banner banner banner
Клеточные и молекулярные механизмы патогенеза иммуновоспалительных ревматических заболеваний
Клеточные и молекулярные механизмы патогенеза иммуновоспалительных ревматических заболеваний
Оценить:
Рейтинг: 0

Полная версия:

Клеточные и молекулярные механизмы патогенеза иммуновоспалительных ревматических заболеваний

скачать книгу бесплатно


72. Jara L. J., Medina. G., Saavedra M. A. Autoimmune manifestations of infections. Curr Opin. Rheumatol. 2018, Vol. 30, no.46, pp.373–379. DOI:10.1097/BOR.0000000000000505.

73. Jego G., Palucka A. K., Blanck J. P., Chalouni C., Pascual V., Banchereau J. Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity, 2003, Vol. 19, no.2, pp.225–234. doi: 10.1016/s1074–7613(03)00208–5.

74. Jenkins M. K., Khoruts A., Ingulli E., Mueller D. L., McSorley S. J., Reinhardt R., Itano A., Pape A. In vivo activation of antigen- specific CD4 T cells. Annu. Rev. Immunol., 2001, Vol.19, pp. 23–45. doi: 10.1146/annurev.immunol.19.1.23.

75. Jesus A. A., Goldbach-Mansky R. IL-1 blockade in autoinflammatory syndromes. Annu. Rev. Med., 2014, Vol. 65, pp.223–244. doi: 10.1146/annurev-med-061512–150641.

76. Jorch S., Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. NATURE MEDICINE, 2017, Vol. 23, no.3, pp. 279–287. doi:10.1038/nm.4294.

77. Jurewicz М. М., Stern. L. G. Class II MHC antigen processing in immune tolerance and inflammation. Immunogenetics, 2019, Vol. 71, no.3, pp.171–187. doi:10.1007/s00251–018–1095-x.

78. Kang (https://www.ncbi.nlm.nih.gov/pubmed/?term=Kang%20YM%5BAuthor%5D&cauthor=true&cauthor_uid=12021312) Y. M., Zhang (https://www.ncbi.nlm.nih.gov/pubmed/?term=Zhang%20X%5BAuthor%5D&cauthor=true&cauthor_uid=12021312) X., Wagner (https://www.ncbi.nlm.nih.gov/pubmed/?term=Wagner%20UG%5BAuthor%5D&cauthor=true&cauthor_uid=12021312) U. G. Yang H., Beckenbaugh R. D., Kurtin P.J…Weyand C. M. CD8 T Cells Are Required for the Formation of Ectopic Germinal Centers in Rheumatoid Synovitis. J. Exp. Med., 2002, Vol. 195, no.10, pp. 1325–1336. doi.org/10.1084%2Fjem.20011565 (https://dx.doi.org/10.1084%2Fjem.20011565).

79. Khandpur R., Carmona-Rivera C., Vivekanandan-Giri A., Gizinski A., Yalavarthi S., Knight J. S. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci. Transl. Med., 2013; 5(178):178ra40. doi: 10.1126/scitranslmed.3005580.

80. Kiselyov A. et al. VEGF/VEGFR signaling as a target for inhibiting angiogenesis. Expert Opin. Investig. Drugs, 2007, Vol. 16, pp. 83–107.

81. Klemperer P. The concept of collagen diseases. The American Journal of Pathology, 1950; Vol. XXVI, no. 4, pp. 505–519.

82. Knecht, H., Saremaslani, P., Hedinger, C. Immunohistological findings in Hashimoto’s thyroiditis, focal lymphocytic thyroiditis and thyroiditis de Quervain. Virchows Arch., 1981; A 393, pp. 215–231. https://sci-hub.do/10.1007/bf00431078 (https://sci-hub.do/10.1007/bf00431078).

83. Knight J. S., Carmona-Rivera C., Kaplan M. J. Proteins derived from neutrophil extracellular traps may serve as self-antigens and mediate organ damage in autoimmune diseases. Front Immunol., 2012, Vol. 3, pp.380. doi: 10.3389/fimmu.2012.00380. eCollection 2012.

