Юрий Красков.

ЧУДЕСА АРИФМЕТИКИ ОТ ПЬЕРА СИМОНА ДЕ ФЕРМА



скачать книгу бесплатно

4.2. Задача Диофанта

Книга под названием «Арифметика» Диофанта очень старая, но вероятно она появилась не в III, как это считалось до недавнего времени, а в XIV или XV столетии. По тем временам, когда ещё не было печатных изданий, это был очень внушительный по объёму манускрипт, состоящий из 13 книг, из которых только шесть дошли до нас. В сегодняшнем печатном виде – это совсем небольшая книжка объёмом чуть более 300 стр. [19].

В 1621 году во Франции появилось издание этой книги на греческом языке оригинала с латинским переводом и замечаниями издателя, которым был Баше де Мезириа?к (Bachet de M?ziriac). Это издание стало основой для работ Ферма по арифметике. Содержание книги составляют 189 задач и для всех даны решения. Среди них есть как довольно простые, так и очень трудные задачи. Но поскольку они решены, то создаётся ложное впечатление о том, что эти задачи не образовательные, а скорее развлекательные, т.е. они нужны не для того, чтобы формировать науку, а для проверки на сообразительность. В те времена по-другому и быть не могло, поскольку даже просто грамотных людей, умеющих читать и писать, было наперечёт.

Однако с точки зрения научной значимости представленных здесь задач и их решений, создание такой книги, не то, что средневековому Диофанту, но и всем учёным за всю обозримую историю было бы абсолютно невозможно. Более того, даже хотя бы должным образом усвоить содержание «Начал» Евклида и «Арифметики» Диофанта стало непосильной задачей для всей нашей науки. Тогда, естественно, возникает вопрос, как же всё-таки авторы этих книг сумели создать такие творения? Конечно, у науки он тоже возникал, но вместо ответа она хранит пока лишь своё гордое молчание. Ну что же, тогда ничто нам и не препятствует высказать здесь свою версию.

По всей видимости, это были каким-то образом сохранившиеся, а затем восстановленные письменные источники знаний погибшей в более ранние времена высокоразвитой цивилизации. Прочитать и восстановить их могли только особо одарённые люди, с экстрасенсорными способностями, позволяющими понимать письменные источники, независимо от носителя и языка, на котором они были изложены. Евклид, который вероятнее всего был царём, задействовал целый коллектив таких людей, а Диофант справился один, так и появилось авторство того и другого, хотя фактически над книгами работали не учёные, а всего лишь переписчики и переводчики. Но вернёмся теперь к той самой задаче 8 книги II «Арифметики» Диофанта:

Данное число в квадрате разложить на сумму двух квадратов.

В примере Диофанта число 16 раскладывается на сумму двух квадратов и его метод даёт одно из решений 42=202/52=162/52+122/52, а также бесчисленное множество других подобных решений4949
  В оригинале решение задачи Диофанта следующее.

«Пусть надо разложить число 16 на два квадрата. Положим, что 1-й равен x2, тогда 2-й будет 16 ? x2. Составляю квадрат из некоторого количества x минус столько единиц, сколько их в стороне 16-ти; пусть это будет 2x – 4. Тогда сам этот квадрат равен 4x2–16 x +16. Он должен равняться 16 ? x2. Прибавим к обеим сторонам недостающее и вычтем подобные из подобных. Тогда 5x2 равно 16 x и x окажется равным 16-ти пятым. Один квадрат 256/25, а другой 144/25; оба сложенных дают 400/25, или 16, и каждый будет квадратом» [19].


[Закрыть]. Но ведь это же не решение задачи, а всего лишь доказательство того, что любой целочисленный квадрат сколько угодно раз можно составить из двух квадратов, либо в целых, либо в дробных рациональных числах. Отсюда следует, что практическая ценность метода Диофанта ничтожна, поскольку с точки зрения арифметики дробные квадраты – это бессмыслица типа, скажем, треугольных прямоугольников или чего-то в этом роде. Очевидно, что эта задача должна решаться только в целых числах, но у Диофанта такое решение отсутствует и, естественно, Ферма стремится сам решить эту задачу, тем более что вначале ему она видится совсем не сложной.

Итак, пусть в уравнении a2+b2=c2 дано число c и нужно найти числа a и b. Проще всего найти решение, разложив число c на простые множители:

c=pp1p2…pk; тогда

c2=p2p12p22…pk2=p2(p1p2…pk)2=pi2N2

Теперь становится очевидно, что число c2 раскладывается на a2+b2 только в том случае, если хотя бы одно из чисел pi2 также раскладывается на сумму двух квадратов5050
  Если c2= p2N2 и p2, (а также любой другой pi2 из простых множителей c), не раскладывается на сумму двух квадратов, т.е. p2=q2+r, где число r не есть квадрат, то c2=p2(q2+r)= (pq)2+p2r, и здесь во всех вариантах чисел q и r получится, что p2r тоже не есть квадрат, тогда число c2 также не может быть суммой двух квадратов.


