скачать книгу бесплатно
Спустя ровно 100 лет Америка решила отметить первый полёт «Флайера» реконструкцией этого великого события. Была построена точная копия первого в мире самолёта. Были возведены и деревянный рельс и разгонная тележка. Даже метеорологические условия были выбраны примерно такие же, какими они были 100 лет назад. При большом стечении народа мотор был запущен, ассистенты взялись за конец верёвки, напряглись и… самолёт не полетел. Ни с первой, ни со второй, ни с какой бы то ни было вообще попытки. «Флайер», точнее, его копия, оказался совершенно неработоспособным аппаратом. Позже эксперты заявили, что «Флайер» братьев Райт не мог летать в принципе, поскольку был неверно спроектирован. А Уилбер и Орвилл Райт этого не знали и – полетели. Такая вот любопытная история…
Спустя пять лет, в 1908 году, братья, воодушевлённые успешными испытаниями второго самолёта, основали первую авиастроительную компанию – во Франции. В следующем 1909 году такие же компании были основаны в США и в Германии. А в 1913 году появилась четвёртая компания братьев Райт – в Великобритании. Эпоха мировой авиации стартовала стремительно и энергично. Всего через 11 лет в воздухе Америки и Европы уже летали быстрые и вёрткие военные самолёты. И это были далеко не громоздкие «этажерки», вроде «Флайера».
Как это обычно и случается, толчком к развитию новой технологии стала война. Неповоротливые и уязвимые дирижабли, неуправляемые аэростаты тоже были грозным оружием. Но самолёты легко расправлялись и с теми, и с другими. А вскоре появился новый вид оружия – бомбардировщики, которые без помощи артиллерии, точно и без потерь могли уничтожать наземные цели противника.
К середине Первой мировой войны в воздухе развернулась настоящая воздушная война. Асы одной стороны сталкивались с асами другой воюющей стороны. Это было время «воздушных рыцарей», создавших свой кодекс ведения воздушного боя. И главным их оружием были истребители – лёгкие трипланы, бипланы и монопланы (самолёты с тремя, двумя или одним рядом крыльев) с пулемётным вооружением, выпускающиеся ведущими авиастроительными компаниями Европы. Самолётостроение развивалось семимильными шагами. К концу войны в 1918 году в небе летали совсем другие самолёты, нежели четырьмя годами раньше.
Этот период самолётостроения можно называть «классическим». И самолёты того далёкого времени вовсе не сошли со сцены и не канули в лету. Как и старинные автомобили, они выпускаются до сих пор небольшими компаниями – копии, конечно. Особой популярностью пользуются маленькие бипланы и монопланы 30-х годов, которые сочетают черты «классической» конструкции самолёта – с открытой кабиной, поршневым бензиновым двигателем со звёздообразным расположением цилиндров и воздушным охлаждением – и современные материалы, дюралюминии и пластик. В США, где самолётный спорт наиболее распространён и множество небольших самолётов используется частными лицами в качестве личного транспорта, подобные «реплики» пользуются особой популярностью, наряду с общеизвестными «Сесснами» – рабочими лошадками неба, в которых легко угадываются те же классические черты самолётов первой трети ХХ века.
Глава 5
Электронная лампа – начало электроники
История великих изобретений – это, прежде всего, история жизни, поиска и упорства талантливых людей. Иногда на поиски истины уходят десятилетия, иногда – целая жизнь… На изобретение первого электронного прибора, вакуумного диода, английскому физику Джону Амброзу Флемингу (годы жизни 1949—1945) потребовалось двадцать лет. Два десятка лет труда, исследований, экспериментов и ошибок.
Изобретение электронной лампы связано с изобретением обычной осветительной лампы накаливания и именем одного из величайших изобретателей в истории Томаса Эдисона. Дело было в Англии, в лондонской компании Эдисона, где Флеминг работал «советником по электричеству». Сотрудники компании экспериментировали с различными материалами, пытаясь добиться приемлемой продолжительности работы ламп накаливания. В 1882 году Флеминг обратил внимание на то, что лампы, легко перегоравшие от малейшего сотрясения, меняют цвет стеклянной колбы. Когда лампа перегорала, колба покрывалась изнутри лёгким налётом материала нити. И только узкая U-образная полоска напротив перегоревшей нити оставалась чистой. Полоска эта в точности повторяла форму нити накаливания. Флеминг предположил, что в момент наибольшего накала нить испускала молекулы углерода или металла, в зависимости от того, из какого материала была изготовлена нить (эксперименты проводились с самыми разными материалами – конструкторы искали самый долговечный). В конце 1882 и начале 1883 годов учёный провёл ряд экспериментов, подтвердивших его гипотезу. В том же 1883 году этот феномен заметил и сам Эдисон, который работал в Америке. В результате этот процесс получил название «эффекта Эдисона», хотя мастер так и не смог найти ему внятного объяснения. В октябре 1884 года за «эффект Эдисона» взялся другой учёный – Вильям Прис. Он пришёл к тому же выводу, что и Флеминг – стекло колбы подвергалось бомбардировке молекулами углерода нити накаливания. Но констатацией факта дело и закончилось.
Спустя четыре года, в 1888 году, Флеминг работает со специальными лампами накаливания, в колбы которых вмонтирована металлическая пластинка. Эта пластинка должна была работать в качестве отражателя. Но Флеминг подключил к ней гальванометр и… заметил, что, при подключении к нити накаливания положительного электрода батареи питания на пластинке появляется электрический ток, то есть стрелка гальванометра отклоняется. Флеминг изменил полярность – подключил к нити накаливания отрицательный электрод батареи. Тока на пластинке нет. Учёный повторяет опыты и убеждается, что ток в лампе идёт только в одном направлении. Флеминг даёт название электродам лампы. Нить, к которой подключен отрицательный вывод батареи питания, он называет катодом, а принимающую заряды пластинку – анодом.
Прошло ещё несколько лет. Наступил ХХ век. Флеминг продолжал свои исследования в области электротехники, но из его головы не шла одна мысль – как, каким образом можно использовать удивительный «эффект Эдисона» на практике. Должно же быть ему хоть какое-то применение? И тут Флеминг, который был, как и многие учёные того времени, увлечён изобретением Маркони, подумал, что вакуумная лампа может использоваться как выпрямитель переменных токов, в том числе и применяемых в радио высокочастотных. Он решил попробовать лампу в качестве детектора волн в радиоприемнике Маркони, заменив ею капризный когерер (пробирку с металлическими опилками). Флеминг собрал две схемы – первая представляла собой колебательный контур с двумя лейденскими банками (источниками постоянного тока) в деревянных корпусах и с индукционной катушкой, вторая схема включала электронную лампу и гальванометр. Обе схемы были настроены на одинаковую частоту.
Здесь мы процитируем мемуары самого Джона Флеминга. «Было приблизительно 5 часов вечера, когда аппарат был закончен. Мне, конечно, очень хотелось проверить его в действии. В лаборатории мы установили две эти схемы на некотором расстоянии друг от друга, и я запустил колебания в основной цепи. К моему восхищению я увидел, что стрелка гальванометра показала стабильный постоянный ток. Я понял, что мы получили в этом специфическом виде электрической лампы решение проблемы выпрямления высокочастотных токов. „Недостающая деталь“ в радио была найдена и это была электрическая лампа! Я сразу понял, что металлическая пластина должна быть заменена металлическим цилиндром, закрывающим всю нить, чтобы „собрать“ все испускаемые электроны. У меня в наличии имелось множество угольных ламп накаливания с металлическими цилиндрами, и я начал использовать их в качестве высокочастотных выпрямителей для радиотелеграфной связи. Этот прибор я назвал колебательной лампой. Ей было сразу же найдено применение. Гальванометр заменили обычным телефоном. Замена, которая могла быть сделана в то время с учетом развития технологии, когда повсеместно использовались искровые системы связи. В таком виде моя лампа широко использовалась компанией Маркони в качестве датчика волн. 16 ноября 1904 года я подал заявку на патент в Великобритании».
Это был первый в мире электронный радиоприёмник. Свою лампу Флеминг назвал «аудионом», но общепринятое название – «диод», то есть лампа, состоящая из двух электродов – пришло позже, в 1907 году, когда американский изобретатель Ли де Форест (годы жизни 1873—1961) усовершенствовал прибор Флеминга. Он дополнил электронную лампу ещё одним электродом, расположив его между катодом и анодом. Этот третий электрод был управляющим. При подаче на него положительного напряжения, эмиссия электронов резко увеличивалась, а ток на аноде возрастал. Таким образом, новая лампа, названная по числу электродов «триодом», могла служить не только как детектор радиоволн, но и как усилитель электрических сигналов. Универсальный детектор-усилитель получил название «аудион Фореста», но позже это название было забыто.