84. Kobayashi K., Kaneda K., Kasama T. Immunopathogenesis of Delayed-Type Hypersensitivity. Microscopy Research and Technique, 2001, Vol. 53, no.4, pp. 241–245. doi: 10.1002/jemt.1090.

85. Koch A. E. Angiogenesis: implications for rheumatoid arthritis. Arthritis Rheum., 1998, Vol. 41, no.6, pp.951–962. doi:10.1002/1529–0131(199806)41:6<951::AID-ART2>3.0.CO;2-D.

86. Koelink P. J., Overbeek. S. A., Braber S., Henricks P. A., Roda M.A….Kraneveld A. D.. Collagen degradation and neutrophilic infiltration: a vicious circle in inflammatory bowel disease. Gut. 2014, Vol. 63, no.4, pp.578–587. doi:10.1136/gutjnl-2012–303252.

87. Kraan M. C., Haringman J. J., Post W. J., Versendaal J., Breedveld F. C., Tak P. P. Immunohistological analysis of synovial tissue for differential diagnosis in early arthritis. Rheumatology, 1999, Vol. 38, no.11, pp.1074–1080. doi: 10.1093/rheumatology/38.11.1074.

88. Krenn V., Souto-Carneiro M. M., Kim H. J., Berek C., Starostik P., Konig A. Histopathology and molecular pathology of synovial B-lymphocytes in rheumatoid arthritis. Histol. Histopathol., 2000, Vol. 15, pp. 791–798. doi: 10.14670/HH-15.791.

89. Kroenke M. A., Eto D., Locci M., Cho M., Davidson T., Haddad E. K., Crotty S. Bcl6 and Maf cooperate to instruct human follicular helper CD4T cell differentiation. J Immunol., 2012, Vol. 188, no.8, pp.3734–3744. doi: 10.4049/jimmunol. 1103246.

90. Kuivaniemi H., Tromp G. Type III collagen (COL3A1): Gene and protein structure, tissue distribution, and associated diseases. Gene, 2019. Vol 707, pp. 151–171 https://doi.org/10.1016/j.gene.2019.05.003 (https://doi.org/10.1016/j.gene.2019.05.003).

91. Kunnumakkara (https://www.ncbi.nlm.nih.gov/pubmed/?term=Kunnumakkara%20AB%5BAuthor%5D&cauthor=true&cauthor_uid=29370858) A. B., Sailo (https://www.ncbi.nlm.nih.gov/pubmed/?term=Sailo%20BL%5BAuthor%5D&cauthor=true&cauthor_uid=29370858) B. L., Banik (https://www.ncbi.nlm.nih.gov/pubmed/?term=Banik%20K%5BAuthor%5D&cauthor=true&cauthor_uid=29370858) K., Harsha C., Prasad S…Aggarwal B. B. Chronic diseases, inflammation, and spices: how are they linked? J. Transl. Med. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5785894/), 2018; 16:14. doi: 10.1186/s12967–018–1381–2 (https://dx.doi.org/10.1186%2Fs12967-018-1381-2).

92. Lande R., Gregorio J., Facchinetti V., Chatterjee B., Wang Y. H., Homey B…. Gillet M. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature, 2007, Vol. 449, pp. 564–569. doi: 10.1038/nature06116.

93. Lau C. M., Broughton C., Tabor A. S., Akira S., Flavell R. A., Mamula M…Marshak-Rothstein A. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J. Exp. Med., 2005, Vol. 202, no.9, pp.1171–1177. doi: 10.1084/jem.20050630.

94. Leadbetter E. A., Rifkin I. R., Hohlbaum A. M., Beaudette B. C., Shlomchik M. J., Marshak-Rothstein A. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature, 2002, Vol. 416, pp.603–607.