[Закрыть]
. Так ведь это же замкнутый круг, поскольку нужно опять число в квадрате разложить на сумму двух квадратов. Но ситуация уже совсем иная, т.к. теперь-то нужно раскладывать простое число в квадрате и это обстоятельство становится основой для решения поставленной задачи.

Если решение возможно, то должны существовать такие простые числа, которые раскладываются на сумму двух квадратов и только в этом случае в соответствии с тождеством пифагорейцев можно получить:

pi2 = (x2+y2)2 = (x2?y2)2 + (2xy)2

т.е. квадрат такого простого числа будет также суммой двух квадратов. Отсюда появляется поистине грандиозное научное открытие Ферма5151
  Это открытие впервые изложено в письме Ферма к Мерсенну от 25.12.1640 г. Здесь же в п. 2-30 сообщается: «Это же число, (простое типа 4n+1), будучи гипотенузой одного прямоугольного треугольника, будет в квадрате гипотенузой двух, в кубе – трех, в биквадрате – четырех и т.д. до бесконечности». Это удивительная и совершенно не свойственная Ферма невнимательность. Ведь верное утверждение дано в соседнем абзаце, (п. 2-20). То же самое повторено в замечании Ферма к комментарию Баше к задаче 22 книги III «Арифметики» Диофанта. Но здесь сразу же после этого явно ошибочного утверждения следует верное: «Это же простое число и его квадрат только одним способом разлагаются на два квадрата; его куб и биквадрат – двумя; квадрато-куб и кубо-куб – тремя и т.д. до бесконечности». В этом письме Ферма, видимо, ощущал, что здесь что-то не так, поэтому добавил такую фразу: «Я пишу Вам в такой спешке, что не обращаю внимания на то, что есть ошибки, и опускаю много вещей, о которых я Вам подробно расскажу в другой раз». Это, конечно, не та ошибка, которая могла бы иметь серьезные последствия, но факт заключается в том, что эта ляпа тиражируется в печатных изданиях и в Интернете уже четвертое столетие подряд! Выходит, что бесчисленное количество публикаций работ Ферма никто ещё ни разу внимательно не читал, ведь иначе появилась бы ещё одна его задача, которая явно не имела бы никакого решения.


[Закрыть]
:

Все простые числа типа 4n+1 единственным образом раскладываются на сумму двух квадратов, т.е. уравнение p=4n+1=x2+y2 имеет единственное решение в целых числах. А все остальные простые числа, относящиеся к типу 4n?1, не могут быть разложены таким же образом.

В письме-завещании Ферма показано, как это может быть доказано методом спуска. Однако доказательство Ферма не сохранилось и эту задачу решил Эйлер, которому пришлось для этого в течение целых семи лет задействовать всю свою интеллектуальную мощь5252
  Доказательство Эйлера неконструктивно, т.е. оно не дает метода вычисления двух квадратов, из которых состоит простое число типа 4n+1. Пока у этой задачи есть только решение Гаусса, но оно получено в рамках очень сложной системы «Арифметики вычетов». Решение, о котором сообщал Ферма, до сих пор остаётся неизвестным. Впрочем, см. комментарий 161.


[Закрыть]
. Теперь уже решение задачи Диофанта выглядит очевидным. Если среди простых множителей числа c нет ни одного относящегося к типу 4n+1, то и число c2 не может быть разложено на сумму двух квадратов. А если хотя бы одно такое число pi есть, то через тождество пифагорейцев можно получить:

c2= N2pi2= (Nx)2+(Ny)2

где x= u2?v2; y=2uv; a=N(u2?v2); b=N2uv

Решение получено, однако Ферма оно явно не устраивает, поскольку чтобы вычислить число N, нужно разложить число c на простые множители, а эта задача во все времена считалась едва ли не самой трудной из всех задач в арифметики5353
  Способы вычислений простых чисел были предметом поисков ещё с древних времен. Наиболее известный способ получил название «Решето Эратосфена». Многие другие способы также были разработаны, но широкого применения не получили. Сохранился обрывок письма Ферма с описанием созданного им метода [26] – письмо LVII (1643 г.). В п.7 письма-завещания он отмечает: «Я признаюсь, что моё изобретение для установления того, будет ли данное число простым или нет, несовершенно. Но у меня есть много путей и методов для того, чтобы сократить число делений и значительно их уменьшить, облегчая обычную работу». См. также п. 5.1 и комментарии 71-72.


[Закрыть]
. Затем нужно ещё вычислить числа x, y, т.е. решить задачу о разложении простого числа типа 4n+1 на сумму двух квадратов. Над решением этой задачи Ферма работал почти до конца своей жизни.

Вполне естественно, что, когда есть желание упростить решение задачи Диофанта, появляется и новая идея получения общего решения уравнения Пифагора a2+b2=c2 способом, отличным от тождества пифагорейцев. Как это зачастую бывает, новая идея вдруг неожиданно возникает после пережитых сильных потрясений. Видимо, так и случилось в период эпидемии чумы 1652 года, когда Ферма только каким-то чудом удалось выжить, но именно после этого он уже вполне отчётливо представлял себе, как можно решить уравнение Пифагора новым способом.

