
Полная версия:
Население Земли как растущая иерархическая сеть
С.В. Цирель этого явно не понимает, и окончательный вывод его исследования (оформленный в духе принципа неопределенности!) о выборе одного из двух возможных вариантов течения эволюции, которые он для пущей наукообразности называет паттернами, неутешителен:
«Автору весьма импонирует ничем не доказанная точка зрения о принципиальной невозможности выбора первичного паттерна и равноправии обоих паттернов даже на недоступных нам запредельно фундаментальных уровнях анализа».
Вот так вот! Узнать, как потечет эволюция в каждом конкретном случае, по мнению Циреля, нельзя даже на «запредельно фундаментальных уровнях анализа». Хаос покруче бабочки Лоренца! Т. е. познать «цирелевскую эволюцию» в принципе невозможно.
При этом из этих двух его паттернов никак не может быть получена существующая де-факто универсальная эволюция мира: единый, непрерывный, закономерный, многоэтапный, необратимый, усложняющийся, прогрессивный и перманентно ускоряющийся процесс, имеющий свое уникальное начало и абсолютное завершение.
В заключение еще раз отметим, что этот продукт творческой деятельности С.В. Циреля на тему эволюции является чрезвычайно вредным для любого непосвященного читателя. Причины здесь следующие:
1. Цирель безосновательно дискредитирует фундаментальное исследование Фёрстера и его коллег, точность результатов которого противоречит его собственной, а также коротаевской теории гиперболического роста. Тем самым он намеренно вводит своих читателей в заблуждение.
2. Все что он пишет полностью противоречит основополагающим исследованиям С.П. Капицы. Это, в частности, касается антимальтузианского принципа демографического императива Капицы, а также закона ускорения исторического времени Капицы. Цирель же, во-первых, отрицая независимость роста человечества от ресурсов, пытается вернуть своего читателя в позапрошлый век к Мальтусу и, во-вторых, рассматривая универсальную эволюцию как чисто случайный, никуда не направленный процесс, отрицает закон сжатия исторического времени Капицы.
3. Собственные изыскания С.В. Циреля по гиперболическому росту населения Земли к науке никакого отношения не имеют, поскольку его теория принципиально непроверяема. На самом деле она попросту неверна́, т. к. опирается на закон квадратичного роста как на причинный закон.
4. Его описание эволюции также нельзя считать научным, поскольку он даже не пытается ответить ни на одну из ее многочисленных загадок. При этом из всех его наукообразных, тяжелых для восприятия, нарочито усложненных построений не вытекает ровным счетом ничего, точнее, вытекает полная неопределенность процесса эволюции. При том что (и это является общепризнанным!) существует универсальная эволюция мира: многоэтапный, прогрессивный и непрерывно ускоряющийся процесс от Большого взрыва до наших дней.
5. Цирель не забывает отметить добрым словом ни одного из членов «коротаевской корпорации» – это одна из главных задач его «научного» исследования! В этом списке присутствует даже полный банкрот Панов с его бредовым «кризисом планетарного цикла». И, конечно же, Цирель грудью встает на защиту изобретательской теории Коротаева, хотя она и противоречит его собственной теории (надо думать, ему это как-то зачтется). Вот такой он независимый исследователь! Очевидно, что эта работа С.В. Циреля служит, прежде всего, его личным, а также чисто корпоративным целям, не имеющим к науке никакого отношения.
Зачем С.В. Цирель морочит голову читателям своих работ!
Законы роста численности изолированных популяций
Введение
Популяция – это совокупность особей одного вида, обладающая общим генофондом и проживающая на общей территории. Она является элементарной генетической единицей вида, первой надорганизменной биологической системой. Считается, что любая популяция способна к неопределенно долгому самостоятельному развитию.
Биотическим потенциалом вида называется показатель скорости роста численности особей этого вида при отсутствии ограничивающих факторов. Совокупность же таких ограничивающих рост популяции факторов называется сопротивлением среды.
Состояние равновесия между биотическим потенциалом вида и сопротивлением среды, поддерживающее постоянство численности популяции, называют популяционным гомеостазом. При его нарушении возникают колебания численности. Различают периодические и непериодические колебания численности популяции.