95. Liao A. P., Salajegheh M., Nazareno R., Kagan J. C., Jubin R. G. Greenberg S. A.. Interferon ? is associated with type 1 interferon-inducible gene expression in dermatomyositis. Ann Rheum Dis., 2011, Vol. 70, no.5, pp.831–836. doi: 10.1136/ard.2010.139949.

96. Loo J., Spittle D. A., Newnham M. COVID-19, immunothrombosis and venous thromboembolism: biological mechanisms. Thorax Published Online First: 06 January 2021. doi: 10.1136/thoraxjnl-2020–216243.

97. Ma W-T., Gao F., Gu K., Chen D-K. The Role of Monocytes and Macrophages in Autoimmune Diseases: A Comprehensive Review. Front. Immunol., 2019; 10:1140. doi: 10.3389/fimmu.2019.01140.

98. Malmstrom V., Venalis P., Albrecht I. T cells in myositis. Arthritis Res. Ther., 2012; 14(6), 230. doi.org/10.1186/ar4116.

99. Mantovani A., Sozzani S., Locati M., Allavena P., Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol., 2002, Vol. 23, no.11, pp.549–555. doi: 10.1016/s1471–4906(02)02302–5.

100. Manzo A., Bombardieri M., Humby F., Pitzalis C. Secondary and ectopic lymphoid tissue responses in rheumatoid arthritis: from inflammation to autoimmunity and tissue damage/remodeling. Immunol Rev., 2010, Vol. 233, pp.267–285. doi: 10.1111/j.0105–2896.2009.00861.x.

101. Masters S. L., Simon A., Aksentijevich I., Kastner D. L. Horror Autoinflammaticus: The Molecular Pathophysiology of Autoinflammatory Disease. Annu. Rev. Immunol., 2009, Vol. 27, pp.621–668. doi: 10.1146/annurev.immunol.25.022106.141627.

102. McNally A. K., Anderson J. M. Interleukin-4 induces foreign body giant cells from human monocytes/macrophages. Differential lymphokine regulation of macrophage fusion leads to morphological variants of multinucleated giant cells. Am. J. of Pathology, 1995, Vol. 147, no.5, pp. 1487–1499.

103. McNally A. K., Jones J. A., Macewan S. R., Colton E., Anderson J. M. Vitronectin is a critical protein adhesion substrate for IL-4-induced foreign body giant cell formation. Journal of Biomedical Materials Research, 2008, Vol. 86, no. 2, pp. 535–543. doi: 10.1002/jbm.a.31658.

104. Means T. K., Latz E., Hayashi F., Murali M. R., Golenbock D. T., Luster A. D. Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J. Clin. Investig., 2005, Vol. 115, no. 2, pp. 407–417. doi: 10.1172/JCI23025.

105. Miga A., Masters S., Gonzalez M., Noelle R. J. The role of CD40-CD154 interactions in the regulation of cell mediated immunity. Immunological Investigations, 2000, Vol.29, no 2, pp. 111–114. doi: 10.3109/08820130009062292.

106. Miyabe Y., Lian, J., Miyabe, C., Luster, A. D. Chemokines in rheumatic diseases: pathogenic role and therapeutic implications. Nature Reviews Rheumatology, 2019, 15:731–46. doi:10.1038/s41584–019–0323–6.

107. Moghaddas F., Masters S. L. Monogenic autoinflammatory diseases: cytokinopathies. Cytokine, 2015, Vol. 74, no.2, pp.237–246. doi: 10.1016/j.cyto.2015.02.012.

108. Moore B. B., Keane M. P., Addison C. L., Arenberg D. A., Strieter R. M., CXC chemokine modulation of angiogenesis: the importance of balance between angiogenic and angiostatic members of the family. J. Invest. Med., 1998, Vol. 46, p. 113.

109. Murphy G., Knauper V., Atkinson S., Butler G., English W, Hutton M., Stracke J., Clark I. Matrix metalloproteinases in arthritic disease. Arthritis Res., 2002, 4(Suppl 3):S39–S49. doi: 10.1186/ar572.

