banner banner banner
Методика преподавания математики в начальной школе
Методика преподавания математики в начальной школе
Оценить:
Рейтинг: 0

Полная версия:

Методика преподавания математики в начальной школе

скачать книгу бесплатно

Методика преподавания математики в начальной школе
Teacher.elementary.school

Несколько лекций по методике преподавания математики составленные лучшими преподавателями.

Teacher.elementary.school

Методика преподавания математики в начальной школе

Умозаключения

I. Умозаключения.

1. Понятие «умозаключения».

2. Виды умозаключений:

а) дедуктивное,

б) неполная индукция,

в) аналогия.

II. Схемы дедуктивных умозаключений.

III. Способы математического доказательства.

1. Понятие доказательства.

2. Основные законы построения дедуктивных умозаключений.

3. Виды доказательств:

а) прямое,

б) косвенное,

в) полная индукция.

В математике знания чаще получают в процессе рассуждений. Для того, чтобы знание было истинным, рассуждение должно строится в соответствии с правилами, лежащими в основе логики. Считают, что рассуждения используют при доказательствах. Для обучения учащихся учитель должен владеть глубокими знаниями построения верных рассуждений, о структуре и способах доказательств.

В логике понятие рассуждения заменяется словом «умозаключение».

Умозаключение – это форма мышления, посредством которой из одного или нескольких высказываний, называемых посылками, выводится высказывание, содержащее новое знание, называемое заключением.

Рассмотрим образцы умозаключений, используемых в начальном курсе математики:

1) При выполнении устных вычислительных приемов с числами учащиеся применяют различные математические понятия, в том числе и понятия, связанные с десятичной системой счисления, которой мы пользуемся в современной математике. Например, в случае 42 + 6 учащиеся должны владеть разрядным составом двузначного числа. Объясняя способ вычисления, дети говорят: «Число 42 – двузначное. Все двузначные числа можно представить в виде суммы двух разрядных слагаемых – десятков и единиц. Следовательно, 42 = 40 + 2».

Это умозаключение состоит из трех предложений. Первое и второе предложение – посылки:

1-ое предложение – частная посылка, она дает характеристику числу 42;

2-ое предложение – посылка общего характера, которая указывает на особенность двузначных чисел – состоят из двух разрядов (десятков, единиц).

3-е предложение является заключением, оно формулируется после слова «следовательно», и также носит частный характер, т.к. в нем идет речь о конкретном числе – 42.

2) При ознакомлении учащихся с переместительным (коммутативным) свойством умножения создается проблемная ситуация, в процессе разрешения которой учащиеся самостоятельно формулируют свойство:

На сколько квадратов разделен каждый прямоугольник? Посчитай разными способами. Объясни свои действия.

Учащиеся с помощью системы вопросов учителя предлагают по два способа вычисления к каждому из рисунков:

4 ? 3 = 3 ? 4             9 ? 3 = 3 ? 9.

Затем учащиеся делают вывод: для всех натуральных чисел верно равенство

а ? в = в ? а.

В данном умозаключении посылками являются два равенства. В них утверждается, что для конкретных натуральных чисел выполняется переместительное свойство. Заключением же в этом случае является утверждение общего характера – от перестановки множителей значение произведения не изменяется.

3) При ознакомлении младших школьников со случаями деления на однозначное число, дети должны уяснить, что деление связано с умножением. А следовательно, чтобы найти значение выражения, например 56 : 7, нужно знать табличные случаи умножения числа 7. На какое число нужно умножить 7, чтобы получить 56 – делимое:

«Мы знаем, что 7 ? 8 = 56. Если произведение разделить на один из множителей, получится другой множитель. Следовательно, 56 : 7 = 8».

Таким же образом, учащиеся рассуждают, находя результат в случаях 27 : 9, 36 : 6 и т.д.

Рассмотрев эти случаи, мы видим, что умозаключения бывают разными. В логике рассмотренные нами называют дедуктивными.

Дедуктивными называют умозаключения, в которых посылки и заключения находятся в отношении логического следования.

Посылки дедуктивного следования обозначают так – А1 , А2 , …, Аn , а заключение буквой В. Схематично само умозаключение можно представить так: А1, А2, …, Аn => В. Часто используют и такую запись:

А1 , А2 , …, Аn .

В

В ней черта обозначает слово «следовательно».

В дедуктивном умозаключении при истинности посылок, истинно и заключение.

Во втором случае рассматриваются две посылки частного характера, показывающие, что некоторые натуральные числа обладают переместительным свойством при выполнении умножения. На этой основе сделан вывод, что этим свойством обладают все натуральные числа. Такие умозаключения – неполная индукция.

Неполная индукция – умозаключение, в котором на основании того, что некоторые объекты класса обладают определенным свойством, делают вывод, что этим свойством обладают все объекты данного класса.

Неполная индукция не является дедуктивным умозаключением.

Рассмотрим как образец пары выражений:

3 + 5 и 3 ? 5; 2 + 7 и 2 ? 7; 4 + 8 и 4 ? 8. Можно с уверенностью утверждать, что сумма этих чисел меньше произведения. На основании этого можно сделать вывод, что этим свойством обладают все натуральные числа:

(? а,в Є N)[а + в < а ? в].