Обычное, нормальное состояние популяции – это гомеостаз с неизменной численностью, который поддерживается отрицательными обратными связями, обеспечивающими такой гомеостаз. Но в редких случаях численность популяции меняется и за короткий промежуток времени может значительно возрасти или уменьшиться. Этот редкий случай нарушения гомеостаза только и будет здесь нас интересовать.
Причем нами будут рассмотрены только законы роста: законы, по которым растет численность изолированной популяции, т. е. популяции более или менее отделенной в пространстве от других аналогичных совокупностей того же вида. Эти законы представляют для нас интерес в связи с законом роста численности населения Земли.
Идеализации
Построение математической модели какого-либо объекта, явления неизбежно требует принятия некоторых упрощений, идеализаций. Чем больше идеализаций, тем проще модель, тем удобней с ней работать и тем уже спектр явлений, который она способна описать.
С другой стороны, идя по пути усложнения модели, нужно иметь в виду, что даже максимально сложная, «все учитывающая» модель все равно остается всего лишь моделью и неспособна полностью описать явление, зато способна перенести львиную долю внимания исследователя с самого явления на абстрактный математический аппарат, его описывающий.
Поэтому в математическом моделировании существует золотая середина степени усложнения. В математической экологии эффективны простые модели с большим количеством идеализаций. Рассмотрим идеализации для модели роста изолированной популяции, т. е. такой популяции, взаимодействия в которой возможны только между представителями данной популяции [25]:
1. Постоянство внешних условий, т. к. прежде чем исследовать роль внешних воздействий следует проанализировать свойства идеальной, изолированной популяции, на динамику численности которой влияют лишь биотические факторы, причем только те из них, что связаны с внутривидовой деятельностью. Под постоянством внешних по отношению к растущей популяции условий будем понимать также и независимость роста (при прочих равных условиях) от того, на каком участке шкалы физического времени он наблюдается. В уравнениях такого роста не должно, следовательно, явным образом присутствовать время, т. е. они должны быть автономными.
2. Целочисленное число особей популяции заменяется для удобства на непрерывную, действительную величину.
3. Рассматриваемая популяция считается однородной, т. е. пренебрегается ее половой, возрастной, генотипической и какой-либо другой структурированностью.
Для дальнейшего представляется важным отметить тот факт, что население Земли в целом, при том, что все мы принадлежим к одному виду, – этому условию не удовлетворяет. Дело в том, что человечество нельзя считать однородной массой с единым для всех ее частей естественным приростом. В действительности – это конгломерат популяций, образованный различными как по численности, так и по естественному приросту составляющими. (Коэффициент естественного прироста в разные времена, для разных народов мог различаться в разы, поэтому никакое его усреднение по всей массе человечества не может считаться вполне удовлетворительным.) Даже если допустить, что численность каждого народа, этноса будет расти экспоненциально – из этого вовсе не следует, что численность человечества также будет расти экспоненциально.
4. Рост численности любой популяции есть, строго говоря, случайный процесс, который должен описываться на языке теории вероятностей. Но при исследовании изменения численности популяций с большим числом членов естественно описывать эти изменения на языке средних величин.
5. В случае неперекрывающихся поколений в дискретных моделях принимается синхронное размножение у всех организмов при достижении определенного возраста. Что хотя и не соответствует действительности, позволяет упростить математический аппарат, причем без отрицательного влияния на результат. Момент появления новой особи в непрерывных моделях считается равномерно распределенным на отрезке времени, равном среднему времени жизни особи.
6. В случае перекрывающихся поколений скорость изменения численности может определяться численностью не в текущий, а в некоторый предшествующий момент времени. Динамика изменения численности описывается здесь уравнениями с запаздывающим аргументом. Такое запаздывание, в случае если оно сравнимо или превосходит характерное время системы, может приводить к колебаниям численности и даже к резонансам: колебаниям с нарастающей амплитудой. Пренебрежение таким запаздыванием – еще одна часто принимаемая идеализация.
7. Исследуемая система предполагается либо локальной, т. е. имеющей достаточно малые размеры (для таких систем понятия численности популяции и ее плотности являются синонимами), либо постулируется полное перемешивание, когда особь за время жизни успевает побывать на всей территории обитания популяции. Для человеческого общества предполагается его информационная связность на всем протяжении роста. При исследовании локальных или сосредоточенных сообществ изучается исключительно временна́я динамика. На самом деле сосредоточенных сообществ не бывает, а реальная протяженность ареала обитания популяции может в сотни и тысячи раз превышать величину перемещения особи за поколение. Модели пространственно-распределенных сообществ включают анализ как временно́й, так и пространственной организации этих сообществ. Они описываются уравнениями типа диффузия-кинетика, решение которых зачастую сопряжено с непреодолимыми математическими трудностями.
