banner banner banner
Введение в машинное обучение
Введение в машинное обучение
Оценить:
Рейтинг: 0

Полная версия:

Введение в машинное обучение

скачать книгу бесплатно

Где ? – вектор параметров.

Можно записать также

где n – число параметров (свойств или признаков) объектов; g(z) – сигмоидальная или логистическая функция.

В сокращенном виде h

(x) = g(?

x).

Отметим, что сигмоидальная функция широко применяется и в нейронных сетях в качестве активационной функции нейронов, поскольку является непрерывно дифференцируемой и тем самым гарантирует сходимость алгоритмов обучения нейронной сети. Примерный вид сигмоиды показан в разделе «Активационные функции».

Функция h

(x) может рассматриваться как вероятность того, что объект является «позитивным» (h

(x)?0.5) или «негативным» (h

(x)<0.5). В сложных случаях, требующих нелинейной границы разделения, например, в виде окружности (рисунок 2.6), необходимо добавить дополнительные параметры, например, квадратные степени исходных параметров:

или их произведения и т.п.

Рисунок 2.6. Объекты, для которых необходима нелинейная граница разделения

Подбор параметров ? после выбора функции гипотезы выполняется так, чтобы минимизировать функцию стоимости вида:

Из двух частей функции стоимости, объединенных знаком +, вычисляется фактически только одна, так как в задаче классификации y может принимать только два значения: 1 и 0.

То есть в случае, если y = 0, стоимость для i-го примера принимает вид:

Таким образом, при минимальном значении функции стоимости в обоих случаях достигается максимизация вероятности принадлежности объекта к положительному классу для «положительных» объектов и минимизация вероятности для «отрицательных» объектов. По-другому логистический классификатор называется классификатором максимизации энтропии (maximum-entropy classification – MaxEnt).

Как и в случае с линейной регрессией, минимизация функции стоимости достигается с помощью алгоритма градиентного спуска (gradient descent), но также применяются Conjugate gradient [[36 - Martin Fodslette M?ller. A scaled conjugate gradient algorithm for fast supervised learning // Neural Networks. – 1993. – Vol. 6. – Issue 4. – P. 525–533.]], BFGS, L-BFGS или lbfgs [[37 - Dong C. Liu, Jorge Nocedal. On the limited memory BFGS method for large scale optimization // Mathematical Programming. – 1989. – Vol. 45. – Issue 1–3. – P. 503–528.]].

Логистический классификатор может быть применен и в отношении нескольких классов. В этом случае для каждого класса классификатор настраивается отдельно. Класс, к которому принадлежит новый объект, вычисляется расчетом значений всех функций гипотез и выбором из них максимального значения m

axh

(x), где i – номер класса. Другими словами, объект принадлежит к тому классу, функция гипотезы которого максимальна.

Как и в случае с линейной регрессией, для увеличения обобщающей способности алгоритма применяют регуляризацию (последнее слагаемое в нижеследующей формуле), которая позволяет уменьшить влияние величин высокого порядка:

Интересно, что производная функции стоимости логистической регрессии ровно такая же, как и производная функции стоимости линейной регрессии (вывод см., например, в [[38 - Derivative of Cost Function for Logistic Regression. – https://medium.com/mathematics-behind-optimization-of-cost-function/derivative-of-log-loss-function-for-logistic-regression-9b832f025c2d (https://medium.com/mathematics-behind-optimization-of-cost-function/derivative-of-log-loss-function-for-logistic-regression-9b832f025c2d)]]). Следовательно, алгоритм градиентного спуска будет работать так же, как и для линейной регрессии (формула 1.5), с тем отличием, что значение функции гипотезы будет вычисляться по формуле 2.8.