110. Murshid A., Gong J., Calderwood S. K. The role of heat shock proteins in antigen cross presentation. Front. Immunol., 2012, Vol.3, Article63. doi: 10.3389/fimmu.2012.00063. eCollection.

111. Nakhasi H. L., Ramanujam M., Atreya C. D., Hobman T. C., Lee N. Rubella virus glycoprotein interaction with the endoplasmic reticulum calreticulin and calnexin. Arch. Virol., 2001, Vol. 146, pp.1–14.

112. Nanki T., Hayashida K., El-Gabalawy H., Suson S., Shi K., Girschick H. J., Yavus S., Lipsky P. E. Stromal cell-derived factor-1-CXC chemokine receptor 4 interactions play a central role in CD4+ T-cell accumulation in rheumatoid arthritis synovium. J Immunol., 2000, Vol. 165, no. 11, pp. 6590–6598. doi: 10.4049/jimmunol.165.11.6590.

113. Nanki T., Shimaoka T., Hayashida K., Taniguchi K., Yonehara S., Miyasaka N.. Pathogenic role of the CXCL16-CXCR6 pathway in rheumatoid arthritis. Arthritis Rheum., 2005, Vol. 52, no.10, pp. 3004–3014. doi: 10.1002/art.21301.

114. Ohtani H. Granuloma cells in chronic inflammation express CD205 (DEC205) antigen and harbor proliferating T lymphocytes: Similarity to antigen-presenting cells. Pathology International, 2013, Vol. 63, pp. 85–93. doi:10.1111/pin.12036.

115. Orr C., Najm A., Biniecka M., McGarry T., Ng C. T., Young F., Fearon U., Veale D. J.. Synovial immunophenotype and anti-citrullinated peptide antibodies in rheumatoid arthritis patients: relationship to treatment response and radiologic prognosis. Arthr. Rheumatol., 2017, Vol. 69, no. 11, pp.2114–2123. doi: 10.1002/art. 40218.

116. Pagan A. J., Ramakrishnan L. The Formation and Function of Granulomas. Annu. Rev. Immunol., 2018, 36:23.1–23.27. https://doi.org/10.1146/annurev- immunol- 032712- 100022 (https://doi.org/10.1146/annurev-%20immunol-%20032712-%20100022).

117. Page C., Francois C., Goeb V., Duverlie G. Human parvovirus B19 and autoimmune diseases. Review of the literature and pathophysiological hypotheses. J. Clin. Virol., 2015, Vol. 72, pp.69–74.

118. Pap T., Shigeyama Y., Kuchen S., Fernihough J. K., Simmen B., Gay R. E. Differential expression pattern of membrane-type matrix metalloproteinases in rheumatoid arthritis. Arthritis Rheum., 2000, Vol. 43, no. 6, pp.1226–1232. doi: 10.1002/1529–0131(200006)43:6<1226::AID-ANR5>3.0.CO;2–4.

119. Patel D. D., Zachariah J. P., Whichard L. P. CXCR3 and CCR5 ligands in the rheumatoid arthritis synovium. Clin. Immunol., 2001, Vol. 98, no.1, pp. 39–45. doi: 10.1006/clim.2000.4957.

120. Pisetsky D. S., Erlandsson-Harris H., Andersson U. High-mobility group box protein 1 (HMGB1): an alarmin mediating the pathogenesis of rheumatic disease. Arthritis Research & Therapy, 2008, 10:209. doi:10.1186/ar2440.

121. Pitzalis C., Kelly S., Humby F. New learnings on the pathophysiology of RA from synovial biopsies. Curr Opin Rheumatol., 2013, Vol. 25, no.3, pp. 334–344. doi: 10.1097/BOR.0b013e32835fd8eb.

122. Randen, I., Mellbye, O. J., Forre, O., Natvig, J. B. The identification of germinal centres and follicular dendritic cell networks in rheumatoid synovial tissue. Scand. J. Immunol., 1995, Vol.41, no. 5, pp. 481–486. doi: 10.1111/j.1365–3083.1995.tb03596.x.