8. Рост численности изолированной популяции предполагается свободным, никем и никак не управляемым ростом, происходящим в естественных природных условиях.
* * *Условно все идеализированные модели биологических систем можно разделить на три типа: регрессионные, качественные и имитационные. [24]
А. Регрессионные зависимости – это не более, чем формулы, описывающие связь различных характеристик системы, которые при этом не претендуют на какой-либо каузальный, физический или биологический смысл. Для построения регрессионной модели достаточно статистически достоверных наблюденных корреляций между переменными или параметрами системы.
Б. Качественные (базовые) модели. В любой науке существуют простые модели, которые поддаются аналитическому исследованию и обладают свойствами, позволяющими описывать целый спектр природных явлений. Их задача качественно описать систему, в данном случае растущую изолированную популяцию. Базовые модели обычно представляют собой системы дифференциальных или разностных уравнений относительно небольшой размерности, допускающие аналитическое и качественное компьютерное исследование. Эти модели позволяют ответить на вопросы: возможны ли в системе колебания, переключения режимов функционирования, пространственно-неоднородные решения, квазистохастическое поведение. При этом важно понимать, что истинные причины наблюдаемого поведения популяции, особенности роста ее численности могут никак такой моделью не отражаться.
В. Имитационные модели. По меткому выражению Р. Шеннона имитационное моделирование – это нечто промежуточное между искусством и наукой. Суть его заключается в исследовании сложной математической модели с помощью вычислительных экспериментов и обработки результатов этих экспериментов. Как правило, создатели такой имитационной модели пытаются максимально использовать всю имеющуюся информацию об объекте моделирования как количественную, так и качественную. При этом модель может получиться разной у разных авторов, поскольку точные формальные правила ее построения отсутствуют.
Целью нашего исследования является построение качественной (базовой) обобщенной модели роста численности изолированной популяции с учетом всех обозначенных здесь идеализаций.
Каузальный анализ законов роста
Каузальный анализ описывает явление на языке причинно-следственных связей. В его основе лежит стремление понять это явление при помощи логики типа: «X вызывает Y». Факторы, которые вызывают какие-то изменения, называются независимыми переменными, в то время как переменные, изменяющиеся под действием этих факторов, называются зависимыми.
В общем случае присутствие причинно-следственных связей означает, что наличие изменений меняет вероятностные характеристики последствий. В чем задача каузального анализа роста численности популяции? Она заключается в поиске причин, по которым ее численность растет по тому или иному закону.
Самый простой в каузальном смысле рост – это экспоненциальный рост. Закон экспоненциального роста считается первым законом экологии популяций. Его можно уподобить первому закону Ньютона в механике. Когда на тело не действуют никакие другие тела – оно сохраняет состояние покоя или равномерного и прямолинейного движения. (Скорость растет, убывает, меняется по направлению только тогда, когда на тело действует сила.) Когда на растущую в условии изобилия ресурсов изолированную популяцию не оказывают воздействия никакие внутренние или внешние ограничения – она растет экспоненциально. Отклонение от экспоненты и, в частности, неизменная численность возможно лишь при наличия сопротивления (ускорения) со стороны среды обитания.
Причина экспоненциального роста без смертности (для делящихся микроорганизмов) заключена внутри черного ящика процесса репродукции элементарной ячейки популяции. И прирост численности здесь всегда будет пропорционален самой численности. Для популяций животных (многоклеточных организмов) разность между приростом численности за счет рождаемости и ее убылью по причине смертности за единицу времени – также пропорциональна самой численности.
В обоих случаях – это строгое равенство при выполнении принятых выше идеализаций, т. к. рост популяции здесь представляет суперпозицию не оказывающих взаимного влияния процессов. И если, скажем, увеличить численность популяции в два раза, то и ее естественный прирост также должен возрасти в два раза. Поэтому экспоненциальный рост популяции, происходящий в естественных природных условиях, информационно и каузально прост и его можно считать причинно-самодостаточным, а сам закон экспоненциального роста – причинным.
