincalc.com/DrugStats/