Изобретение триода подстегнуло других конструкторов. В 1911 году трое немецких инженеров, Либен, Рейкс и Штраус, сконструировали триод с промежуточным электродом в виде сетки из перфорированного листа алюминия. Сетка увеличивала площадь управляющего электрода и усиливала эмиссию. А в 1913 году немец А. Мейснер (годы жизни 1883—1958) открыл способность триода генерировать и усиливать электромагнитные колебания. Он построил на основе триода первый ламповый радиопередатчик, который использовал для передачи телеграфных и телефонных сигналов.
У электронных вакуумных ламп было множество недостатков. Стеклянная лампа хрупка и плохо переносит вибрации. Поэтому электронные приборы того времени быстро выходили из строя. Для промышленных и военных применений приходилось выпускать лампы особой конструкции с повышенной прочностью деталей. Катод, выполненный в виде нити накала, потреблял большое количество электроэнергии. Даже самые небольшие радиостанции и радиоприёмники приходилось оснащать либо сетевыми понижающими трансформаторами, либо громоздкими и ёмкими батареями постоянного тока. Поэтому портативной в полном смысле электронной техники на вакуумных лампах создано так и не было (кроме, конечно, специальных «шпионских» моделей радиостанций, приёмников, а потом и магнитофонов). Наконец, сам процесс термоэлектронной эмиссии, переноса вещества электрода, истощает катод. Лампа не может служить долгое время, это не заложено в её конструкцию.
Но обратимся к практике. В наше «цифровое время» остаётся достаточно энтузиастов, которые старинный и безнадёжно аналоговый немецкий радиоприёмник не променяют ни на какой суперсовременный полупроводниковый Hi-end. Эти люди не без основания утверждают (и мы об этом обязательно ещё поговорим), что звук старого лампового приёмника, выпущенного в Германии в 30-е годы, не может сравниться со звучанием самой современной акустической системы – настолько он хорош, глубок, мягок. В приёмниках этих любителей хорошего «лампового» звука работают триоды (диоды, пентоды), выпущенные 50, 60 и даже 70 лет назад! Эти старинные лампы работают и будут работать ещё очень долго. Более того, существует целый рынок старых радиоламп – исправных, конечно. Лампы выпуска 30-40-х годов пользуются особым спросом, хотя большинство предложений относятся к 50-60-м годам прошлого века.
Качественно выполненная вакуумная лампа – прибор очень долговечный и надёжный. Электронные лампы выпускаются и сегодня, правда, в небольших количествах. Они применяются в высококачественной (так называемой «аудиофильской») аппаратуре звуковоспроизведения, как, скажем, проигрыватели виниловых грампластинок. Кроме того, специальные электронные лампы выдерживают очень большие токи и обладают впечатляющим коэффициентом усиления. Эти лампы применяются в выходных контурах радиопередатчиков высокой мощности, например, в усилителях широковещательных радиостанций и, к слову, в любительской радиопередающей аппаратуре.
Электронная лампа давно уступила место полупроводниковым приборам. Но в некоторых областях она успешно применяется до сих пор. Другое дело, что такого широкого распространения, как в первой половине минувшего века, «ламповая электроника» уже никогда не получит. Это замечательная технология, но эпоха её безраздельного господства осталась в далёком прошлом.
Глава 6
Радиоактивность
Радиоактивность – одно из самых удивительных природных явлений, которое невозможно увидеть или ощутить органами чувств человека. Вдумайтесь в само определение радиоактивности – «самопроизвольное превращение неустойчивых атомных ядер в ядра других элементов, сопровождающееся испусканием частиц». По сути, превращение одних веществ в другие… Алхимия? Нет, конечно. Но цели алхимиков в результате открытия радиоактивности в некоторой мере были достигнуты. Не при помощи философского камня и не из свинца в золото, об этом не может быть и речи, но всё же было выяснено, что в определённых условиях одни вещества могут превращаться в другие. При этом источник радиоактивного излучения, практически, неиссякаем. Поразительно, не правда ли?
Открытие радиоактивности открыло дорогу к познанию строения и законов существования материи, а также целому множеству наук и, прежде всего, физике атома. Приоритет открытия радиоактивности принадлежит французскому учёному Антуану Анри Беккерелю. Это произошло 1 марта 1896 года… Но сама личность Беккереля достойна того, чтобы немного отвлечься от истории науки и посвятить некоторое время судьбе самого учёного.
Мы достаточно часто сталкиваемся с понятием рабочих или артистических династий. Потомственные корабелы, потомственные артисты, потомственные писатели (например, отец и сын Дюма). Есть династии и в «большой» науке – вспомним хотя бы великого российского физика Петра Леонидовича Капицу и его выдающихся сыновей – Андрея Петровича и Сергея Петровича. Вклад этих людей в мировую науку невозможно переоценить…
Но вот ещё один удивительный пример – династия Беккерелей. Три поколения учёных (сразу скажем – больше, но об этом чуть ниже, пусть в нашем рассказе останется место для небольшой интриги), составивших гордость французской и мировой науки. Дед Антуана Анри Беккереля Антуан Сезар (внук, кстати, был назван в честь выдающегося деда) родился 7 марта 1788 года в Шапильон-сюр-Луане, во Франции. Получив техническое образование, участвовал в военных компаниях Наполеона в качестве военного инженера. А в 1815 году подал в отставку и сосредоточился на науке. Круг его интересов был весьма и весьма обширен – Беккерель-старший занимался исследованиями фосфоресценции и флуоресценции, термоэлектричества, краисталлооптики, работал в области теоретических изысканий в области гальванических элементов, магнитных явлений, исследовал электропроводность. И уделял большое внимание образованию сына, а затем и внука, оказав огромное влияние на их становление как учёных. Антуан Сезар Беккерель скончался 18 января 1878 года в Париже, успев увидеть и сына, и внука состоявшимся учёными.
Сын Антуана Сезара Александр Эдмон Беккерель родился всё в том же Париже 24 марта 1820 года. Последовав за отцом, он сосредоточился на исследовании эффекта фосфоресценции, разработав целую теорию этого природного феномена. Он разработал и построил специальный прибор для наблюдения кратковременных явлений свечения фосфороскоп. Установил целый ряд законов фосфоресценции и люминесценции. Кроме этого, он занимался исследованиями в области фотографии, атмосферного электричества, свечения в инфракрасной части спектра. Жизненный путь Александра Эдмона Беккереля завершился 11 мая 1891 года в Париже.
Внук Беккереля-старшего и сын Беккереля-среднего Антуан Анри Беккерель родился 15 декабря 1852 года тоже в Париже. С 18 лет он работал ассистентом у собственного отца, а труд Беккереля-среднего «Свет, его причины и действия» была настольной книгой у Беккереля-младшего. Именитый дед Антуан Сезар души не чаял во внуке и, без видимых вроде бы на то причин (мальчик в раннем возрасте не выказывал каких-либо способностей) говорил о нём – «Он далеко пойдёт». Можно сказать, что юному Антуану Анри с преподавателями повезло ещё в раннем детстве. Это везение продолжалось и позже, когда молодой Беккерель стал лицеистом, а затем и студентом Политехнической школы, с первых же месяцев начал собственные научные исследования. Сама судьба вела его к вершинам науки. И он своё предназначение выполнил в полной мере…
Как это с великими открытиями обычно и бывает, всё произошло случайно. Но это была закономерная случайность. 1 марта 1896 года Беккерель исследовал люминесценцию солей урана. Закончив работу, он завернул узорчатую металлическую пластинку, покрытую солями урана, в светонепроницаемую чёрную крафт-бумагу, которая используется в фотографии для упаковки светочувствительных материалов. Эту пластинку, лабораторный образец, он положил вместе с коробкой фотопластинок в ящик письменного стола и плотно его закрыл. Прошло немного времени, и учёный обнаружил эту коробку с фотопластинками. Что это за материалы? Он… забыл. И, подчиняясь воспитанной отцом и дедом научной скрупулёзности и педантичности, решил проявить пластинки, даже если на них ничего не было снято – чтобы случайно не уничтожить результаты опытов. Уже проявляя фотоматериалы, он вспомнил – пластинки были девственно чисты. На них ничего не должно было быть. Но, проявив их, Беккерель с изумлением увидел на них узор урановой пластинки. На всех фотопластинках до единой! То есть в полной темноте, через непроницаемую крафт-бумагу соли урана засветили фотоматериалы неведомыми пока лучами. И это был определённо не свет.