Но это утверждение ложно, т.к. можно привести контрпример: числа 1 и 2 – натуральные, но их сумма больше, чем произведение 1 + 2 < 1 ? 2. Значит, к выводам, полученным с помощью неполной индукции, важно относится осторожно. Они носят характер предположения (гипотезы) и нуждаются в проверке. Их доказывают или опровергают.

Таким образом, неполная индукция и дедуктивные умозаключения взаимосвязаны. Все математические утверждения (теоремы, аксиомы, определения, правила), используемые в дедуктивных умозаключениях, часто являются результатом индуктивного обобщения. А индуктивного умозаключения расширяют математические знания.

В третьем случае используется аналогия (греч. – «сходство, соответствие»).

Аналогия – умозаключение, в котором на основании сходства объектов по некоторым признакам и при наличии другого признака у одного из них, делается вывод о наличии этого признака у другого объекта.

Термином «объект» называются реальные предметы, модели, рисунки, числовые и буквенные выражения, задачи. Аналогия помогает открывать новые и использовать усвоенные способы действия в измененных условиях. Выводы по аналогии также требуют доказательства или опровержения, т.к. носят характер предположения.

Например, при изучении понятия о десятичной системе счисления, учащиеся изучают названия классов и разрядов. Изучая класс единиц, дети знакомятся с разрядами единиц, десятков, сотен, в классе тысяч – единицами тысяч, десятками тысяч, сотнями тысяч. По аналогии они уже могут назвать разряды классов миллионов и миллиардов.

Знакомясь с дистрибутивным свойством умножения, учащиеся используют его при выполнении умножения двузначных чисел:

23 ? 4 = (20 + 3) ? 4 = 20 ? 4 + 3 ? 4 = 80 + 12 = 92

По аналогии они выполняют умножение трехзначных чисел:

123 ? 4 = (100 + 20 + 3) ? 4 = 100 ? 4 + 20 ? 4 + 3 ? 4 = 400 + 80 + 12 = 492

По аналогии они выполняют умножение четырехзначных чисел:

5123 ? 4 = ……………..

А далее делается обобщение: выводится алгоритм умножения многозначного числа на однозначное – неполная индукция.

Практическая работа

Выделите в перечисленных умозаключениях посылки и заключения.

а) Если запись числа оканчивается нулем, то оно кратно 10. Число 260 оканчивается нулем. Следовательно, число 260 кратно 10.

б) Если запись числа оканчивается нулем, то оно кратно 10. Если число кратно 10, то оно четное. Следовательно, если запись числа оканчивается 0, то оно четное.

в) Если запись числа оканчивается нулем, то оно кратно 10. Число 263 не кратно 10. Следовательно, оно не оканчивается нулем.

II.      Согласно определению, в дедуктивном умозаключении посылки и заключение находятся в отношении логического следования. Это означает, что в нем всегда из истинных посылок следует истинное заключение.

Важно знать, как строить такие умозаключения и проверять их правильность.

В логике считают, что правильность умозаключения определяется его формой и не зависит от его конкретного содержания входящих в него утверждений. Математика предлагает такие правила, соблюдая которые можно строить дедуктивные умозаключения. Эти правила называются правилами вывода или схемами дедуктивных умозаключений:

1. А(х) => В(х), А(а) – правило заключения;

В(а)

2. А(х) => В(х), В(а) – правило отрицания;

А(а)

3. А(х) => В(х), В(х) => С(х) – правило силлогизма.

А(х) => В(х)

В правиле заключения обозначены две посылки: А(х) => В(х) и А(а). Первую называют общей (это может быть определение, правило, теорема), а вторую – частной (она получается из условия А(х) при х = а).

Например:

Если запись числа х оканчивается цифрой 5, то число х делится на 5. Запись числа 135 оканчивается цифрой 5. Следовательно, число 135 делится на 5.

Данное умозаключение можно записать так – А(х) => В(х), А(а), где

А(х) – общая посылка – «запись числа х оканчивается цифрой 5», а

В(х) – «число х делится на 5»;

А(а) – частная посылка – «число 135 оканчивается цифрой 5», при х = 135;

В(а) – заключение – «число 135 делится на 5».

Для правила отрицания приведем такой пример:

Если запись числа х оканчивается цифрой 5, то число х делится на 5. Число 137 не делится на 5. Следовательно, оно не заканчивается цифрой 5.

Это умозаключение можно записать так – А(х) => В(х), В(а), где:

А(х) => В(х) – общая посылка такая же, как и в первом случае – «запись числа х оканчивается цифрой 5, то число х делится на 5»;

В(а) – частная посылка – отрицание – «число 137 не делится на 5», при х = 137;

А(а) – заключение – отрицание – «число 137 не оканчивается цифрой 5».

К правилу силлогизма приведем такой пример:

Если число х кратно 12, то оно кратно 6. Если х кратно 6, то оно кратно 3. Следовательно, если число х кратно 12, то оно кратно 3.

В этом умозаключении две посылки вида «если А(х), то В(х)» и «если В(х), то С(х)», где

А(х) – «х кратно 12»,

В(х) – «х кратно 6»,

С(х) – «х кратно 3».

Заключение представляет собой «если А(х), то С(х)».

Выполняя рассуждения по этим правилам, мы всегда будем получать истинные заключения, что и требуется в дедуктивном заключении.