Причинным в том смысле, что рост популяции здесь может быть представлен как автокаталитический, самоускоряющийся процесс, причиной которого является положительная обратная связь между численностью и естественным приростом, природа которой заключена в простом росте (по закону геометрической прогрессии на последовательности интервалов равной длительности) некоторого числа параллельных, в первом приближении не взаимодействующих элементарных продукционных процессов.
Самодостаточным в том смысле, что никаких других причин у этого роста кроме тех, что заключены внутри черного ящика процесса репродукции элементарной составляющей популяции – здесь нет. Если же учитывать влияние взаимодействий между членами популяции, то линейное уравнение экспоненциального роста необходимо трансформировать в нелинейное.
Примеры таких уравнений мы приведем ниже. При этом прирост численности на особь, элементарную ячейку размножающейся популяции, может зависеть от ее плотности и даже от общей численности.
* * *Возможны два каузальных подхода при описании такого нелинейного роста.
1. В первом подходе причина роста ищется исключительно в связях между членами популяции, при этом полностью пренебрегается составляющей прироста без учета взаимодействий, т. е. индивидуальной способностью элементарной составляющей популяции к размножению, которая при отсутствии взаимодействий вызывает экспоненциальный рост. Так, в моделях роста численности населения Земли полагают, что мировой естественный прирост пропорционален квадрату полной численности населения Земли при любых значениях этой численности.
2. Во втором подходе прирост ищется в виде суммы двух составляющих, первая из которых отвечает за рост без взаимодействий. Вторая же составляющая естественного прироста, положительная или отрицательная, возникает по причине воздействия на него со стороны внутрипопуляционных связей.
Такой дополнительный положительный прирост за счет рождаемости, возникающий по причине взаимодействия между членами популяции, возможен лишь при том условии, что биотический потенциал системы еще полностью не исчерпан, т. е. если существует возможность увеличить приплод с особи за время ее жизни.
Другая часть такого дополнительного прироста возникает за счет изменения (положительного или отрицательного) уровня смертности. Оба эти воздействия так трансформируют, искажают естественный экспоненциальный рост, что превращают его, например, в рост логистический или даже в гиперболический.
Приведем примеры. Если рассматривать размножение колонии микроорганизмов в максимально благоприятных условиях, то никакие взаимодействия между этими организмами ускорить этот, уже и без того максимально быстрый экспоненциальный рост, очевидно, не могут, и рост будет экспоненциальным, таким же как и при отсутствии взаимодействий. Но могут его замедлить, если, например, среда обитания не безгранична и плотность популяции будет расти. Тогда закон роста будет нелинейным, например, логистическим.
Если же рассматривать рост численности населения Земли и исходить, к примеру, из модели Коротаева (где экспоненциальной составляющей прироста пренебрегается), то связи между членами социума, порождающие полезные инновации и способствующие их распространению на всю Мир-систему, преобразуют простую положительную обратную связь между естественным приростом и численностью в ПОС второго порядка, которая работает при любых численностях, во все времена и провозглашается единственной причиной гиперболического роста.
* * *Второй подход представляется более логичным, т. к. величину связи между особями растущей популяции вряд ли можно считать неизменной на всем протяжении ее роста. Здесь разумно предположить, что зависимость эта будет тем сильнее, чем больше общая численность (плотность) популяции. Когда же эта численность невелика – рост должен быть экспоненциальным. Иначе говоря, если в нелинейном уравнении, описывающем рост популяции, численность устремить к нулю, оно должно превращаться в линейное уравнение Мальтуса.
Такой рост, подчиняющийся нелинейному закону, будет каузально более сложен, чем экспоненциальный рост, поскольку его причина заключена как в индивидуальной способности к размножению каждой элементарной репродуцирующей себя ячейки популяции, так и во взаимодействиях между ее членами. И такой нелинейный закон роста может быть назван причинным лишь в том случае, если он полностью определяется нелинейной обратной связью между численностью и естественным приростом.
В отличие от причинно-самодостаточного закона экспоненциального роста (dN/dt = aN) здесь уже недостаточно просто записать уравнение роста, нужно еще дать описание, объяснение тем нелинейным обратным связям, которые этот рост вызывают или на этот рост влияют. В этом сложность нелинейного роста и его каузального анализа.