Но – что в таком случае? Четыре года Беккрель ломал голову над этим вопросом и проводил один эксперимент за другим. К 1900 году он уже знал – это не результат люминесцентного свечения, не рентгеновские лучи, ни какое-либо иное, уже известное науке того времени, явление. В августе 1900 года на Международном физическом конгрессе, собравшемся в Париже для обсуждения научных итогов XIX века Беккерель уже в третий раз выступил с публичным докладом (который, кстати, был основным на этом престижном форуме) об открытом им явлении. Удивительным казалось то, что интенсивность излучения не менялась ни при физических, ни при химических воздействиях на его источник, а само излучение не уменьшалось со временем, словно исходило из неиссякаемого источника. Попутно выяснилось и пагубное воздействие таинственных лучей (у которых ещё не было никакого названия) на биологические объекты. Беккерель стал первой жертвой радиоактивного излучения. Он носил урановую пластинку в кармане, отчего на его теле появились болезненные незаживающие раны. Сам же Беккерель нашёл средство защиты – свинцовый футляр, стенки которого поглощали излучение.
И в научном мире началось то, что позже получило название «лучевой эпидемии». Десятки учёных, знаменитых и совершенно безвестных, ринулись исследовать новые лучи. Некий профессор Блондо заявил, что видел таинственные лучи и провёл их спектральный анализ. Сообщение вызвало живейший интерес и обрушило на голову учёного золотой дождь наград. Он получил золотую медаль Парижской Академии и премию в 20 тысяч франков. Но вскоре выяснилось, что никаких лучей Блондо не видел. Опытнейшие экспериментаторы, в числе которых был (вот вам и разгадка маленькой интриги, заявленной нами в начале рассказа) был Жан Беккерель, сын Антуана Анри, внук Александра Эдмона и правнук Антуана Сезара, представлявший четвёртое поколение научной династии Беккерелей, опровергли заявление Блондо. А американский учёный-экспериментатор Роберт Уильямс Вуд (годы жизни 1868—1955) завершил разоблачение. В результате «открытие» Блондо было дезавуировано, а сам профессор, не перенеся удара (вероятно, он не обманывал, а искренне заблуждался), сошёл с ума и прожил после этого очень недолго… Фундаментальная наука иногда бывает жестокой и ошибок не прощает.
«Лучами Беккереля» заинтересовались крупнейшие ученые того времени – Анри Пуанкаре, Дмитрий Иванович Менделеев и особенно супружеская пара ученых-физиков Пьер Кюри (годы жизни 1859—1906) и Мария Склодовская-Кюри (годы жизни 1867—1934). Супруги Кюри подключились к исследованиям и вскоре обнаружили, что излучение характерно не только для урана, но и для еще целого ряда химических элементов. Открытые Беккерелем лучи Мария Кюри предложила назвать радиоактивными, а само явление – радиоактивностью. В 1903 году Антуану Беккерелю, Пьеру и Марии Кюри за открытие радиоактивности вручается Нобелевская премия по физике. К сведению, Мария Кюри была удостоена и Нобелевской премии по химии – в 1911 году за исследование свойств металлического радия…
Историю об открытии радиоактивности закончим рассказом о судьбе династии Беккерелей. Антуан Анри Беккерель, лауреат Нобелевской премии 1903 года в области физики, закончил свой путь 25 августа 1908 года в Ле-Круазике, что во французской Бретани. Скромный человек, настоящий труженик науки, он получил все возможные почести, которым, впрочем, не придавал какого-то особого значения. Эксперименты с радиоактивными солями урана, скорее всего, подорвали здоровье учёного – он прожил всего 60 лет. Но эти годы были прожиты им не напрасно.
Счастливо в отношении научной карьеры сложилась жизнь и четвёртого Беккереля – Жана. Достойный ученик своего отца, появившийся на свет 5 февраля 1878 года (да, да, снова в Париже, в городе, где трудились во имя науки все Беккерели), он прожил долгую жизнь. Жан Беккерель скончался 4 июля 1953 года в возрасте 75 лет признанным учёным-физиком, членом Парижской Академии Наук.
Имена четырёх Беккерелей вписаны в историю мировой науки золотыми буквами. По крайней мере, одного из них, первооткрывателя явления радиоактивности, называют гением.
Глава 7
Рентгеновские лучи
Учреждённая Альфредом Бернхардом Нобелем (годы жизни 1833—1896), шведским изобретателем и промышленником, представителем династии Нобелей (кроме Альфреда в неё входили отец Эммануэль, изобретатель подводной мины, Людвиг, брат Альфреда, создатель нефтяных промыслов в Баку, Эммануэль-младший, сын Людвига Нобеля), Нобелевская премия в ХХ веке стала самой престижной наградой в области науки, литературы и общественной деятельности. Правильней говорить, конечно, о Нобелевских премиях, поскольку ежегодно вручается не одна, а несколько премий… Так вот, первым лауреатом Нобелевской премии по физике стал немецкий учёный Вильгельм Конрад Рентген. О нём и пойдёт наш рассказ…
Вильгельм Рентген появился на свет 27 марта 1845 года в Германии, в Леннепе близ Дюссельдорфа. В 1868 году юный Рентген получил диплом Цюрихского политехникума, собираясь стать инженером. Но тут же поступил в университет того же Цюриха – его интересует только физика. Защитив диссертацию, Рентген остаётся в том же университете в качестве ассистента на кафедре физики. Этим событием начинается его научная деятельность.
Всю жизнь Рентген проработал в лучших европейских университетах – в Гиссене (здесь он вспоследствии занял пост директора Физического института), Страсбурге, Вюрцбурге (здесь он в 1894 году дослужился до поста ректора), Мюнхене (а здесь долгие годы возглавлял кафедру физики). И везде его интересовала, прежде всего, научная работа. Рентген вёл достаточно замкнутый образ жизни, а с годами почти не общался с бывшими учениками и ведущими учёными того времени – общение сводилось лишь к деловой и научной переписке. Круг его друзей был весьма ограничен. Рентген не посещал научных форумов и съездов. После совершённого им открытия, на Рентгена обрушился дождь престижнейших наград и почётных званий. Ему было предложено место академика, но он отклонил это предложение. Так же отклонил предложение дворянского звания и многочисленные ордена, практически, всех европейских держав. Более того, открытые им лучи Рентген упорно называл «х-лучами», хотя вся научная общественность мира называла их «рентгеновскими».
Вроде бы вырисовывается образ нелюдимого, крайне замкнутого, погружённого в себя человека. Но этот образ очень далёк от истины… Мы ещё много раз увидим таких людей – беззаветно преданных своему делу, любознательных, полностью сосредоточенных на науке. Это подвижники и самые настоящие герои. Для них не имеют никакого значения звания и почести, деньги и роскошь… Думаете, мы преувеличиваем? В 1914 году после начала мировой войны, Вильгельм Рентген, весьма зажиточный человек, решил, что не имеет права жить лучше других. Тяготы войны касались всех, в том числе и его. И Рентген передаёт все без остатка личные средства государству. И не оставляет себе абсолютно ничего. Этот шаг, кстати, обошёлся этому человеку очень дорого. В конце жизни он испытывал самую настоящую нужду. Как рассказывал ученик Рентгена академик Абрам Фёдорович Иоффе (годы жизни 1880—1960), после смерти супруги Рентген хотел посетить те места в Швейцарии, где они с женой жили в молодости. Чтобы совершить это небольшое путешествие, он целый год копил деньги, отказывая себе в самом элементарном, в частности, отказался от кофе.