123. Raychaudhuri S., Sandor C., Stahl E. A., Freudenberg J., Lee H.S….de Bakker P. I. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat. Genet., 2012, Vol. 44, no.3, pp.291–296. doi: 10.1038/ng.1076.

124. Reglero-Real (https://www.ncbi.nlm.nih.gov/pubmed/?term=Reglero-Real%20N%5BAuthor%5D&cauthor=true&cauthor_uid=27515379) N., Colom (https://www.ncbi.nlm.nih.gov/pubmed/?term=Colom%20B%5BAuthor%5D&cauthor=true&cauthor_uid=27515379) B., Bodkin (https://www.ncbi.nlm.nih.gov/pubmed/?term=Bodkin%20JV%5BAuthor%5D&cauthor=true&cauthor_uid=27515379) J. V., Nourshargh (https://www.ncbi.nlm.nih.gov/pubmed/?term=Nourshargh%20S%5BAuthor%5D&cauthor=true&cauthor_uid=27515379) S. et al. Endothelial Cell Junctional Adhesion Molecules: Role and Regulation of Expression in Inflammation. Arterioscler Thromb Vasc Biol., 2016, Vol. 36, no.10, pp. 2048–2057. (https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=27515379) doi: 10.1161/ATVBAHA.116.307610 (https://dx.doi.org/10.1161%2FATVBAHA.116.307610).

125. Rizzo C., Grasso G., Castaniti G., Ciccia F., Guggino G. Primary Sjogren Syndrome: Focus on Innate Immune Cells and Inflammation. Vaccines, 2020, Vol. 8, no.2, pp.1–23. doi:10.3390/vaccines8020272.

126. Rock K. L., Kono H. The Inflammatory Response to Cell Death. Annu. Rev. Pathol. Mech. Dis., 2008, Vol. 3, pp.99–126. doi:10.1146/annurev.pathmechdis.3.121806.151456.

127. Rogers G. L., Shirley J. L., Zolotukhin I., Kumar S.P, Sherman A., Perrin G.Q…..Herzog R. W.. Plasmacytoid and conventional dendritic cells cooperate in cross-priming AAV capsid-specific CD8+ T cells. Blood, 2017, Vol. 129, no.24 pp.3184–3195. doi: 10.1182/blood-2016–11–751040.

128. Romero V., Fert-Bober J., Nigrovic P. A., Darrah E., Haque U. J., Lee D. M., van Eyk J., Rosen A., Andrate F. Immune-mediated pore- forming pathways induce cellular hypercitrullination and generate citrullinated autoantigens in rheumatoid arthritis. Sci. Transl. Med., 2013, Vol. 5, 209ra150. doi: 10.1126/scitranslmed.3006869.

129. Rosen A., Casciola-Rosen L. Autoantigens as Partners in Initiation and Propagation of Autoimmune Rheumatic Diseases. Annu. Rev. Immunol., 2016, 34:15.1–15.26. doi: 10.1146/annurev-immunol-032414–112205.

130. Rossi D., Zlotnik A. The biology of chemokines and their receptors. Annu. Rev. Immunol., 2000, Vol. 18, pp.217–242. doi: 10.1146/annurev.immunol.18.1.217.

131. Rot A., Ulrich H. von Andrian. Chemokines in innate and adaptive host defense: Basic Chemokinese Grammar for Immune Cells. Annu. Rev. Immunol., 2004, Vol. 22, pp. 891–928. doi: 10.1146/annurev.immunol.22.012703.104543.

132. Salomonsson S., Larsson P., Tengner P., Mellquist E., Hjelmstrom P., Wahren-Herlenius M. Expression of the B Cell-Attracting Chemokine CXCL13 in the Target Organ and Autoantibody Production Ectopic Lymphoid Tissue in the Chronic Inflammatory Disease Sjo?gren's Syndrome. Scand. J. Immunol., 2002, Vol. 55, pp. 336–342. doi: 10.1046/j.1365–3083.2002.01058.x.