Впрочем, способ ключевой формулы для Ферма не был новым, но когда он эту формулу вывел и сразу же получил новое решение уравнения Пифагора, то был настолько этим поражён, что долго не мог прийти в себя. Ведь до этого для получения одного решения нужно задать в тождестве пифагорейцев два целых числа, а при новом способе получается как минимум три решения, если задать только одно целое число.

Но самое удивительное здесь то, что применение этого нового способа не зависит от показателя степени и его можно применить для решения уравнения с более высокими степенями, т.е. вместе с уравнением

a2 + b2 = c2 можно решать таким же способом и

an + bn = cn с любыми степенями n>2. Чтобы получить итоговый результат оставалось преодолеть лишь некоторые технические трудности, с которыми Ферма справился успешно. Вот так и появилось ставшее знаменитым его замечание к задаче 8 книги II «Арифметики» Диофанта:

Cubum autem in duos cubos, aut quadrato-quadratum in duos quadrato-quadratos, et generaliter nullam in infinitum ultra quadratum potestatem in duas eiusdem nominis fas est dividere cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.

См. рис. 3 и перевод в конце п. 1.

4.3. Доказательство Ферма

Представленное здесь реконструированное доказательство ВТФ содержит неизвестные сегодняшней науке новые открытия,. Однако от этого оно ничуть не становится трудным для понимания. Скорее наоборот, именно эти открытия и позволяют решить эту проблему наиболее просто и доступно. Сам феномен недоказуемой ВТФ вообще не появился бы, если бы Французская Академия наук была создана ещё при жизни П. Ферма. Тогда он стал бы академиком и публиковал свои научные исследования, а среди его теорем во всех учебниках по арифметике была бы и вот такая самая обычная теорема:

Для любого заданного натурального числа n>2 не существует ни одной тройки натуральных чисел a, b, c, удовлетворяющих уравнению

an + bn = cn (1)

Для доказательства этого утверждения, предположим, что числа a, b, c, удовлетворяющие (1), существуют и тогда, исходя из этого, мы можем получить все без исключения решения этого уравнения в общем виде. С этой целью мы задействуем метод ключевой формулы, при котором к исходному уравнению добавляется ещё одно уравнение, чтобы стало возможно получить решение (1) в системе из двух уравнений. В нашем случае ключевая формула имеет вид:

a+ b = c + 2m (2)

где m натуральное число.

Для получения формулы (2) отмечаем, что a?b, т.к. иначе 2an=cn, что очевидно невозможно. Следовательно, a<b<c и можно констатировать, что (an-1+bn-1)>cn-1, откуда (a+b)>c.

Поскольку в (1) случаи с тремя нечётными a, b, c, а также с одним нечётным и двумя чётными невозможны, то числа a, b, c могут быть либо все чётные, либо два нечётных и одно чётное. Тогда из (a+b)>c следует формула (2), где число 2m чётное5454
  Ферма обнаружил формулу (2) после преобразования уравнения Пифагора в алгебраическое квадратное уравнение: a2+b2=c2=(c??1)2+(c??2)2
  где ?1=с?a; ?2=c?b; Отсюда следует:
  c2?2(?1 +?2)c+(?12+ ?22)=0
  Для целых решений дискриминанта этого квадратного уравнения должна быть квадратом целого числа, т.е. D=2?1?2=2(c?a)(c?b)=4m2, где m – натуральное число. Следовательно, если
  D=4m2, то c=a+b?2m
  Однако алгебраическое решение не даёт понимания сути полученной формулы. Впервые этот способ был опубликован в 2008 г. [22].


[Закрыть]
.

Вначале проверим действенность метода для случая n=2, или уравнения Пифагора a2+b2=c2. Здесь действует ключевая формула (2) и можно получить решение системы уравнений (1), (2), если сделать подстановку одного в другое. Чтобы её упростить, возведём в квадрат обе стороны (2), чтобы сделать числа в (1) и (2) соразмерными. Тогда (2) принимает вид:

{a2+b2?c2}+2(c?b)(c?a)=4m2 (3)

Подставляя уравнение Пифагора в (3), получаем:

AiBi=2m2 (4)

где с учетом формулы (2):

Ai=c?b=a?2m; Bi=c?a=b?2m (5)

Теперь раскладываем на простые множители число 2m2, чтобы получить все варианты AiBi. Для простых чисел m всегда есть только три варианта: 1?2m2=2?m2=m?2m. В этом случае A1=1; B1=2m2; A2=2; B2=m2; A3=m; B3=2m. Поскольку из (5) следует a=Ai+2m; b=Bi+2m; а из (2) c=a+b?2m; то в итоге получаем:

a1=2m+1; b1=2m(m+1); c1=2m(m+1)+1

a2=2(m+1); b2

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Здесь представлен ознакомительный фрагмент книги.
Для бесплатного чтения открыта только часть текста (ограничение правообладателя). Если книга вам понравилась, полный текст можно получить на сайте нашего партнера.

Купить и скачать книгу в rtf, mobi, fb2, epub, txt (всего 14 форматов)



скачать книгу бесплатно

страницы: 1 2 3 4 5 6 7 8