Пример. Построим линейный классификатор на основе логистической регрессии. Вначале сгенерируем набор данных и разделим его на тренировочное и тестовое множества:

from sklearn.datasets import make_moons, make_circles, make_classification

from sklearn.model_selection import train_test_split

dataset = make_circles(noise=0.2, factor=0.5, random_state=1)

X_D2, y_D2 = dataset

plt.figure(figsize=(9,9))

plt.scatter(X_D2[:,0],X_D2[:,1],c=y_D2,marker='o',

s=50,cmap=ListedColormap(['#FF0000','#00FF00']))

X_train, X_test, y_train, y_test = train_test_split(X_D2, y_D2, test_size=.4, random_state=42)

В результате получим распределение данных, показанное на рисунке 1.3.

Вызовем необходимые библиотеки и методы:

import matplotlib.pyplot as plt

import numpy as np

from sklearn.metrics import confusion_matrix, classification_report

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score

Последние две строки необходимы для оценки точности работы классификатора (см. раздел «Оценка качества методов ML»).

Разработаем логистическую функцию logisticFunction(X,theta) и функцию, обеспечивающую оценку объекта на основе предсказанного значения гипотезы, – logRegPredictMatrix(h,threshold). Как показано выше, функция гипотезы принимает значение от 0 до 1. Для того чтобы получить оценку принадлежности объекта к классу (1 – «положительный», 0 – «отрицательный»), необходимо для каждого значения гипотезы вычислить номер класса («предсказать») по правилу predicted = 0 If h <threshold и predicted = 1 If h >= threshold. Обычное значение порога threshold=0.5.

Функция, вычисляющая значения коэффициентов логистической регрессии первого порядка:

def logisticRegressionByNumpy(X,y):

m=y.size

X=np.concatenate((np.ones([m,1]),X), axis=1)

theta=np.array(np.random.rand(X.shape[1]))

h=logisticFunction(X,theta)

alpha=0.05

iterations=1500

lambda_reg=0.01

for i in range(iterations):

theta=theta – alpha*(1/m) *np.dot(X.T,(h-y))-(lambda_reg/m)*theta

h=logisticFunction(X,theta)

return theta,h

Вызов функции и вывод показателей качества можно выполнить:

theta,h=logisticRegressionByNumpy(X_train,y_train)

predicted_train=logRegPredictMatrix(h,threshold=0.50)

matrix_train = confusion_matrix(y_train, predicted_train)#,labels)

print('Logistic regression')

print('Results on train set')

print('Accuracy on train set: {:.2f}'.format(accuracy_score(y_train, predicted_train)))

print('Conf. matrix on the train \n', matrix_train)

print('Classification report at train set\n',

classification_report(y_train, predicted_train, target_names = ['not 1', '1']))

В результате получим на тренировочном множестве значение accuracy = 0.57, а на тестовом 0.4. Другими словами, точность предсказания нашей функции хуже, чем при случайном выборе классов! Подобный результат вполне предсказуем, поскольку мы попытались использовать прямую там, где требуется как минимум окружность.

Исправить положение можно, используя регрессию второго порядка в соответствии с выражением (2.10). В предыдущей функции достаточно изменить одного оператора:

X=np.concatenate((np.ones([m,1]),X,X**2), axis=1)

После этого мы получим значение accuracy на тренировочном и тестовом множествах, равное 0.9, что вполне приемлемо для нашей задачи.

Необходимость подбора значимых параметров и формирования новых параметров является одним из недостатков логистической регрессии.

Вторым недостатком данного метода является то, что он предназначен для решения задач бинарной классификации.

Третья проблема, вытекающая из структурных свойств графического представления логистической регрессии, заключается в том, что она не способна напрямую решать некоторые классические логические задачи.

Для преодоления этих недостатков используются искусственные нейронные сети. Однослойные нейронные сети способны решать задачу мультиклассовой классификации, а многослойные нейронные сети успешно преодолевают все три ограничения.