Обычно, когда говорят о растущей изолированной популяции, то имеют в виду свободный рост, т. е. рост никем и никак не управляемый, не испытывающий никаких внешних воздействий и происходящий в естественных природных условиях. Причины свободного роста изолированной популяции заключены в двух процессах: процессе размножения каждой элементарной ячейки популяции и процессе взаимодействия между всеми этими ячейками.
Если же существуют какие-то факторы, целенаправленно воздействующие на рост, т. е. как-то его изменяющие, регулирующие, то такой рост следует считать управляемым. Примером управления ростом с помощью изменения его условий служит процесс выращивания микроорганизмов в питательной среде, где экспериментатор может менять температуру, состав питательной смеси и тем самым влиять на скорость деления микроорганизмов. Т. к. характерное время деления здесь мало, можно исследовать этот рост в широком диапазоне условий.
Другой пример – рост численности домашних животных. Здесь воздействие может варьироваться в широких пределах: от простой защиты от хищников и обеспечения кормом на пастбищах до постройки специально организованных ферм, где создаются все необходимые условия для роста и размножения. Вмешиваясь в ход природных процессов, человек может остановить исчезновение редких животных и восстановить их былую численность.
Все это примеры внешнего, не автономного воздействия на рост популяции. Но существует еще одна возможность: управление ростом изнутри, через связи, существующие между членами популяции. И здесь примером может служить рост человеческих сообществ. Можно целенаправленно с помощью специально созданных программ, без всякого оружия, только информацией – свести на нет, уничтожить целый народ.
И наоборот, используя разнообразные программы жизнесбережения, работающие изнутри, повысить естественный прирост целого этноса. В дальнейшем мы покажем, что если численность изолированной рассредоточенной популяции и скорость ее роста связаны нелинейно, то причиной такой связи может и не быть ПОС между приростом и численностью (N<—>ΔN/Δt) или ООС между этими величинами, а закон, их связывающий, может и не быть законом причинным. Такой нелинейный закон роста популяции может описывать всего лишь функциональную, непричинную связь между ее численностью и естественным приростом. Т. е. представлять собой не более, чем регрессионную зависимость, не претендующую на какой-либо каузальный смысл.
Возможна такая механическая аналогия. Малые свободные колебания математического маятника – колебания гармонические. Если приложить к нему вынуждающую силу, меняющуюся со временем, колебания станут вынужденными. Если вынуждающая сила мала, то вдали от резонанса вынужденные колебания будут мало отличаться от свободных. Если же внешнее возмущающее воздействие велико, то закон движения маятника может быть в принципе каким угодно в пределах, которые определяются массой груза, длиной нити и силами трения.
* * *Итак, рост популяции может быть как свободным, так и управляемым. Управляемый рост отличается от свободного наличием управляющей системы, стоящей над популяцией и способной изменять ее свободный рост в границах, определяемых биотическим потенциалом популяции и сопротивлением среды.
Например, превратить естественный экспоненциальный рост в рост гиперболический. Поскольку управляемый рост может быть осуществлен только достаточно сложной системой управления, как минимум обладающей памятью, то момент детерминации здесь может быть расположен позднее во времени того момента, когда происходит детерминированное событие.
Понимать это надо так: управляющая система непрерывно контролирует текущую численность популяции и воздействует на внутрипопуляционные связи таким образом, чтобы сделать максимально вероятной последовательность ранжированных событий, каждое из которых заключается в достижении численности популяции в определенный момент времени в будущем – некоторого предустановленного значения.
Задача каузального анализа в таком случае заключается в том, чтобы найти целевой, телеологический каузальный закон, управляющий ростом, и механизм его реализации.
Модель степенного роста, или рассказ о том, как не растут популяции
Закон степенного роста (убывания) какой-либо величины во времени – это зависимость вида y = C|t – t0|n, где показатель n не равен нулю или единице и может быть положительным, отрицательным, целым или дробным.
Может ли численность роста какой-либо популяции на каком-то этапе своего роста описываться степенным законом? Это возможно лишь при том условии, что на этом этапе прирост численности за небольшой промежуток времени будет пропорционален некоторой степени численности, причем показатель этой степени не должен быть равен единице.
В таком случае вопрос можно сформулировать так: может ли скорость роста численности популяции выражаться в виде степенного закона (3) рис. 1?