Необычная скромность всегда отличала истинных героев науки. Всем людям приятно осознавать себя победителями, но не все стараются продемонстрировать свои награды и напомнить о своих достижениях. Таких учёных, как Вильгельм Рентген, невозможно представить в парадном мундире, увешанном орденами или, как говорят сегодня, на научной «тусовке». И в быту эти люди обычно мудры и добры. Талантливый человек талантлив во всём. А гений и злодейство вещи и в самом деле несовместные – как тонкий аналитический ум и пустое фанфаронство…
Событие, ставшее венцом творческого поиска Вильгельма Рентгена, состоялось 8 ноября 1895 года. Ректор Вюрцбургского университета, профессор физики и выдающийся учёный-экспериментатор Вильгельм Рентген проводил опыты со стеклянной разрядной трубкой. Следует сказать, что интересы Рентгена, как физика, простирались достаточно широко. Он изучал свойства жидкостей – физику их сжимаемости, процессы внутреннего трения, поверхностного натяжения. Исследовал свойства газов – поглощение ими инфракрасных лучей. Работал с кристаллами – изучал пьезоэлектрические и пироэлектрических явления. Исследовал процессы лучепреломления в кристаллах и жидкостях, фотоионизацию и другие физические процессы. В частности, Рентгеном был открыт феномен «намагничивания движением», при котором в диэлектриках, движущихся в электрическом поле, возникает магнитное поле.
Рентген обернул разрядную трубку светонепроницаемой бумагой и обнаружил, что на расположенном рядом с трубкой экране, смоченном раствором платино-синеродистого бария возникает кратковременное затухающее свечение, которое называется флуоресценцией. Рентген пришёл к выводу, что некое неизвестное ранее излучение, которое возникает в разрядной трубке под воздействием катодных лучей. Его догадка оказалась верной. Поток электронов, испускаемый катодом трубки, налетая на препятствие – промежуточный электрод – резко тормозятся и генерируют излучение сверхвысокой частоты, гораздо более высокой, чем у волн оптического диапазона. Это открытие противоречило представлениям о спектральной шкале электромагнитных волн, бытовавшим в то время. Оказалось, что за фиолетовой, видимой границей спектра, и за уже известной невидимой ультрафиолетовой располагаются волны ещё более короткой длины. Рентген назвал их «х-лучами». А позже выяснилось, что дальше располагаются волны гамма-диапазона.
Но поначалу учёный понял лишь то, что открытые им лучи легко проходят через непрозрачные перегородки и вызывают флуоресценцию платино-синеродистого бария и… почернение фотопластинок. Тут же возникла мысль о практическом применении «х-лучей», прежде всего, в медицине, для быстрой и безошибочной диагностики заболеваний. И это было в высшей степени верное предположение. Рентгеновские лучи позволили определять начало развития таких опасных заболеваний, как туберкулёз и рак, оценивать степень повреждения костей при переломах и вывихах, причём быстро, легко и безошибочно. Позже были проведены соответствующие исследования и выявлены пороговые значения безопасных доз излучения, при которых не происходит изменений в биологических тканях. Началась эпоха массового распространения рентгеноскопии.
Значение открытия Вильгельма Рентгена было ясно уже его современникам. Учёный мир с большим интересом встретил известие о новом открытии. И вершиной признания стала первая Нобелевская премия 1901 года, именно её и получил Рентген…
Спустя более века после открытия «х-лучей» мы не можем даже представить даже своей обыденной жизни без рентгеноскопии. Рентгеновские аппараты применяются в медицине – и все мы сталкиваемся с рентгеноскопическим обследованием и в раннем детстве, и во взрослой жизни. Обычный перелом ноги (упаси нас бог от этих неприятностей, но иногда всё же случается) давно перестал быть проблемой – благодаря рентгеноскопии. То же касается диагностики опасных заболеваний, хирургии и многих областей медицины, где применяется «рентген», так для краткости мы называем рентгеноскопическое обследование. Но применение рентгеноскопии гораздо шире. В аэропортах наша ручная кладь просматривается службой обеспечения безопасности полётов при помощи рентгеновских лучей. От них не скроется ни один запрещённый к транспортировке самолётами общего пользования предмет, не говоря уже об оружии. Рентгеновские лучи работают в промышленности, в научных лабораториях – везде, где требуется заглянуть за непроницаемые преграды… Поэтому можно с полным на то основанием сказать, что открытие Вильгельма Рентгена, пришедшееся на самый конец позапрошлого столетия, оказало огромное влияние на развитие науки и техники ХХ века.
Глава 8
Автомобиль – начало эпохи
Какое изобретение ни возьми, про него можно сказать, что оно кардинальным образом изменило нашу жизнь. Электрифицированные железные дороги, метрополитен, авиация, космические корабли… И всё же пальму первенства следует отдать автомобилю. Достаточно представить себе – заглянуть в прошлое всё равно невозможно – каким был облик нашей планеты в веке XIX-ом. Если бы мы могли пролететь на самолёте (или хотя бы на воздушном шаре) над Европой и, тем более, над Северной Америкой, в году этак 1850-м, то не узнали бы абсолютно ничего. Леса, поля, кривые ниточки просёлочных дорог. Редкие европейские шоссе – мощёные камнем или укатанные грунтовые. Узкие улочки городов. Почти полное отсутствие каких-либо путей сообщения на территории России, на просторах Соединённых Штатов Америки, да и в других частях света тоже…
И вот – двадцатые годы минувшего столетия. Прошло 70 лет. Или чуть больше, если мы возьмём середину 30-х годов. Теперь уже настоящий, а не воображаемый самолёт, правда, полёт всё равно гипотетический… Дороги, сплошные дороги. Великолепные американские «хайвэи», европейские шоссе, соединяющие города и страны, пересекающие материки вдоль и поперёк.
Поднимемся в небо в наши дни. Если лететь на относительно небольшой высоте (с десяти километров ничего не разглядишь), то вся поверхность планеты, где бы мы ни находились, какую бы часть суши ни обследовали, сплошь покрыта серыми лентами дорог. И каких дорог! Скоростных, ровных, с удобными многоуровневыми развязками, эстакадами, сложной системой регулирования движения – светофорами, шлагбаумами, множеством дорожных указателей… И всё это заслуга невзрачной пыхтящей и чадящей самобеглой коляски – автомобиля.
Автомобиль превратился в главное транспортное средство планеты. Во многих областях он, практически, полностью вытеснил речной и даже железнодорожный транспорт. Грузовик способен доставить груз от заводских ворот к потребителю без промежуточных погрузок и накопления большого количества товара. Чтобы заполнить железнодорожный вагон и не перевозить по железной дороге воздух, надо собрать 60 тонн груза. Но один вагон через всю страну не повезёшь, приходится собирать в один состав двадцать, тридцать и более вагонов. А грузовик может взять в кузов четыреста килограммов груза (или 20 тонн – когда потребуется) и быстро доставить до места назначения. И затраты на такую «мелкооптовую» перевозку будут совсем невелики, а оперативность доставки просто вне конкуренции.
Что же касается пассажирского транспорта, то легковой автомобиль или автобус давно уже используются в качестве основного вида городского и междугороднего транспорта. Кроме того, легковой автомобиль служит и транспортным средством, и предметом роскоши, и объектом увлечения миллионов, и едва ли ни самым востребованным товаром массового спроса…
Описать все марки автомобилей, даже по одному предложению на каждую, невозможно. Достойных моделей автомобилей очень и очень много. Это совершенно необъятная, хотя и крайне любопытная тема. Сосредоточимся на основных вехах развития автомобильного транспорта в ХХ веке, в хронологическом порядке.
В новое столетие автомобиль вошёл уже вполне сформировавшимся, но ещё довольно сыром виде. Четыре колеса, из которых два передних управляемые. Рулевое колесо как основное средство управления. Карданная или цепная передача на задние колёса и, что очень немаловажно, дифференциал.
Чтобы понять значение дифференциала, обратимся к простейшей железнодорожной колёсной паре. Два колеса жёстко закреплены на общей оси и часто изготовлены в виде единой неразъёмной конструкции. Когда колёса передвигаются прямолинейно, никаких проблем не возникает. Но вот впереди поворот. При повороте в какую-либо сторону оба колеса описывают траекторию, по форме являющуюся сегментом окружности, то есть правильную дугу. При этом наружное колесо (левое, если поворачиваем направо, или правое, если поворачиваем налево) проходит больший путь, чем колесо внутреннее – длина внешней дуги больше, чем длина внутренней. Если дуга имеет относительно небольшой радиус закругления, внутреннее колесо, вращающееся с той же скоростью, что и внешнее из-за общей оси, будет проскальзывать, вращаясь быстрей, чем нужно, а внешнее, наоборот, будет замедляться. В результате транспортное средство будет двигаться с неизбежной пробуксовкой – с повышенным износом колёс и путей. Чтобы избежать этого неприятного эффекта, железные дороги строят таким образом, чтобы радиусы закруглений рельсов на поворотах были как можно более пологими, большими. В этом случае и пробуксовка, и износ колёсных пар минимален. Когда мы едем в вагоне метро и слышим за окном свист – это и есть проявление этого эффекта поворота зависимых колёс, жёстко закреплённых на общей оси… Но как бороться с пробуксовкой на автомобиле? Устраивать перекрёстки с радиусом поворота в десятки метров? Но в момент появления автомобиля никаких дорог не было, кроме тех, по которым двигался гужевой транспорт. И конструкторам следовало приспособить автомобиль к дороге, а не наоборот.
