Читать книгу Essays Upon Heredity and Kindred Biological Problems (August Weismann) онлайн бесплатно на Bookz (19-ая страница книги)
bannerbanner
Essays Upon Heredity and Kindred Biological Problems
Essays Upon Heredity and Kindred Biological ProblemsПолная версия
Оценить:
Essays Upon Heredity and Kindred Biological Problems

3

Полная версия:

Essays Upon Heredity and Kindred Biological Problems

It must be left to the future to decide whether the expulsion of polar bodies occurs in those large groups of animals in which they have not been hitherto discovered. The fact, however, that they have not been so discovered cannot be urged as an objection to my theory, for we do not know a priori whether the removal of the ovogenetic nucleoplasm has not been effected in the course of phylogeny in some other and less conspicuous manner. The cell-body of the polar globules is so minute in many eggs that it was a long time before the cellular nature of these structures was recognized147; and it is possible that their minute size may point to the fact that a phyletic process of reduction has taken place, to the end that the egg may be deprived of as little material as possible. It is at all events proved that in all Metazoan groups the nucleus undergoes changes during the maturation of the egg, which are entirely similar to those which lead to the formation of polar bodies in those eggs which possess them. In the former instances it is possible that nature has taken a shortened route to gain the same end.

It would be an important objection if it could be shown that no process corresponding to the expulsion of polar bodies takes place in the male germ-cells, for it is obvious that here also we should, according to my theory, expect such a process to occur. The great majority of sperm-cells differ so widely in character from the ordinary indifferent (i. e. undifferentiated) cells, that they are evidently histologically differentiated in a very high degree, and hence the sperm-cells, like the yolk-forming germ-cells, must possess a specific nuclear substance. The majority of sperm-cells therefore resemble the somatic cells in that they have a specific histological structure, but their characteristic form has nothing to do with their fertilizing power, viz. with their power of being the bearers of germ-plasm. Important as this structure is, in order to render it possible that the egg-cell may be approached and penetrated, it has nothing to do with the property of the sperm-cell to transmit the qualities of the species and of the individual to the following generation. The nuclear substance which causes such a cell to assume the appearance of a thread, or a stellate form (in Crustacea), or a boomerang form (present in certain Daphnids), or a conical bullet shape (Nematodes), cannot possibly be the same nuclear substance as that which, after conjugation with the egg-cell, contains in its molecular structure the tendency to build up a new Metazoon of the same kind as that by which it was produced. We must, therefore, conclude that the sperm-cell also contains two kinds of nucleoplasm, namely, germ-plasm and spermogenetic nucleoplasm.

It is true that we cannot say a priori whether the influence exercised on the sperm-cell by the spermogenetic nucleoplasm might not be eliminated by some means other than its removal from the cell. It is conceivable, for instance, that this substance may be expelled from the nucleus, but may remain in the cell-body, where it is in some way rendered powerless. We do not yet really know anything of the essential conditions of nuclear division, and it is quite impossible to bring forward any facts in support of my previous suggestion. The germ-plasm is supposed to be present in the nucleus of the growing egg-cell in smaller quantity than the ovogenetic nucleoplasm, and the germ-plasm gradually increases in quantity: thus when the egg has attained its maximum size, the opposition between the two different kinds of nucleoplasm becomes so marked, in consequence of the alteration in their quantitative relations, that their separation, viz. nuclear division, results. But although we are not able to distinguish, by any visible characteristics, the different kinds of nucleoplasm which may be united in one nuclear thread, the assumption that the influence of each kind bears a direct proportion to its quantity is the most obvious and natural one. The tendency of the germ-plasm contained in the nucleus cannot make itself felt so long as an excess of ovogenetic nucleoplasm is also present. We may imagine that the effects of the two different kinds of nucleoplasm are combined to produce a resultant effect; but when the two influences exerted upon the cell are nearly opposed, only the stronger can make itself felt, and in such a case the latter must exceed the former in quantity, because part of it is as it were neutralized by the other nucleoplasm working in an opposite direction. This metaphorical representation may give us a clue to explain the fact that the ovogenetic nucleoplasm comes to exceed the germ-plasm in quantity. For obviously these two kinds of nucleoplasm exert opposite tendencies in at least one respect. The germ-plasm tends to effect the division of the cell into the two first segmentation spheres; the ovogenetic nucleoplasm, on the other hand, possesses a tendency towards the growth of the cell-body without division. Hence the germ-plasm cannot make itself felt, and is not able to expel the ovogenetic nucleoplasm until it has reached such a relative size as enables it to successfully oppose the latter.