133. Sarelius (https://www.ncbi.nlm.nih.gov/pubmed/?term=Sarelius%20IH%5BAuthor%5D&cauthor=true&cauthor_uid=25838987) I. Y., Glading (https://www.ncbi.nlm.nih.gov/pubmed/?term=Glading%20AJ%5BAuthor%5D&cauthor=true&cauthor_uid=25838987) A. J. Control of vascular permeability by adhesion molecules. Tissue Barriers. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4372019/)2015, 3(1–2): e985954. doi: 10.4161/21688370.2014.985954 (https://dx.doi.org/10.4161%2F21688370.2014.985954).

134. Sato N., Beitz J. G., Kato J., Yamamoto M., Clark J. W., Calabresi P., Frackelton A. R. Jr. Platelet- derived growth factor indirectly stimulates angiogenesis in vitro. Am. J. Pathol., 1993, Vol. 142, no.4, pp. 1119–1130.

135. Scally S. W., Petersen J., Law S. C., Dudek N. L., Nel H. J., Loh K.L….Rossjohn J. A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis. J. Exp. Med., 2013, Vol. 210, no.12, pp.2569–2582. doi: 10.1084/jem.20131241.

136. Scheel T., Gursche A., Zacher J., Haupl T… Berek C. V-region gene analysis of locally defined synovial B and plasma cells reveals selected B cell expansion and accumulation of plasma cell clones in rheumatoid arthritis. Arthr. Rheumat., 2011, Vol. 63, no. 1, pp. 63–72. doi: 10.1002/art.27767.

137. Schellekens G. A., de Jong B. A., van den Hoogen F. H., van de Putte L. B., van Venrooij W. J. Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies. J. Clin. Investig., 1998, Vol. 101, no.1, pp. 273–281. doi: 10.1172/JCI1316 (https://dx.doi.org/10.1172%2FJCI1316).

138. Schonbeck U., Brandt E., Petersen F., Flad H. D., Loppnow H., IL-8 specifically binds to endothelial but not to smooth muscle cells. J. Immunol., 1995, Vol. 154, no 5, pp. 2375–2383.

139. Segura E., Amigorena S. Cross-presentation by human dendritic cell subsets. Immunol.Lett., 2014, Vol. 158(1–2), pp.73–78. doi: 10.1016/j.imlet.2013.12.001.

140. Sharma D., Kanneganti T. D. The cell biology of inflammasomes: mechanisms of inflammasome activation and regulation. J. Cell Biol., 2016, Vol. 213, no. 6, pp.617–629. https://doi.org/10.1083/jcb.201602089.

141. Shikama Y., Kobayashi K., Kasahara K., Kara S. Granuloma formation by artificial microparticles in vitro. Macrophages and monokines play a critical role in granuloma formation. Am. J. Pathol., 1989, Vol. 134, no. 6, pp.1189–1199.

142. Silver J., Goyert S. M. Epitopes are the functional units of Ia molecules and form the molecular basis for disease susceptibility, human class II histocompatibility antigens. In: Ferrone S, Solheim BG, Moller E, editors. HLA class II antigens: a comprehensive review of structure and function. Berlin, Springer. 1985, p 32–48.

143. Skotnicki J. S., Zask A., Nelson F. C., Albright J. D., Levin J. I. Design and synthetic considerations of matrix metalloproteinase inhibitors. Ann. NY Acad. Sci., 1999, 30: 878, pp. 61–72. doi: 10.1111/j.1749–6632.1999.tb07674.x.

144. Sneller М. С. Granuloma formation, implications for the pathogenesis of vasculitis. Cleveland Clinic Journal of Medicine, 2002, Vol. 69, Supplement 2, pp. SII40–SII43. doi: 10.3949/ccjm.69.suppl_2.sii40.

145. Sottile J. Regulation of angiogenesis by extracellular matrix. Biochim. Biophys. Acta, 2004, Vol. 1654, pp. 13–22.

146. Spolski R, Leonard W. J. Interleukin-21: basic biology and implications for cancer and autoimmunity. Ann. Rev. Immunol., 2008, Vol. 26, pp.57–79. doi: 10.1146/annurev.immunol.26.021607.090316.