Дифференциал – это две большие конические шестерни, установленные на разрезанной на две части оси задних колёс, на которые передаётся крутящий момент с вала двигателя. Это ведомые шестерни, которые механически соединены между собой парой одинаковых конических шестерён малого диаметра – сателлитами. Ведущая шестерня, тоже коническая, соединённая карданным валом с валом коробки передач, опять же, через коническую шестерню, приводит во вращение обе ведомые шестерни. Во время поворота, когда внутреннее колесо притормаживается силами трения колеса о поверхность дороги, сателлиты приходят в движение и, перекатываясь внутри дифференциала, приводят к тому, что ведомая шестерня внутреннего колеса начинает вращаться медленнее, а внешнего – быстрей. Происходит перераспределение крутящего момента и устраняется эффект пробуксовки. Недостатком дифференциала является то, что при «вывешивании» одного из колёс (то есть утрате им контакта с дорогой), второе колесо останавливается – весь крутящий момент передаётся свободному колесу, а потому движение автомобиля прекращается. Чтобы избежать этого, позже был изобретён отключающийся, а затем и самоблокирующийся дифференциал. Все современные автомобили (с механической трансмиссией) оснащены самоблокирующимся дифференциалом.
Далее – первые автомобили, выпускающиеся в начале ХХ веерка, имели коробку передач. Совершенно необходимый механизм, позволяющий эффективно использовать крутящий момент двигателя. Дело здесь в том, что коленчатый вал даже самого тихоходного двигателя внутреннего сгорания вращается со слишком большой скоростью, чтобы его можно было напрямую соединить с колесом. Частота вращения старинных двигателей была относительно невелика – на уровне 1400—1600 оборотов в минуту. Но и это, повторяем, слишком большая скорость. Для её снижения была изобретена коробка передач (конструкцию позаимствовали у других механизмов, возможно, у токарного станка). Первая передача самая тихоходная, она понижает частоту вращения в десять и более раз. Это позволяет автомобилю тронутся с места и плавно набрать скорость. Кроме того, с понижением частоты вращения повышается крутящий момент – сила, приводящая колесо во вращение. То есть эффект здесь двойной – едем медленней, но тяга при этом сильней. Едем быстрей, но уменьшается и тяга. Первые коробки передач были двух и трёхступенчатыми. Примечательно, что задний ход появился не сразу и не в том виде, каким мы знаем его сегодня. Например, знаменитая «Жестянка Лиззи», «Форд-Т» американского конструктора и промышленника автомобилей Генри Форда имел столько же скоростей движения вперёд, сколько и назад. Специальной педалью водитель вводил в зацепление специальную реверсивную шестерню, и карданный вал начинал вращаться в обратную сторону, а автомобиль ехал назад – с теми же скоростями, что и вперёд, в зависимости от включенной передачи.
Рулевое управление у первых автомобилем было очень простым – велосипедного типа, поскольку переднее колесо было только одно. Но вскоре общее количество колёс увеличилось до четырёх, и появился классический механизм рулевого управления, с рулевым колесом, валом, соединённым с поперечной тягой и поворотными опорами, на которые устанавливались полуоси для крепления передних колёс. Тормоза с тяговым или тросовым управлением воздействовали только на задние колёса. Правда, и скорость движения была совсем невелика…
С 1900 по 1920 год в автомобильной промышленности происходят важные изменения, напрямую связанные и с конструкцией автомобилей. Прежде всего, из технической игрушки, забавы для богатых, автомобиль становится массовым средством передвижения, доступным миллионам людей.
1 октября 1908 года из ворот «Форд Мотор Компани» выехал первый автомобиль модели «Форд Т». Это был итог пятилетней работы Генри Форда (годы жизни 1863—1947), создавшего и само предприятие, и выпустившего к тому времени целых 19 моделей автомобилей, продававшихся по весьма демократичной цене – машину мог купить любой американец среднего достатка, поскольку машина стоила в среднем от 500, до 850 долларов (правда, доллар в то время «весил» гораздо больше, чем доллар сегодняшний). В 1913 году «Форд Т» (с введением конвейера) стал основной продукцией компании и продержался в производстве до 1927 года. За 19 лет было произведено около 18 миллионов автомобилей, при этом 15 007 033 экземпляров было продано в США. Эта великая (хотя и совсем небольшая) машина сделала Америку ведущей автомобильной державой. А главным изобретением Генри Форда, помимо самого автомобиля «всех времён и народов», стало введение конвейерного производства.
До начала 30-х годов автомобиль окончательно приобрёл классические черты. Рамная конструкция шасси, металлический, а не деревянный, кузов из штампованных листов, соединённых между собой болтами и сваркой, электрическое зажигание, аккумулятор и генератор, электрическое, а не ацетиленовое, освещение, штампованные, а не спицованные, колёса, барабанные тормоза с механическим, а к концу 30-х годов и гидравлическим приводом. В качестве необязательных дополнений появляются система обогрева салона водой из системы охлаждения двигателя. Стеклоочистители, электрические указатели поворота (поначалу они были механическими в виде откидных стрелок, либо отсутствовали вовсе). Определилось и расположение рулевого колеса – даже в Америке, где движение было, как и в Европе, правосторонним, руль располагался с правой стороны салона автомобиля. Но вскоре (к 10-м годам ХХ века) руль сместился влево.
Кстати, а почему в Англии и в ряде других стран движение левостороннее, а руль в автомобилях расположен справа? Ответ уходит в глубокую древность – в Древний Рим, где уже к началу нашей эры существовала специальная дорожная полиция и правила дорожного движения. Эти правила предписывали возницам передвигаться по левой стороне дороги, дабы кнутом, который удерживали в правой руке, случайно не зацепить пеших путников. Эти «римские правила» и сохранила консервативная Великобритания, а с ней и её колонии.
К концу 30-х, началу 40-х годов ХХ века появились автомобили нового типа – с несущими кузовами, в которых отсутствовала отдельная рама из балок или труб. В Европе, прежде всего, во Франции и Германии, появились переднеприводные машины. Это были небольшие автомобильчики массового спроса, в которых привод на передние колёса осуществлялся посредством шарниров с равными угловыми скоростями. Классический шариковый шарнир утвердился позже – в 50-е годы.
Война, как всегда, послужила катализатором развития технологий. В Америке и в России появился джип – открытый автомобильчик для разведки и командного состава с приводом и на передние, и на задние колёса. Мощные и лёгкие грузовики наводнили военные дороги Европы… Но война остановила немецкий проект Фердинанда Порше, создавшего знаменитый «Жук» – автомобильчик «Фольксваген» с несущим кузовом, двигателем воздушного охлаждения, установленным сзади. Это самый долгоживущий автомобиль на планете – он выпускался десятки лет. Его до сих пор можно увидеть на дорогах, хотя, спору нет, время его давно прошло…
Автомобиль изменил не только лик планеты, но и структуру промышленности и даже психологию людей. Автомобильная промышленность сложна и многопланова. Это не только производство моторов и кузовов, но и производство резины, красок, светотехники, электроники. А следом идёт дорожное и градостроительство, создание сервисной структуры. Но главное – широкомасштабная добыча и переработка нефти. Причём, до тако степени широкомасштабная, что сегодня, всего через сотню лет после начала массовой автомобилизации, мы стоим на пороге истощения природных запасов нефти. И это не какая-то гипотетическая опасность или печальные перспективы завтрашнего дня. Это – наша реальность.
Но не будем заканчивать рассказ об автомобиле на этой грустной ноте. Знаете ли вы, как появилась мини-юбка? Сама мода на коротенькие озорные одежды? Она появилась исключительно благодаря автомобилю. В конце 50-х годов английский инженер Иссигонис придумал маленькую машинку, назвав её «Мини». Сегодня мы можем видеть её подросшую и повзрослевшую сестру на дорогах наших городов. А та, старая «Мини» стала полноправным партнёром английского комика (и, между прочим, серьёзного автомобильного обозревателя) Роуэна Аткинсона – мистера Бина… Так вот, машинка настолько полюбилась восторженной публике, что сама идея минимализма тут же получила продолжение в одежде. Появились те самые крошечные юбчонки, получившие название «мини»… Кстати, у той первой машинки была интересная конструкция подвески колёс – резиновые пружины вместо рессор. Словно упругие резиновые мячики, вместо пружинных железок. Действительно, милая получилась машинка…
К истории автомобиля в целом и к истории создания «Мини» мы ещё обязательно вернёмся. Слишком большая тема, чтобы обойтись одним общим рассказом. Но всё это чуть ниже. Пока же поговорим о том, каким мог стать современный автомобиль. И каким он может стать в недалёком будущем.
