banner banner banner
Введение в машинное обучение
Введение в машинное обучение
Оценить:
Рейтинг: 0

Полная версия:

Введение в машинное обучение

скачать книгу бесплатно

Кроме метрик оценки качества важным показателем применяемого метода ML является его способность обучаться, то есть улучшать свои показатели точности при увеличении числа примеров. Может оказаться, что метод, который показывает очень хорошие результаты на тренировочном множестве примеров, дает неудовлетворительный результат на тестовом множестве, то есть не обладает нужной степенью обобщения. Баланс между способностью обобщения и точностью может быть найден с помощью «кривых обучаемости», которые в общем случае могут показать, способен ли тот или иной метод улучшать свой результат так, чтобы показатели качества как на тренировочном, так и на тестовом множестве были примерно равны и удовлетворяли требованиям предметной области исследования.

Третий показатель, который становится особенно важным в задачах с большим объемом данных, – скорость обучения и классификации. Методы ускорения работы алгоритмов ML в задачах с большими данными рассматриваются в разделе «Машинное обучение в задачах с большим объемом данных».

3.1. Метрики оценки качества классификации

В настоящее время в задачах машинного обучения для оценки качества классификации наиболее часто используется доля правильных ответов (accuracy) или Correct Classification Rate (ССR) – относительное количество корректно классифицированных объектов (процент или доля правильно классифицированных объектов):

где N

– количество корректно классифицированных объектов; N – общее число объектов.

Этот показатель является весьма важным, однако если количество объектов в классах существенно неравное (так называемые неравномерные, или «перекошенные», классы – skewed classes), то может случиться так, что очень плохой классификатор будет давать большое значение Aс. Например, если объектов 1-го типа 90% от всего числа объектов, а объектов 2-го типа только 10%, то классификатору достаточно отвечать всегда, что он распознал объект 1-го типа, и доля правильных ответов достигнет 90%. Таким образом, даже если алгоритм никогда правильно не распознает объект 2-го класса, он все равно будет иметь высокий показатель Aс. При этом, если распознавание объектов 2-го класса исключительно важно, показатель Aс будет попросту вводить в заблуждение. Для того чтобы избежать подобной неадекватной оценки, рассматривается еще несколько важных показателей: «точность» (precision), «полнота» (recall), и обобщающий показатель – F1 score (гармоническое среднее или мера F1), которые рассчитываются с помощью следующих выражений:

Поясним приведенные выражения.

Рассмотрим случай классификации двух классов (или одного класса номер 1 (positive) и всех остальных классов, которым присвоим номер 0 (negative)). В этом случае возможны следующие ситуации:

Случаи True positive (TP) и True negative (TN) являются случаями правильной работы классификатора, т.е. предсказанный класс совпал с реальностью. Cоответственно, False negative (FN) и False positive (FP) – случаи неправильной работы. FN или ошибка первого рода возникает тогда, когда объект классификации ошибочно отнесен к негативному классу, являясь на самом деле позитивным. Эту ошибку можно рассматривать как признак излишне пессимистического (осторожного) классификатора, т.е. ML-модель предсказала отрицательный результат, когда он является на самом деле положительным. FP или ошибка второго рода, наоборот, признак излишне оптимистического, или неосторожного, классификатора, то есть ML-модель предсказала положительный результат, когда он является на самом деле отрицательным.

Precision (P) будет показывать часть правильно распознанных объектов заданного класса по отношению к общему числу объектов, принятых классификатором за объекты заданного класса. С другой стороны, Recall (R) будет показывать отношение правильно распознанных объектов к общему числу объектов данного класса.

Оба показателя – и P, и R – отражают «путаницу» классификатора. Однако R показывает, насколько классификатор оптимистичен в своих оценках или как часто он «любит» (высокое значение R) присоединять объекты другого класса (negative) к заданному, в то время как P показывает, насколько классификатор «строг» в своих оценках, насколько часто он «отбрасывает» (высокое значение P) объекты нужного (positive) класса. Разумеется, желательно, чтобы оба этих показателя стремились к 1, однако, как правило, в сложных случаях классификации результаты работы балансируют между значениями P и R, то есть большое значение P характерно при малом значении R, и наоборот. На рисунках 3.1a и 3.1b приведены примеры двух линейных классификаторов с высокими значениями precision и recall, где положительные объекты показаны черными точками, отрицательные – желтыми, а граница между классами – красной прямой.


Вы ознакомились с фрагментом книги.
Для бесплатного чтения открыта только часть текста.
Приобретайте полный текст книги у нашего партнера:
Полная версия книги
(всего 10 форматов)