147. Steed A. L., Stappenbeck T. S. Role of viruses and bacteria-virus interactions in autoimmunity. Curr. Opin. Immunol., 2014, Vol. 31, pp.102–107. doi: 10.1016/j.coi.2014.10.006.

148. Stone R. C., Feng D., Deng J., Singh S., Yang L., Fitzgerald-Bocarsly P., Eloranta. M., Ronnblom L., Barnes B. J. Interferon regulatory factor 5 activation in monocytes of systemic lupus erythematosus patients is triggered by circulating autoantigens independent of type I interferons. Arthritis Rheum., 2012, Vol. 64, no.3, pp.788–798. doi: 10.1002/art.33395.

149. Stott D. I., Hiepe F., Hummel M., Steinhauser G., Berek C. Antigen-driven clonal proliferation of B cells within the target tissue of an autoimmune disease. The salivary glands of patients with Sjo? gren's syndrome. J. Clin. Invest., 1998, Vol.102, pp.938–946. doi: 10.1172/JCI3234.

150. Strieter R. M., Polverini P. J., Kunkel S. L., Arenberg D. A., Burdick M. D., Kasper J….Shanafelt A. B.. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J. Biol. Chem., 1995, Vol. 270, no. 45, pp.27348–27357. doi: 10.1074/jbc.270.45.27348.

151. Suzuki, F., Kubota T., Miyazaki Y., Ishikawa K., Ebisawa M., Hirohata S……Nanki T. Serum level of soluble CX3CL1/ fractalkine is elevated in patients with polymyositis and dermatomyositis, which is correlated with disease activity. Arthritis Res. Ther., 2012, Vol. 14, no.2, R48. doi: 10.1186/ar3761.

152. Swiecki M., Colonna M. The multifaceted biology of plasmacytoid dendritic cells. Nat. Rev. Immunol., 2015, Vol. 15, no 8, pp. 471–485. doi: 10.1038/nri3865.

153. Szekanecz Z., Halloran M. M., Haskell C. J. Mediators of angiogenesis: the role of cellular adhesion molecules. Trends Glycosci. Glycotechnol, (TIGG). 1999, 58: 73.

154. Szekanecz Z., Koch A. E. Macrophages and their products in rheumatoid arthritis. Curr. Opin. Rheumatol., 2007,Vol. 19, no.3, pp. 289–295.doi: 10.1097/BOR.0b013e32805e87ae.

155. Szekanecz Z., Koch A. E., Angiogenesis in rheumatoid arthritis. In: Rubanyi G. M., ed. Angiogenesis in health and disease. Marcel Dekker, New York, Basel. 2000; pp 429–450.

156. Szekanecz Z., Koch A. E., Chemokines and angiogenesis. Curr. Opin. Rheumatol., 2001, Vol. 13, no.3, pp. 202–208. doi: 10.1097/00002281–200105000–00009.

157. Szekanecz Z., Szegedi G., Koch A. E. Angiogenesis in rheumatoid arthritis. J. Invest. Med., 1998, Vol. 46, no. 2, pp.27–41.

158. Taniguchi N., Kawahara K., Yone K., Hashiguchi T., Yamakuchi M., Goto M….Maruyama I. High mobility group box chromosomal protein 1 plays a role in the pathogenesis of rheumatoid arthritis as a novel cytokine. Arthritis Rheum., 2003, Vol. 48, no. 4, pp. 971–981. doi: 10.1002/art.10859.

159. Tengner P., Halse A-K., Haga H-J., Jonsson R., Wahren- Herlenius M. Detection of anti-Ro/SSA and anti-La/SSB auto-antibody-producing cells in salivary glands from patients with Sjo?gren's syndrome. Arthritis Rheum., 1998, Vol. 41, no. 12, pp.2238–2248. doi: 10.1002/1529–0131(199812)41:12<2238::AID-ART20>3.0.CO;2-V.