Примечание. Программный код примера MLF_logReg_Python_numpy_002.ipynb, описанного в этом разделе, можно получить по ссылке

https://www.dropbox.com/s/vlp91rtezr5cj5z/MLF_logReg_Python_numpy_002.ipynb?dl=0 (https://www.dropbox.com/s/vlp91rtezr5cj5z/MLF_logReg_Python_numpy_002.ipynb?dl=0)

2.5. Контрольные вопросы

Что такое объект в задачах машинного обучения?

Как в общем виде записать функцию стоимости в задаче классификации?

Как в общем виде записать функцию стоимости в задаче регрессии?

Приведите выражение для функции гипотезы линейной регрессии одной переменной.

Как вычислить значения коэффициентов линейной регрессии? Укажите оба способа вычисления.

Приведите выражение функции стоимости логистической регрессии. Каково будет значение функции стоимости, если y = 0, h = 0, m = 2?

Каково назначение регуляризации?

Каковы недостатки логистической регрессии?

Какие алгоритмы применяются для минимизации значения функции стоимости логистической регрессии?

Чем отличается сигмоидальная функция от логистической?

Какие значения принимает логистическая функция?

2.6. Искусственные нейронные сети

2.6.1. Вводные замечания

Искусственные нейронные сети (Artificial Neural Networks – ANN – ИНС) – аппарат, который активно исследуется начиная с 40-х годов прошлого столетия. ИНС как часть теории коннективизма прошли значительный путь от эпохи завышенных ожиданий, через период разочарований (в 70-х годах) до широко применяемой технологии в настоящее время. Связь между биологическими нейронами и возможностями их моделирования с помощью логических вычислений установлена в работе Warren S. McCulloch (http://link.springer.com/search?facet-creator=%22Warren+S.+McCulloch%22), Walter Pitts (http://link.springer.com/search?facet-creator=%22Walter+Pitts%22) [[39 - Warren S. McCulloch, Walter Pitts. A logical calculus of the ideas immanent in nervous activity // The bulletin of mathematical biophysics. – 1943. – Vol. 5. – Issue 4. – P. 115–133.]], в работе Розенблатта [[40 - Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain // Psychological Review. – 1958. – Vol. 65 (6). – P. 386–408.]] описана модель персептрона. Недостатки однослойного персептрона отражены в книге М. Минского и С. Пейперта [[41 - Minsky M. L., Papert S. A. Perceptrons: An Introduction to Computational Geometry. – MIT, 1969. – 252 p.], [42 - Marvin Minsky, Seymour Papert. Perceptrons, expanded edition. – The MIT Press, 1987. – 308 p.]]. В этой книге подробно рассмотрены ограничения однослойной нейронной сети и доказано, что она не способна решать некоторые классические логические задачи, в частности, обозначена знаменитая проблема неразрешимости функции XOR для однослойной нейронной сети. Преодолеть этот недостаток можно было путем использования многослойных нейронных сетей. Однако в конце 60-х годов было еще неясно, как обучать многослойные нейронные сети.

В 1974 году был предложен алгоритм, который впоследствии получил название «алгоритм обратного распространения» (backpropagation) [[43 - Werbos P. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. – Harvard University, 1974. – 38 p.], [44 - Werbos P. J. Backpropagation: past and future // IEEE International Conference on Neural Networks. – San Diego, 1988. – Vol. 1. – P. 343–353.]], или «алгоритм обратного распространения ошибки», пригодный для автоматического подбора весов (обучения) многослойного персептрона или многослойной нейронной сети прямого распространения. Этот алгоритм стал базой для бурного развития нейросетевых методов вычислений.

Примечание. Первенство в разработке алгоритма окончательно не установлено. Считается, что он был впервые описан А. И. Галушкиным и независимо Полом Вербосом в 1974 году. Далее алгоритм развивался усилиями как отечественных ученых, так и зарубежных групп, которые, собственно, и ввели термин backpropagation в 1986 году. Метод несколько раз переоткрывался разными исследователями.