Applying these ideas to the sperm-cells we must see whether the expulsion of part of the nuclear substance, viz. of the spermogenetic nucleoplasm, corresponding to the ovogenetic nucleoplasm, takes place in them also.

As far as we can judge from thoroughly substantiated observations such phenomena are indeed found in many cases, although they appear to be different from those occurring in the egg-cell, and cannot receive quite so certain an interpretation.

The attempt to prove that a process similar to the expulsion of polar bodies takes place in the formation of sperm-cells has already been made by those observers who regard such expulsion as the removal of the male element from the egg, thus leading to sexual differentiation; for such a theory also requires the removal of part of the nuclear substance from the maturing sperm-cell. Thus, according to E. van Beneden and Ch. Julin, the cells which, in Ascaris, produce the spermatogonia (mother-cells of the sperm-cells), expel certain elements from their nuclear plate, a phenomenon which has not been hitherto observed in any other animal, and even in this instance has only been inferred and not directly observed. Moreover the sperm-cells have not attained their specific form (conical bullet-shaped) at the time when this expulsion takes place from the spermatogonia, and we should expect that the spermogenetic nucleoplasm would not be removed until it has completed its work, viz. not until the specific shape of the sperm-cell has been attained. We might rather suppose that phenomena explicable in this way are to be witnessed in those sperm-blastophores (mother-cells of sperm-cells) which, as has been known for a long time, are not employed in the formation of the nuclei of sperm-cells, but for the greater part remain at the base of the latter and perish after their maturation and separation. In this case an influence might be exerted by these nuclei upon the specific form of the sperm-cells, for the former arise and develope in the form of bundles of spermatozoa in the interior of the mother-cell.

It has been already shown in many groups of animals that parts of the sperm-mother-cells148 perish, without developing into sperm-cells, as in Selachians, in the frog, in many worms and snails, and also in mammals (Blomfield). But the attention of observers has been directed to that part of the cell-body which is not used in the formation of sperm-cells, rather than to the nucleus; and the proof that part of the nucleus also perishes is still wanting in many of these cases. Fresh investigation must decide whether the nucleus of the sperm-mother-cell perishes as a general rule, and whether part of the nucleus is rendered powerless in some other way, where such mother-cells do not exist. Perhaps the paranucleus (Nebenkern) of the sperm-cell, first described by La Valette St. George, and afterwards found in many animals of very different groups, is the analogue of the polar body. It is true that this so-called paranucleus is now considered as a condensed part of the cell-body, but we must remember that it has been hitherto a question whether the head of the spermatozoon is formed from the nucleus of the cell or from the paranucleus; and that the observers who held the former view were in consequence obliged to regard the paranucleus as a product of the cell-body. But according to the most recent investigations of Fol149, Roule150, Balbiani151, and Will152, upon the formation of the follicular epithelium in the ovary of different groups, it is not improbable that parts of the nucleus may become detached without passing through the process of karyokinesis. Thus it is very possible that the paranucleus may be a product of the main nucleus and not a condensed part of the cell-body. This view is supported by its behaviour with staining reagents, while the other view, that it arises from the cell-substance, is not based upon direct observation. Consequently future investigation must decide whether the paranucleus is to be considered as the spermogenetic nucleoplasm expelled from the nucleus. But even if this question is answered in the affirmative, we should still have to explain why this nuclear substance, remaining in the cell-body, does not continue to exercise any control over the latter.