Глава 9
Электромобиль – прошлое, настоящее и будущее
Рассказывая о первых шагах развития автомобиля, мы упустили одну важную деталь. Автомобиль конца XIX – начала XX века был вовсе не бензиновым чудищем, напоминавшим карету с мотором. Это был… электромобиль. Да, да, самые массовые модели, во всяком случае, самые продаваемые, выпускавшиеся если ни тысячами, то десятками и сотнями, имели электрический двигатель. И скоростной барьер в 100 километров в час взял гоночный электромобиль, а не автомобиль. Правда, в силу разных причин электромобиль быстро сошёл со сцены. И к началу Первой мировой войны электромобили уже воспринимались как технические казусы, бесперспективные самобеглые игрушки, но не как средство транспорта.
Почему это произошло? Почему электромобиль не получил развития? Ну, не совсем так – электромобили выпускались всегда и в достаточно ощутимых количествах. Это первое. И второе – они и не могли конкурировать с автомобилями, имевшими двигатели внутреннего сгорания, в силу технических причин.
Аккумулятором энергии бензинового двигателя служит жидкое топливо – бензин. Это справедливо для любого теплового двигателя, для газовой турбины, реактивного мотора, паровой машины. Кстати, первые автомобили имели и паровые двигатели. Причём, паровой двигатель считался удобней, практичней, чем двигатель внутреннего сгорания, поскольку работал на любом подручном топливе – чурках, соломе, жидком топливе. А двигателю внутреннего сгорания нужен был бензин, который приходилось добывать из сырой нефти путём отделения от неё лёгких фракций. Переработка нефти находилась ещё в зачаточном состоянии, а потому бензин был дорог и малодоступен.
Но вернёмся к электромобилю. Аккумулятором энергии электромобиля является перезаряжаемый источник постоянного тока – кислотный свинцовый аккумулятор. Есть множество иных типов аккумуляторов, в частности, энергоёмкие и долговечные щелочные аккумуляторы. Но в начале века они были ещё не изобретены, да и потом, с их появлением, выяснилось, что у кислотного аккумулятора конкурентов нет. Свинцовый аккумулятор выдерживает очень большие токи нагрузки, легко обслуживается и, главное, очень дёшев в производстве и эксплуатации. Сразу оговоримся – дёшев в сравнении с другими типами аккумуляторов, с щелочными элементами. А сравнивать его с доступностью бензина просто невозможно, поскольку это затраты разного порядка, эксплуатация электромобиля оказывается гораздо дороже.
Как работает «аккумулятор» бензинового двигателя? Накопленная древними растениями солнечная энергия содержится в нефти в виде горючих углеродных соединений. Сгорая в двигателе, эта энергия высвобождается и превращается в механическое действие – в крутящий момент на валу двигателя и, в конечном итоге, во вращение колёс автомобиля. Так же работает «аккумулятор» парового двигателя, только здесь используется солнечная энергия, накопленная современными растениями (если используются дрова) или древних (если используется каменный уголь). В аккумуляторе электромобиля используется электрическая энергия, накопленная во время заряда. То есть мы не можем взять природные «энергетические консервы» в готовом виде, а должны сначала зарядить аккумулятор, подав на его выводы электрический ток. Следовательно, сам процесс «заправки» электромобиля значительно удлиняется – прежде чем подключить к аккумулятору электрический ток, нам придётся его, этот ток, каким-либо образом выработать (запустить электрогенератор с приводом от гидротурбины или от того же теплового двигателя). И это сильно влияет на стоимость эксплуатации автомобиля с электрическим приводом.
Далее – энергоёмкость только что рассмотренных аккумуляторов энергии очень сильно различается. Самым ёмким окажется жидкое топливо. Сжигая литр бензина, мы можем получить столько энергии, сколько даст свинцовый аккумулятор огромных размеров. Меньше энергоёмкость каменного угля и ещё меньше у древесины. Но это легко восполняемый ресурс – во всяком случае, в начале XX века, чего не скажешь об электроэнергии. Энергоёмкость определяет в конечном счёте мощность двигателя, скорость и дальность поездки на транспортном средстве. Даже сегодня, когда выпускаются очень ёмкие аккумуляторы, серийный легковой электромобиль (а таковые производятся) способен двигаться со скоростью в 50—70 километров в течение 2—3 часов. После этого электромобиль нуждается в многочасовой зарядке аккумуляторов. С бензиновым мотором даже сравнивать не хочется…
Но есть же у электромобиля и достоинства? Есть. Да ещё какие достоинства! Во-первых, абсолютная экологичность – электромобиль не выбрасывает в атмосферу вредных веществ. Во время активной разрядки из аккумулятора в небольших количествах выделяется только водород, который безвреден для окружающей среды. Но здесь не следует забывать об оборотной стороне дела – о работе электростанций, которые вырабатывают энергию, которой заряжается аккумулятор электромобиля. Если электростанция тепловая, то вредные выбросы всё равно имеют место. Но не такие токсичные, как у выхлопа автомобильного мотора (поскольку у стационарных электростанций есть целая система фильтров очистки отработавших газов). Затем – простота и надёжность конструкции. Электромобилю не нужна сложная многоступенчатая трансмиссия. Электромотор можно встроить в ступицу колеса и, таким образом, до предела упростить ходовую часть машины. Но и здесь есть свои «подводные камни». Полный электропривод всех четырёх колёс – это замечательно. Но электродвигатель не обладает гибкостью сблокированного с коробкой передач двигателя внутреннего сгорания. Рабочий диапазон оборотов ротора достаточно узок. Поэтому на троллейбусах, которые тоже относятся к электромобилям, устанавливают двухступенчатые коробки передач. А ещё мотор-колесо, так называется встроенный в колесо электродвигатель, сильно увеличивает неподрессоренную массу электромобиля, ухудшая работу подвески и ходовые характеристики транспортного средства. Наконец, аккумулятор электромобиля можно сделать сменным, заменяемым на «заправочных» (точнее – зарядных) станциях, упростив решение проблемы нехватки энергии для движения электромобиля. Но это, как раз, решение больше теоретическое, чем практическое. Нет таких станций. И, скорее всего, появятся они не скоро (если появятся вообще).
Существует и целый ряд второстепенных проблем, которые ан первый взгляд не видны. Например, электромобили хуже справляются с подъёмами, а плавность разгона оставляет желать лучшего. Салон электромобиля приходится отапливать ТЭНами – трубчатыми нагревательными элементами, а это дополнительный расход и без того дефицитной электроэнергии…
И всё же электромобили выпускаются и в очень больших количествах, которые, правда, трудно сравнить с количеством выпускаемых автомобилей. Электрокары и электропогрузчики, используемые в промышленности, строительстве и в складском деле – это электромобили. На электромобилях разъезжают туристы, осматривающие достопримечательности, и игроки в гольф. В начале нашего столетия в США начато производство электрического компьютеризированного самоката «Джинджер», которому прочили роль «транспорта будущего», но он им пока, по всей видимости, не стал… Наконец, мы каждый день входим в троллейбус, который пусть и частично, но можно отнести к электромобилям. Конечно, троллейбус привязан к токонесущим проводам – троллеям. Но если приглядеться, то можно легко различить «настоящие» троллейбусы и троллейбусы со вспомогательными дизельными двигателями. Там, где троллей нет, такой троллейбус передвигается, как обычный автобус.
Мы подошли к любопытной теме – к транспортным средствам с гибридными силовыми установками. Это изобретение не сегодняшнего и даже не вчерашнего дня. Огромные карьерные самосвалы – «Комацу» и «Белазы» – снабжены гибридными силовыми установками. Двигатель внутреннего сгорания (огромный, локомотивный!) вращает вал генератора, который вырабатывает электрический ток. А вместо механической трансмиссии здесь применяются мотор-колёса со встроенными электромоторами.