160. Thurlings R. M., Wijbrandts C. A., Mebius R. E., Cantaert T., Dinant H. J., Teneke C. T., der Pouw-Kraan M., Verweij C. L., Baeten D., Tak P. P. Synovial Lymphoid Neogenesis Does Not Define a Specific Clinical Rheumatoid Arthritis Phenotype. ARTHRITIS & RHEUMATISM, 2008, Vol. 58, no. 6, pp. 1582–1589. doi: 10.1002/art.23505.

161. Turunen S., Huhtakangas J., Nousiainen T.. Valkealahti M., Melkko J., Risteli J., Lehenkari P. Rheumatoid arthritis antigens homocitrulline and citrulline are generated by local myeloperoxidase and peptidyl arginine deiminases 2, 3 and 4 in rheumatoid nodule and synovial tissue. Arthritis Research & Therapy, 2016, 18:239. doi 10.1186/s13075–016–1140–9.

162. Ulfgren A. K., Grundtman C., Borg K., Alexanderson H., Andersson U., Harris H. E. Lundberg I. E. Down-regulation of the aberrant expression of the inflammation mediator high mobility group box chromosomal protein 1 in muscle tissue of patients with polymyositis and dermatomyositis treated with corticosteroids. Arthritis Rheum., 2004, Vol. 50, no. 5., pp.1586–1594. doi: 10.1002/art.20220.

163. Van der Aa E., van Montfoort N., Woltman A. M. BDCA3+CLEC9A+human dendritic cell function and development. Semin. Cell Dev. Biol., 2015, 41:39–48. doi: 10.1016/j.semcdb.2014.05.016.

164. van der Woude D., Lie B. A., Lundstrom E., Balsa A., Feitsma A. L., Houwing-Duistermaat J.J….. Toes R. E. Protection against anti- citrullinated protein antibody-positive rheumatoid arthritis is predominantly associated with HLA- DRB1*1301: a meta-analysis of HLA-DRB1 associations with anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis in four European populations. Arthritis Rheumatol., 2010, Vol. 62, no.5, pp.1236–1245. doi: 10.1002/art.27366.

165. Veale D. J., Fearon U. Inhibition of angiogenic pathways in rheumatoid arthritis: potential for therapeutic targeting. Best Pract. Res. Clin. Rheumatol., 2006, Vol.20, no.5, pp. 941–947. doi: 10.1016/j.berh.2006.05.004.

166. Vogel D. Y., Glim J. E., Stavenuiter A. W., Breur M., Heijnen P., Amor S., Dijkstra C. D., Beelen R. H. Human macrophage polarization in vitro: maturation and activation methods compared. Immunobiology, 2014, Vol. 219, no. 9, pp. 695–703. doi: 10.1016/j.imbio.2014.05.002.

167. Voll R. E., Urbonaviciute V., Herrmann M., Kalden J. R. High mobility group box 1 in the pathogenesis of inflammatory and autoimmune diseases. Isr. Med. Assoc. J., 2008, no.10, pp. 26–28.

168. Williams. G. T., Williams W. J. Granulomatous inflammation – a review. J. Clin. Pathol… 1983, Vol. 3, no. 7, pp. 723–733. doi: 10.1136/jcp.36.7.723.

169. Wu L., Fan J., Matsumoto S., Watanabe T. Induction and regulation of matrix metalloproteinase-12 by cytokines and CD40 signaling in monocyte/macrophages. Biochemical and Biophysical Research Communications, 2000, Vol. 269, no.3, pp. 808–815. doi.org/10.1006/bbrc.2000.2368 (https://doi.org/10.1006/bbrc.2000.2368).

170. Wynn T. A., Vannella K. M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity, 2016; Vol. 44, no. 3, 450–462. doi: 10.1016/j.immuni.2016.02.015.

171. Yamanaka H. TNF as a target of inflammation in rheumatoid arthritis. Endocr. Metab. Immune, 2015, Vol. 15, pp. 129–134. doi: 10.2174/1871530315666150316121808.