Strasburger has recently enumerated a large number of cases from different groups of plants, in which the maturation of both male and female germ-cells is accompanied by phenomena similar to the expulsion of polar bodies. In this respect the phenomena occurring in the pollen-grains of Phanerogams bear an astonishing resemblance to the maturation of the animal egg. For instance, in the larch, the sperm-mother-cell divides three times in succession, the products of division being very unequal on each occasion; and exactly as in the case of polar bodies, the three small so-called vegetative cells shrink rapidly after separation, and have no further physiological value. According to Strasburger, the so-called ‘ventral canal-cell,’ which, in mosses, ferns, and Conifers, separates from the female germ-cell, reminds us, in every way, of the polar bodies of animal eggs. Furthermore, the spermatozoids in the mosses and vascular cryptogams throw off a small vesicle before performing their functions153. On the other hand the equivalents of ‘polar bodies’ (the ‘ventral canal-cells’) are said to be absent in the Cycads, although these are so nearly allied to Conifers. Furthermore, ‘no phenomenon occurs in the oospheres (ova) of Angiosperms which can be compared to the formation of polar bodies.’ Strasburger therefore concludes that the separation of certain parts from the germ-cells is not in all cases necessary for maturation, and that such phenomena are not fundamental, like those of fertilization, which must always take place along the same morphological lines. He further concludes that the former phenomena are only necessary in the case of the germ-cells of certain organisms, in order to bring the nuclei destined for the sexual act into the physiological condition necessary for its due performance.

I am unwilling to abandon the idea that the expulsion of the histogenetic parts of the nuclear substance, during the maturation of germ-cells, is also a general phenomenon in plants; for the process appears to be fundamental, while the argument that it has not been proved to occur universally is only of doubtful value. The embryo-sac of Angiosperms is such a complex structure that it seems to me to be possible (as it does to Strasburger) that ‘processes which precede the formation of the egg-cell have borne relation to the sexual differentiation of the nucleus of the egg.’ Besides, it is possible that the vegetable egg-cell may, in certain cases, possess so simple a structure and so small a degree of histological specialization, that it would not be necessary for it to contain any specific histogenetic nucleoplasm: thus it would consist entirely of germ-plasm from the first. In such cases, of course, its maturation would not be accompanied by the expulsion of somatic nucleoplasm.

I have hitherto abstained from discussing the question as to whether the process of the formation of polar bodies may require an interpretation which is entirely different from that which I have given it, whether it may receive a purely morphological interpretation.

In former times it could only be regarded as of purely phyletic significance: it could only be looked upon as the last remnant of a process which formerly possessed some meaning, but which is now devoid of any physiological importance. We are indeed compelled to admit that a process does occur in connexion with the true polar bodies of animal eggs, which we cannot explain on physiological grounds; I mean the division of the polar bodies after they have been expelled from the egg. In many animals the two polar bodies divide again after their expulsion, so as to form four bodies, which distinctly possess the structure of cells, as Trinchese observed in the case of gastropods. But, in the first place, this second division does not always take place, and, secondly, it is very improbable that a process which occurs during the first stage of ontogeny, or more properly speaking, before the commencement of ontogeny, and which is, therefore, a remnant of some excessively ancient phyletic stage, would have been retained up to the present day unless it possessed some very important physiological significance. We may safely maintain that it would have disappeared long ago if it had been without any physiological importance. Relying on our knowledge of the slow and gradual, although certain, disappearance, in the course of phylogeny, of organs which have lost their functions, and of processes which have become meaningless, we are compelled to regard the process of the formation of polar bodies as of high physiological importance. But this view does not exclude the possibility that the process possessed a morphological meaning also, and I believe that we are quite justified in attempting (as Bütschli154 has recently done) to discover what this morphological meaning may have been.

Should it be finally proved that the expulsion of polar bodies is nothing more than the removal of histogenetic nucleoplasm from the germ-cell, the opinion (which is so intimately connected with the theory of the continuity of the germ-plasm) that a re-transformation of specialised idioplasm into germ-plasm cannot occur, would be still further confirmed; for we do not find that any part of an organism is thrown away simply because it is useless: organs that have lost their functions are re-absorbed, and their material is thus employed to assist in building up the organism.