Значительный вклад в теорию коннективизма внесли советские и российские ученые [[45 - Нейрокомпьютеры: учеб. пособие для вузов. – М.: Изд-во МГТУ им. Н. Э. Баумана, 2004. – 320 с.], [46 - Галушкин А. И. Решение задач в нейросетевом логическом базисе // Нейрокомпьютеры: разработка, применение. – М.: Радиотехника, 2006. – № 2. – С. 49–71.], [47 - Ясницкий Л. Н. Введение в искусственный интеллект: учебное пособие для вузов. – М.: Академия, 2008. – 176 с.], [48 - Галушкин А. И. Нейронные сети: основы теории. – Горячая линия – Телеком, 2010. – 496 с.]], доказавшие возможность решения классических вычислительных задач в нейросетевом базисе, тем самым заложив фундаментальную основу построения нейрокомпьютеров.

Примечание. Коннективизм или коннекционизм – это подход к изучению человеческого познания, который использует математические модели, известные как коннекционистские сети или искусственные нейронные сети. Часто они бывают в виде тесно связанных между собой нейронных процессоров [[49 - Connectionism. Internet Encyclopedia of Philosophy. –https://iep.utm.edu/connect/#:~:text=Connectionism%20is%20an%20approach%20to,%2C%20neuron%2Dlike%20processing%20units (https://iep.utm.edu/connect/#:~:text=Connectionism%20is%20an%20approach%20to,%2C%20neuron%2Dlike%20processing%20units)]].

Наиболее популярная архитектура ANN – сеть прямого распространения, в которой нелинейные элементы (нейроны) представлены последовательными слоями, а информация распространяется в одном направлении (Feed Forward Neural Networks) [[50 - David Saad. Introduction. On-Line Learning in Neural Networks. – Cambridge University Press, 1998. – P. 3–8.]]. В 1989 году в работах G. Gybenco [[51 - Cybenco G. Approximation by superpositions of a sigmoidal function // Mathematics of Control, Signals, and Systems. – 1989. – Vol. 4. – P. 304–314.]], K. Hornik [[52 - Hornik K. et al. Multilayer feedforward networks are universal approximators // Neural Networks. – 1989. – Vol. 2. – P. 359–366.]] и др. показано, что такая сеть способна аппроксимировать функции практически любого вида. Однако в тот период теоретическая возможность была существенно ограничена вычислительными мощностями. Преодолеть этот разрыв удалось в 90-х годах, когда были предложены сети новой архитектуры, получившие впоследствие название глубоких нейронных сетей. В результате в последние годы получены впечатляющие результаты в разработке и применении новых классов сетей и так называемого глубокого обучения [[53 - Schmidhuber, J?rgen. Deep learning in neural networks: An overview // Neural Networks. – 2015. – Vol. 61. – P. 85–117.]], которые состоят из множества слоев разного типа, обеспечивающих не просто классификацию, но, по существу, выявление скрытых свойств объектов, делающих такую классификацию высокоточной. Общее количество различных классов нейронных сетей превысило 27 [[54 - http://www.asimovinstitute.org/neural-network-zoo/ (http://www.asimovinstitute.org/neural-network-zoo/) – THE NEURAL NETWORK ZOO POSTED ON SEPTEMBER 14, 2016 BY FJODOR VAN VEEN]]. Введение в новые архитектуры сетей приведено в разделе «Глубокое обучение».

Применение аппарата ANN направлено на решение широкого круга вычислительно сложных задач, таких как оптимизация, управление, обработка сигналов, распознавание образов, предсказание, классификация.

2.6.2. Математическое описание искусственной нейронной сети

Рассмотрим ANN с прямым распространением сигнала. В такой сети отдельный нейрон представляет собой логистический элемент, состоящий из входных элементов, сумматора, активационного элемента и единственного выхода (рисунок 2.7).

Рисунок 2.7. Схема классического нейрона

Выход нейрона определяется формулами:

где g(z) – сигмоидальная функция.

Выражение функции гипотезы классического нейрона идентично выражению функции гипотезы логистической регрессии (Eq. 2.9).