Изложены методы решения задач автоматического прогнозирования и диагностики процессов с помощью алгоритмов, настроенных по выборкам прецедентов. Описывается ряд методов регрессионного анализа, включая современные модели, основанные на регуляризации по Тихонову. Анализируются наиболее популярные подходы к решению задач распознавания, включая статистические модели, нейронные сети, решающие деревья и леса, комбинаторно-логические модели, метод опорных векторов и др. Рассматриваются статистически обоснованные способы оценки точности получаемых решений, сравниваются эффективности различных подходов. Приводится ряд примеров использования излагаемых методов для решения различных практических задач в разных отраслях промышленности.
все жанры