III. On the Nature of Parthenogenesis

It is well known that the formation of polar bodies has been repeatedly connected with the sexuality of germ-cells, and that it has been employed to explain the phenomena of parthenogenesis. I may now, perhaps, be allowed to develope the views as to the nature of parthenogenesis at which I have arrived under the influence of my explanation of polar bodies.

The theory of parthenogenesis adopted by Minot and Balfour is distinguished by its simplicity and clearness, among all other interpretations which had been hitherto offered. Indeed, their explanation follows naturally and almost as a matter of course, if the assumption made by these observers be correct, that the polar body is the male part of the hermaphrodite egg-cell. An egg which has lost its male part cannot develope into an embryo until it has received a new male part in fertilization. On the other hand, an egg which does not expel its male part may develope without fertilization, and thus we are led to the obvious conclusion that parthenogenesis is based upon the non-expulsion of polar bodies. Balfour distinctly states ‘that the function of forming polar cells has been acquired by the ovum for the express purpose of preventing parthenogenesis155.’

It is obvious that I cannot share this opinion, for I regard the expulsion of polar bodies as merely the removal of the ovogenetic nucleoplasm, on which depended the development of the specific histological structure of the egg-cell. I must assume that the phenomena of maturation in the parthenogenetic egg and in the sexual egg are precisely identical, and that in both, the ovogenetic nucleoplasm must in some way be removed before embryonic development can begin.

Unfortunately the actual proof of this assumption is not so complete as might be desired. In the first place, we are as yet uncertain whether polar bodies are or are not expelled by parthenogenetic eggs156; for in no single instance has such expulsion been established beyond doubt. It is true that this deficiency does not afford any support to the explanation of Minot and Balfour, for in all cases in which polar bodies have not been found in parthenogenetic eggs, these structures are also absent from the eggs which require fertilization in the same species. But although the expulsion of polar bodies in parthenogenesis has not yet been proved to occur, we must assume it to be nearly certain that the phenomena of maturation, whether connected or unconnected with the expulsion of polar bodies, are the same in the eggs which develope parthenogenetically and in those which are capable of fertilization, in one and the same species. This conclusion depends, above all, upon the phenomena of reproduction in bees, in which, as a matter of fact, the same egg may be fertilized or may develope parthenogenetically, as I shall have occasion to describe in greater detail at a later period.

Hence when we see that the eggs of many animals are capable of developing without fertilization, while in other animals such development is impossible, the difference between the two kinds of eggs must rest upon something more than the mode of transformation of the nucleus of the germ-cell into the first segmentation nucleus. There are, indeed, facts which distinctly point to the conclusion that the difference is based upon quantitative and not qualitative relations. A large number of insects are exceptionally reproduced by the parthenogenetic method, e. g. in Lepidoptera. Such development does not take place in all the eggs laid by an unfertilized female, but only in part, and generally a small fraction of the whole, while the rest die. But among the latter there are some which enter upon embryonic development without being able to complete it, and the stage at which development may cease also varies. It is also known that the eggs of higher animals may pass through the first stages of segmentation without having been fertilized. This was shown to be the case in the egg of the frog by Leuckart157, in that of the fowl by Oellacher158, and even in the egg of mammals by Hensen159.