Кроме упомянутых «автобусов-троллейбусов», выпускаются и легковые автомобили с гибридными силовыми установками. Но устроены они иначе, чем карьерные самосвалы. В этих машинах обычный автомобильный двигатель приводит во вращения колёса через обычную автомобильную трансмиссию. Но в городе, там, где крайне необходимо сократить выбросы до минимума двигатель отключается и в работу вступает электродвигатель и кислотный свинцовый аккумулятор, а двигатель внутреннего сгорания останавливается. Разряженный аккумулятор заряжается от генератора – в то время, когда работает основной бензиновый мотор. Это одна из двух распространённых гибридных схем силовой установки. Вторая же схема устроена проще. Здесь двигатель внутреннего сгорания работает постоянно – он приводит во вращение генератор, который заряжает аккумулятор электромобиля. А колёса приводятся только электродвигателем. Смысл этой конструкции в том, что работающий на постоянных оборотах двигатель выбрасывает в атмосферу меньше вредных веществ, меньше потребляет горючего (поскольку не работает с ускорениями и торможениями) и, между прочим, меньше шумит. Подобные легковые автомобили выпускаются небольшими сериями, а потому достаточно дороги (один из производителей – Toyota). Говорят, за этими машинами будущее.
А что же «чистые» электромобили? Разработки электромобилей будущего не сходят с кульманов конструкторов. Но проблема в том, что электромобилю нужен принципиально иной источник энергии – не свинцовый (и даже не щелочной) аккумулятор, у которого слишком много недостатков (и ничтожный кпд – коэффициент полезного действия), а – топливный элемент. В этих источниках тока в качестве «топлива» используется вода (как источник водорода). Водород вступает в химическую реакцию с материалом электродов, и топливный элемент вырабатывает электроэнергию, которая и используется для привода электромоторов.
На какой стадии находятся разработки? Вот одно из недавних сообщений. Компания Toshiba обещает в скором времени выпустить серийные ноутбуки, у которых в качестве источника питания будет применяться топливные элементы. Значит, ждать осталось недолго. Сначала портативный компьютер, затем – электромобиль…
Глава 10
Кинематограф – первые шаги
Перед самым новым 1896 годом, а именно – 28 декабря 1895 года, в подвале парижского «Гран-кафе» на улице «Бульвар-де-Капюсин» (эта улица была названа в честь женского монашеского ордена, поэтому и само название переводится, как «Бульвар капуцинок») состоялся первый в истории киносеанс. Братья Люмьер – Огюст и Луи – показывали документальную ленту (других поначалу и быть не могло) под названием «Прибытие поезда на вокзал Ла Сьота». В течение нескольких минут на белом экране первые зрители увидели паровоз, надвигающийся на зал. Впечатление было ошеломляющим. Зрители в ужасе вскакивали с мест. А молва о небывалом зрелище моментально облетела весь Париж. Всего два года понадобилось братьям для того, чтобы отснять 1800 фильмов. Впрочем, на этом их кинематографическая карьера и закончилась. Ещё в 1989 году Люмьеры объявили, что уходят из кинематографии. Они быстро поняли, что открыв людям новый вид искусства (а кино далеко не сразу было признано именно как искусство, долгое время оставаясь дешёвым балаганным трюком), им придётся уступить место профессионалам – театральным актерам и режиссёрам. Но начало было положено. Всё последующее столетие прошло под знаком бурного развития кинематографии.
Можно было бы сказать, что кино развивается и занимает умы миллиардов людей нашей планеты и сегодня. Но с точки зрения технологии кинопроизводства (а нас интересует именно техническая сторона) это не так. Стремительно уходит киноплёнка. Нет на съёмочных площадках «классических» киносъёмочных аппаратов. Процесс съёмки, производства и тиражирования фильмов, техника показа – значительная часть этих технологий уже достаточно давно перешла на новый уровень. В мире кино воцарилась «цифра» – компьютеры, цифровые носители, цифровые камордеры (это сложное слово от «камера» и «рекордер» – получается «камкордер», видеокамера). Более того, компьютерная, телевизионная, звукозаписывающая и кинотехника сливаются воедино в симбиоз универсальных мультимедийных технологий. И сегодня мы стали свидетелями, что кино доступно каждому – в виде диска DVD, на экране домашнего телевизора и даже на дисплее сотового телефона. Как это и должно было произойти, технологии отошли на задний план, а первоочередное значение заняли проблемы творческие. Когда мы садимся смотреть диск DVD с новым фильмом, нас меньше всего интересует, как и на чём это снято. И смотрим мы не движущиеся картинки, а игру актёров, работу режиссёра-постановщика и всей огромной творческой группы, работавшей над фильмом – звукорежиссёра, художников, каскадёров…
Но значение изобретения Люмьеров невозможно переоценить. К слову – здесь снова сложилась ситуация, при которой изобретателями кинематографа стали сразу множество талантливым умов, да ещё и в разных странах. К примеру, Томас Эдисон тоже предложил свою систему кинематографа. Но она не пошла. А прижилась система Люмьеров. Более того, заложенные Люмьерами стандарты продержались столетие и продолжают действовать до сих пор.
Идея кинематографа, как способа фиксации и демонстрации движущихся изображений, пришла в головы изобретателей неслучайно. Огюст (годы жизни 1862—1954) и Луи (годы жизни 1864—1948) Люмьеры родились в семье художника, увлекавшегося фотографией. Они умели рисовать и с детства разделяли увлечение отца. В зрелом возрасте младший брат Луи был владельцем небольшого завода, на котором впоследствии производилось почти всё, что требовалось Люмьерам для киносъёмок. Луи и стал изобретателем кинематографа, а старший брат Огюст был его активным помощником, а потом и одним из первых в истории киноактёром. Само слово «кинематограф» придумано тоже Люмьерами.
Принцип действия кинематографа основан на инерционности нашего зрения. При смене картинок (кадров), на которых изображены последовательные фазы движения того или иного объёкта, с частотой от 1/16 секунды и чаще, зритель видит плавно движущуюся фигурку. Момент смены кадров зрение не фиксирует, поскольку это короткие тёмные паузы. Этот же принцип использовался в игрушках, изобретённых задолго до Люмьеров, вроде «волшебного» барабана с прорезями в боковой поверхности. Вовнутрь барабана вкладывалась бумажная лента с рисунками-кадрами. Раскрутив барабан и рассматривая изображения через боковые прорези, зритель видел движущуюся картинку.
Прообразом киносъёмочного аппарата Люмьеров стал обычный фотоаппарат, от которого была позаимствована светонепроницаемая камера и оптическая система – объектив и видоискатель. В качестве светочувствительного материала было решено использовать узкую целлулоидную плёнку шириной 35 мм. Этот формат, ставший в ХХ веке доминирующим и в фотографии, появился именно благодаря кинематографу. Правда, приоритет здесь принадлежит не Люмьерам, а Эдисону, который заказал узкую плёнку для своего кинетоскопа у Истмена, основателя компании «Кодак». Особенностью этой плёнки была перфорация – круглые транспортировочные отверстия, располагавшиеся с одной стороны плёнки. В эти отверстия входили зубцы валиков и зуб грейфера – скачкового механизма для прерывистой транспортировки плёнки мимо кадрового окна, на котором объектив киносъёмочного аппарата фокусировал изображение при экспозиции. Позже выяснилось, что круглая односторонняя перфорация не самое лучшее решение. При перемещении плёнки внутри аппарата односторонняя перфорация часто приводит к перекосам и заклиниванию плёнки. Перфорация стала двусторонней, а форма перфорационных отверстий прямоугольной.
Грейферный механизм – это вращающийся кривошип с Г-образным рычагом. Этот рычаг, грейфер, входит в зацепление с перфорацией плёнки, перемещает её на один кадр вниз, затем выходит из зацепления и совершает обратный ход, чтобы потом войти в зацепление с верхним перфорационным отверстием и снова переместить плёнку вниз на один кадр. В момент обратного хода грейфера плёнка остаётся неподвижной. В это время и происходит процесс съёмки – фотографирования сфокусированного объективом изображения. Чтобы в момент прерывистой транспортировки плёнки мимо кадрового окна не происходило смазывания картинки, между кадровым окном с плёнкой и объективом расположена перемещающаяся светонепроницаемая заслонка – обтюратор. Он в киносъёмочном аппарате выполняет функцию затвора фотоаппарата. Полностью процесс киносъёмки выглядит так. Обтюратор перекрывает сфокусированный объективом световой поток, грейфер перемещает плёнку на кадр вниз, обтюратор открывает световой поток, происходит экспозиция кадра, грейфер совершает обратный ход, обтюратор перекрывает световой поток и – цикл повторяется. Добавим, что обтюратор мог быть дисковым, в виде сегмента круга, и в виде прямоугольной заслонки, перемещаемой вверх-вниз кривошипным механизмом. Обтюратор был механически связан с грейфером и работал с ним синхронно. Сам грейфер впоследствии был заменён мальтийским механизмом (назван так из-за формы кривошипа – в виде мальтийского креста), который применялся в профессиональной киноаппаратуре.
