banner banner banner
Введение в машинное обучение
Введение в машинное обучение
Оценить:
Рейтинг: 0

Полная версия:

Введение в машинное обучение

скачать книгу бесплатно

Часто в качестве активационной функции применяется сигмоидальная функция, описанная в разделе «Логистическая регрессия».

В последнее время в литературе веса ? нейронной сети чаще обозначают символом w, подчеркивая тем самым преемственность естественных нейронных сетей и искусственных нейронных сетей, где широко используется понятие синаптического коэффициента или веса (weight). Кроме того, такое обозначение показывает разницу между множеством параметров или весов (W) и гиперпараметрами модели. Гиперпараметры определяют общие свойства модели, и к ним относят коэффициент обучения, алгоритм оптимизации, число эпох обучения, количество скрытых слоев сети, количество нейронов в слоях и т.п.

Для упрощения схемы сумматор и активационный элемент объединяют, тогда многослойная сеть может выглядеть так, как показано на рисунке 1.5. Сеть содержит четыре входных нейрона, четыре нейрона в скрытом слое и один выходной нейрон.

На рисунке входные нейроны обозначены символом х, нейроны скрытого слоя – символами a

], a

], a

], a

], a

] и выходного слоя – символом a

]. Если нейронная сеть имеет несколько слоев, то первый слой называют входным, а последний – выходным. Все слои между ними называются скрытыми. Для нейронной сети с L-слоями выход входного или нулевого слоя нейронов определяется выражением a

] = x.

На входе следующего или первого скрытого слоя имеем

Выход первого слоя:

Для любого нейрона j, находящегося в скрытом слое i:

В этом выражении значение bias и его вес упомянуты отдельно как произведение

,

где w

] – вектор весов нейрона j.

Для выходного слоя:

Например, для сети на рисунке 2.8 выход каждого нейрона скрытого слоя можно рассчитать так же, как и для одиночного нейрона:

Выход нейронной сети определяется выражением:

Рисунок 2.8. Схема многослойной сети с одним скрытым слоем

Для настройки весов w нейронной сети (обучения сети) используют функцию стоимости, напоминающую функцию стоимости для логистической регрессии (Eq. 2.12).

где L – количество слоев нейронной сети; s

– количество нейронов в слое l; K – количество классов (равно количеству нейронов в выходном слое); W – матрица весов.

Достоинством нейронной сети является возможность классификации c несколькими классами. В случае классификации объектов одного класса, то есть тогда, когда мы должны отделить условно «положительные» объекты от всех остальных, количество нейронов в выходном слое может быть равным и 1 (рисунок 1.5). В этом случае принадлежность объекта к классу «положительных» определяется значением функции гипотезы, то есть если h

(x

) > 0.5, то объект принадлежит к искомому классу. Однако чаще, в том числе с целью унификации, используется метод голосования («победитель забирает все»), когда сеть имеет в выходном слое 2 нейрона для двух классов объектов (рисунок 1.6), три для трех и т.д.

Рисунок 2.9. Схема многослойной сети с двумя выходами

Для обучения, то есть минимизации функции ошибки многослойной ИНС, используют алгоритм обратного распространения ошибки (Backpropagation of errors – BPE) [[55 - Werbos P. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. – Harvard University, 1974. – 38 p.]] и его модификации, направленные на ускорение процесса обучения.

2.6.3. Алгоритм обратного распространения ошибки

Суть алгоритма BPE заключается в следующем. Для тренировочного набора примеров

устанавливаем выход первого слоя нейронов:

Шаг 1. Выполняем этап прямого распространения сигнала по слоям сети, то есть вычисляем сигнал на выходе сети, выполняя расчет для каждого нейрона в каждом слое, как показано в выражениях 1.4, 1.5. Результаты в виде выходных значений нейронов сети a

],a

],…,a

] сохраняем в промежуточном хранилище (кэш).

Шаг 2. Используя полученный результат на выходе сети a

= h

(x), и необходимое для данного примера выходное значение y

, рассчитываем ошибку выходного слоя:

где L – номер выходного слоя нейронной сети.

Шаг 3. «Возвращаем» ошибку, распространяя ее обратно по сети с учетом значения производной:

где знак * – символ поэлементного умножения; g' – производная.

Производная сигмоидальной активационной функции:

Для любого скрытого слоя сети:

В случае сигмоидальной активационной функции:

Рассчитанное значение градиентов ошибки dz

], dz

], … , dz

также сохраняем в кэше.

Шаг 4. Модифицируем веса сети с учетом значения ошибки для всех слоев I ? L:

где i – номер слоя сети; ? – параметр обучения (learning rate) (0 < ? < 1); ?

– матрица весов слоя i; dz

– рассчитанное значение ошибки i-го слоя (точнее говоря, градиент ошибки).

Получив измененные значения весов, повторяем шаги 1–4 до достижения некоторого минимального значения ошибки либо заданное количество раз.

Процесс обучения искусственной нейронной сети можно представить в виде следующей схемы (рисунок 2.10):

Рисунок 2.10. Итеративный процесс обучения искусственной нейронной сети

Рассмотрим пошаговый пример расчета прямого распространения сигнала, обратного распространения ошибки и коррекции весов.