Hence in such cases it is not the impulse to development, but the power to complete it, which is absent. We know that force is always bound up with matter, and it seems to me that such instances are best explained by the supposition that too small an amount of that form of matter is present, which, by its controlling agency, effects the building-up of the embryo by the transformation of mere nutritive material. This substance is the germ-plasm of the segmentation nucleus, and I have assumed above that it is altered in the course of ontogeny by changes which arise from within, so that when sufficient nourishment is afforded by the cell-body, each succeeding stage necessarily results from the preceding one. I believe that changes arise in the constitution of the nucleoplasm at each cell-division which takes place during the building-up of the embryo, changes which either correspond or differ in the two halves of each nucleus. If, for the present, we neglect the minute amount of unchanged germ-plasm which is reserved for the formation of the germ-cells, it is clear that a great many different stages in the development of somatic nucleoplasm are thus formed, which may be denominated as stages 1, 2, 3, 4, &c., up to n. In each of these stages the cells differ more as development proceeds, and as the number by which the stage is denominated becomes higher. Thus, for instance, the two first segmentation spheres would represent the first stage of somatic nucleoplasm, a stage which may be considered as but slightly different in its molecular structure from the nucleoplasm of the segmentation nucleus; the four first segmentation spheres would represent the second stage; the succeeding eight spheres the third, and so on. It is clear that at each successive stage the molecular structure of the nucleoplasm must be further removed from that of the germ-plasm, and that, at the same time, the cells of each successive stage must also diverge more widely among themselves in the molecular structure of their nucleoplasm. Early in development each cell must possess its own peculiar nucleoplasm, for the further course of development is peculiar to each cell. It is only in the later stages that equivalent or nearly equivalent cells are formed in large numbers, cells in which we must also suppose the existence of equivalent nucleoplasm.

If we may assume that a certain amount of germ-plasm must be contained in the segmentation nucleus in order to complete the whole process of the ontogenetic differentiation of this substance; if we may further assume that the quantity of germ-plasm in the segmentation nucleus varies in different cases; then we should be able to understand why one egg can only develope after fertilization, while another can begin its development without fertilization, but cannot finish it, and why a third is even able to complete its development. We should also understand why one egg only passes through the first stages of segmentation and is then arrested, while another reaches a few more stages in advance, and a third developes so far that the embryo is nearly completely formed. These differences would depend upon the extent to which the germ-plasm, originally present in the egg, was sufficient for the development of the latter; development will be arrested as soon as the nucleoplasm is no longer capable of producing the succeeding stage, and is thus unable to enter upon the following nuclear division.

From a general point of view such a theory would explain many difficulties, and it would render possible an explanation of the phyletic origin of parthenogenesis, and an adequate understanding of the strange and often apparently abrupt and arbitrary manner of its occurrence. In my works on Daphnidae I have already laid especial stress upon the proposition that parthenogenesis in insects and Crustacea certainly cannot be an ancestral condition which has been transmitted by heredity, but that it has been derived from a sexual condition. In what other way can we explain the fact that parthenogenesis is present in certain species or genera, but absent in others closely allied to them; or the fact that males are entirely wanting in species of which the females possess a complete apparatus for fertilization? I will not repeat all the arguments with which I attempted to support this conclusion160. Such a conclusion may be almost certainly accepted for the Daphnidae, because parthenogenesis does not occur in their still living ancestors, the Phyllopods, and especially the Estheridae. In Daphnidae the cause and object of the phyletic development of parthenogenesis may be traced more clearly than in any other group of animals. In Daphnidae we can accept the conclusion with greater certainty than in all other groups, except perhaps the Aphidae, that parthenogenesis is extremely advantageous to species in certain conditions of life; and that it has only been adopted when, and as far as, it has been beneficial; and further, that at least in this group parthenogenesis became possible, and was adopted, in each species as soon as it became useful. Such a result can be easily understood if it is only the presence of more or less germ-plasm which decides whether an egg is, or is not, capable of development without fertilization.

If we now examine the foundations of this hypothesis we shall find that we may at once accept one of its assumptions, viz. that fluctuations occur in the quantity of germ-plasm in the segmentation nucleus; for there can never be absolute equality in any single part of different individuals. As soon therefore as these fluctuations become so great that parthenogenesis is produced, it may become, by the operation of natural selection, the chief mode of reproduction of the species or of certain generations of the species. In order to place this theory upon a firm basis, we have simply to decide whether the quantity of germ-plasm contained in the segmentation nucleus is the factor which determines development; although for the present it will be sufficient if we can render this view to some extent probable, and show that it is not in contradiction with established facts.

bannerbanner