Легко заметить, что при работе киноаппарата невозможно изменить выдержку, с которой экспонируются кадры киноплёнки. Точнее, её можно было увеличить, замедлив протяжку плёнки или уменьшить, ускорив протяжку. Но это плохое решение, так как изменять скорость протяжки пришлось бы и во время демонстрации фильма. Поэтому управление экспозицией велось только двумя способами – использованием более или менее чувствительной плёнки, подходящей для определённых условий освещения, и изменением относительного отверстия объектива – диафрагмой. Поначалу диафрагма представляла собой набор заслонок с отверстиями разных диаметров. Но потом был применён лепестковый (ирисовый) механизм. А ещё позже появились и обтюраторы с переменным шагом светонепроницаемой заслонки. Увеличивая или уменьшая окно обтюратора можно было увеличивать или уменьшать выдержку экспозиции при неизменной скорости протяжки киноплёнки.
Киносъёмка – всего лишь часть технологического кинопроцесса. Отсняв плёнку, её надо было проявить и зафиксировать. Во время обработки зёрна галогенидов серебра в эмульсии экспонированной киноплёнки изменяли оптическую плотность (темнели) в соответствии с интенсивностью засветки. При обработке гипосульфитом натрия (фиксирующим раствором) не подвергшиеся засветке участки эмульсии вымывались, и плёнка утрачивала светочувствительные свойства. В результате получался негатив – светлые участки изображения выглядели как тёмные, а тёмные – как светлые.
Затем отснятый негатив переводили в позитив. Это производилось контактным оптическим способом. Две негативные плёнки, готовый негатив и неэкспонированную плёнку, накладывали эмульсионными слоями друг к другу. Затем прогоняли через экспонирующий аппарат, которым мог быть обычный киносъёмочный аппарат, но при этом перед объективом располагалось матовое непрозрачное стекло и источник света. Важно было добиться равномерного освещения кадрового окна. При этом на второй плёнке получалось позитивное изображение – обратное негативному. Плёнку снова подвергали химической обработке и получали готовую ленту.
Но мы описали простейший безмонтажный процесс. А в ход подготовки фильма очень часто требуется монтаж – соединение кусков пленки, отснятой в разное время и при разных обстоятельствах. При этом цель монтажа – стыковка сцен согласно сценарию фильма. Так вот, монтаж производился на исходном материале – негативе. А уже смонтированный негатив уже переводили в позитив, печатая несколько лент подряд – тираж киноленты. Копии отправляли в кинотеатры для демонстрации. Монтаж осуществлялся на специальных проекционных аппаратах, называемых монтажными столами. В отличие от киносъёмочных (и кинопроекционных) аппаратов здесь применялся другой механизм прерывистой транспортировки плёнки. На самом деле плёнка перемещалась плавно, а синхронно с ней вращалась стеклянная призма, которая последовательно «отслеживала» просматриваемые кадры. Это требовалось для быстрой перемотки ленты. К тому же неизбежное при таком просмотре мигание картинки особого значения не имело – сцены просматривались только с технологическими целями.
Наконец, демонстрация готового фильма. Здесь было всё очень просто – для демонстрации фильма использовался тот же киносъёмочный аппарат, но за задней поверхностью плёнки, напротив кадрового окна, устанавливалась лампа. Световой поток проходил через кадр плёнки, открытый обтюратор и фокусировался на белом отражающем экране. Транспортировка плёнки осуществлялась точно так же, что и при киносъёмке – работал грейфер, обтюратор, а плёнка перемещалась скачкообразно. К слову, и в киносъёмочном, и в кинопроекционном аппаратах (когда стали применять разную аппаратуру для съёмки и показа фильмов) равномерность продвижения плёнки регулируется зубчатыми колёсами и специальными компенсационными петлями. Плёнка образовывала свободную полупетлю перед входом в фильмовый канал кадрового окна и после него. Эти полупетли гасили скачкообразные движения плёнки и позволяли укладывать плёнку на катушки ровно, без перекосов и лишних напряжений. Но стоило лишь увеличить размер петли, как плёнка начинала путаться. При уменьшении размера петли плёнка рвалась. Поэтому мастерство киномеханика заключалось в том, чтобы точно и сразу выбирать размер компенсационной петли…
Демонстрация первых фильмов проходила под музыку. В качестве музыкального сопровождения использовалась игра музыканта (тапера) на фортепьяно и саксофоне (об этом сегодня мало кто знает). Причём, музыка требовалась вовсе не из каких-то эстетических соображений Люмьеров. Во время демонстрации фильмов в зале стоял невообразимый гул. Зрители вслух читали титры – поясняющие надписи, бурно выражали свои эмоции. И музыка была призвана заглушать этот шум.
Тапер – первая из кинематографических профессий, исчезнувшая уже в 30-е годы с появлением звукового кино. Тогда же исчезла и профессия актёра немого кино. Оказалось, что многие старые актёры, снискавшие популярность в эпоху «великого немого», обладали слабым невыразительным голосом. Сам великий Чарли Чаплин долго сторонился звуковой технологии, полагая, что голос его экранного героя не годится для кино. К счастью, он ошибался. Чарли остался Чарли и заговорив… Это имя мы помянули не напрасно. Встав на ноги и окрепнув, кинематограф не просто доказал своё право на существование, но из незатейливого балаганного зрелища превратился в особый вид искусства. Кино прочили роль «убийцы» театра. Но этого, к счастью не произошло – кинематограф, бравший начало от цирка, от пантомимы, а не от театра, с театральным искусством конкурировать не стал. Театр, как синхронное действо актёров и зрителей, со своей уникальной атмосферой соучастия, от распространения кино нисколько не пострадал. И появились новые кумиры, в ряду которых Чаплин был и остаётся одним из величайших…
Техника киносъёмки двигалась семимильными шагами. Если первые киносъёмочные и кинопроекционные аппараты приводились в действие вручную, то уже в 20-е годы появились механизмы, улучшающие равномерность протяжки плёнки. Сначала это были маховики с центробежными регуляторами. Если скорость вращения маховика превышала определённые рамки, кулачки центробежного механизма притормаживали вращение. В 30-е годы появились два принципиально важных для кинематографии механизма – электропривод и пружинный заводной механизм. Первый применялся в стационарных профессиональных камерах и во всех без исключения кинопроекционных аппаратах, позволив добиться высокой равномерности протяжки киноплёнки. В Это же время устанавливаются общепринятые стандарты скорости киносъёмки – 16 и 24 кадра в секунду. 24 кадра в секунду использовался в профессиональной кинематографии, 16 – в репортёрской и любительской кинотехнике.
О кинолюбительстве разговор особый. Появление альтернативных форматов киноплёнки – 16 и 8-миллиметровой, а также появление обращаемой киноплёнки, позволяющей получить позитив сразу, без промежуточной печати позитива, позволили сконструировать лёгкие и компактные камеры с пружинным приводом. Механизм киносъёмочного аппарата приводился в движение пружиной, которую перед съёмкой заводили складным ключом. Завода хватало на съёмку 3-минутной сцены, что по кинематографическим меркам очень много. Фильм – это набор разных сцен и разных планов. Изображение в кадре должно перемещаться. И очень длительные сцены зрителем воспринимаются плохо. Поэтому любительские аппараты с таким казалось бы «коротким» заводом позволяли снимать вполне состоятельные в творческом плане ленты. Но, прежде всего, любительская техника использовалась так, как мы сегодня используем бытовые цифровые (и аналоговые) видеокамеры – камкордеры. То есть для ведения семейного видеоархива, съёмки памятных событий, ведения видеодневников путешествий и так далее. Правда, занятия кинолюбительством было делом накладным. Плёнку надо было купить (не ошибившись с форматом – одних 8-миллиметровых плёнок было достаточно много, с различным расположением перфорационных отверстий, размеров кадрового окна, двойная и одинарная), отснять, проявить, смонтировать. Фильм при этом получался склеенным (после монтажа) и существовал в одном экземпляре.