Пошаговый пример расчета алгоритма обратного распространения ошибки

В этом примере (рисунок 2.11) веса нейронной сети будем обозначать символом w, смещения b. Номер слоя, как и ранее, указываем верхним индексом в квадратных скобках для того, чтобы не путать с индексом обучающего примера, номер нейрона в слое – нижним индексом. Выход нейрона по-прежнему обозначаем символом а.

Рисунок 2.11. Пример нейронной сети с одним скрытым слоем

Входной слой с его входами x для единообразия последующих матричных операций обозначаем как нулевой слой – a

]. В нашем примере x1 = 0, x2 = 1, тогда a

] = x1 = 0 и a

] = x2 = 1. Смещение (bias) во всех слоях a

= 1.

На вход сети, таким образом, подается вектор [1,0,1], а на выходе сети необходимо получить y=1.

Шаг 1. Прямое прохождение сигнала.

Рассмотрим прямое прохождение сигнала от входа к выходу:

Выход нейронной сети:

Шаг 2. Расчет ошибки выходного слоя.

Сеть должна давать значение y

= 1, однако получена величина 0.78139. Ошибка, c которой сеть «предсказывает» наш единственный пример, равна разнице между ожидаемым значением и полученным результатом.

Шаг 3. Обратное распространение ошибки.

Полученную ошибку нужно «распространить обратно» для того, чтобы скорректировать веса сети. Для этого рассчитаем градиенты ошибок нейронов скрытого слоя, используя выражение

Получим

Теперь у нас все готово для того, чтобы, используя градиенты ошибок, пересчитать веса нейронной сети.

Шаг 4. Коррекция весов нейронной сети.

Установим для нашего учебного примера большой коэффициент обучения (learning rate) ro = 0.5. Отметим, что в реальных случаях ro редко превышает 0.1. Здесь мы использовали относительно большое значение, чтобы увидеть значимые изменения весов уже на первой итерации.

Используем выражение (Eq. 2.18) для расчета измененных весов сети:

для скрытого слоя:

Используя скорректированные значения весов, повторим расчет прямого прохождения сигнала и получим значение ошибки выходного слоя:

Видно, что ошибка стала значительно меньше.

После третьей итерации dz

] = 0.14184

Примечание. Расчет двух итераций алгоритма BPE с применением Python-numpy приведен в MLF_Example_Of_BPE – https://www.dropbox.com/s/tw6zwht3d5pd4zf/MLF_Example_Of_BPE.html?dl=0 (https://www.dropbox.com/s/tw6zwht3d5pd4zf/MLF_Example_Of_BPE.html?dl=0)

Пример, приведенный выше, является иллюстрацией прямого и обратного хода алгоритма так, что каждый обучающий пример и каждый синаптический коэффициент рассчитываются по отдельности. На практике этапы алгоритма для сети из L-слоев реализуются в матричном виде следующим образом:



где W

– матрица весов i-го слоя нейронной сети; X – матрица обучающих примеров размерностью n x m (n – число параметров, m – количество обучающих примеров).

Расчет алгоритма градиентного спуска для нейронной сети в матричном виде:



Примечание. Важно отметить, что алгоритм обратного распространения «требует», чтобы начальные значения весов были небольшими случайными величинами. То есть начальная инициализация требует нарушения «симметрии» для того, чтобы нейроны сети изменяли свои веса «индивидуально». Нулевые значения неприемлемы, поскольку градиент ошибки также будет нулевым и веса не будут корректироваться. Большие значения, сравнимые по величине со значениями, подаваемыми на вход сети, приведут к тому, что алгоритм не будет сходиться. Приведенный выше пример начальных значений весов и смещений является исключительно учебным.

Выражения, приведеные выше, говорят о том, что на вход сети подаются все обучающие примеры «одновременно» и значения градиентов ошибки рассчитываются сразу для всех примеров. Этот процесс составляет одну эпоху обучения. Batch Gradient Descent – это процесс обучения, когда все обучающие примеры используются одновременно. Нескольких десятков или сотен эпох обычно достаточно для достижения оптимальных значений весов матриц W

].

Однако, когда количество примеров очень велико, примеры разбиваются на группы, которые можно поместить в оперативную память компьютера, и эпоха обучения включает последовательную подачу этих групп. При этом возможны два подхода [[56 - Batch, Mini-Batch & Stochastic Gradient Descent. – https://towardsdatascience.com/batch-mini-batch-stochastic-gradient-descent-7a62ecba642a (https://towardsdatascience.com/batch-mini-batch-stochastic-gradient-descent-7a62ecba642a)]]:

Stochastic Batch Gradient Descent – когда группа включает лишь один пример, выбираемый случайно из множества обучающих примеров.

Mini Batch Gradient Descent – когда группа включает некоторое количество примеров.

Примечание. Для ускорения обучения рекомендуется подбирать размер группы равный степени двойки – 8, 16, 32, …, 1024 – в идеале так, чтобы пакет примеров мог быть помещен в кэш-память процессора.