banner banner banner
Клеточные и молекулярные механизмы патогенеза иммуновоспалительных ревматических заболеваний
Клеточные и молекулярные механизмы патогенеза иммуновоспалительных ревматических заболеваний
Оценить:
Рейтинг: 0

Полная версия:

Клеточные и молекулярные механизмы патогенеза иммуновоспалительных ревматических заболеваний

скачать книгу бесплатно


Синовиальные В-клетки продуцируют ауто-АТ, и анализ репертуара В-клеточных рецепторов показывает, что В-клетки памяти, активированные в синовиальных агрегатах, могут дифференцироваться в плазматические клетки локально внутри ткани, даже в отсутствие герминативных центров (GC) в эктопических лимфоидных структурах [71, 100].

Важные данные касаются способности мембранных и цитоплазматических паттерн-распознающих рецепторов клеток врождённого иммунитета – TLR-, NOD- и RIG-рецепторов взаимодействовать с ауто-АГ. Показано, что активация В-лимфоцитов с последующей трансформацией в плазматические клетки, продуцентов ауто-АТ, может быть усилена ауто-АГ, которые связываются с рецептором В-лимфоцитов (BCR) и эндосомными TLR7 и TLR9 [93, 94].

Есть данные о том, что дефицит TLR9 блокирует индукцию ауто-АТ против ДНК на мышиной модели СКВ. Дефицит TLR7 также предотвращает образование ауто-АГ против рибонуклеопротеинов и уменьшает тяжесть течения СКВ [39].

Таким образом, способность к связыванию и активации эндосомных TLR на В-лимфоцитах является важным фактором, определяющим иммуногенность ДНК- и РНК-содержащих ауто-АГ.

Указанная выше способность целевых ауто-АГ взаимодействовать с паттерн-распознающими рецепторами клеток врождённого иммунитета (TLR, NOD и RIG), фагоцитарная активность Мф и ДК по отношению к продуктам деструкции основного вещества соединительной ткани обеспечивает протеолитическую презентацию ауто-АГ Th1 CD4+лимфоцитам в составе аллелей МНС класса II и CD8+ лимфоцитам в составе аллелей МНС класса I, находящихся в КВИ. Протеолиз, катализируемый каспазами, катепсинами и гранзимом В (GrB), влияет на связывание аллелей МНС I и II класса с конкретными ауто-АГ в процессе антигенной презентации, что показано при СКВ, миозите и при РА [44].

В экспрессии ауто-АГ при ИВРЗ большое значение придаётся активности матриксных металлопротеиназ (ММР). ММР представляют собой группу из более чем 20 цинк-содержащих протеиназ, взаимодействующих с компонентами основного вещества соединительной ткани и базальных мембран, в число которых входят коллагеназа и эластаза. Они являются активными участниками ремоделирования волокнистой соединительной ткани и приобретения ею ауто-АГ свойств. ММП ответственны за расщепление компонентов экстрацеллюлярного матрикса, потерю протеогликанов, что имеет место, в частности, при суставной деструкции при РА [109]. Протеолитические эффекты этих ферментов сопровождаются деградацией внеклеточного матрикса соединительной ткани и прежде всего коллагенового каркаса, преимущественно коллагена III типа. Эти процессы сопровождаются появлением в очаге воспаления фрагментов коллагена, включающих три аминокислоты – пролин-глицин-пролин (PGP). PGP-фрагменты обладают выраженной хемотактической активностью по отношению к клеткам макрофагально-моноцитарного ряда и нейтрофилов. Накапливаясь в больших количествах в соединительнотканном матриксе, коллагеновые PGP-фрагменты оказывают выраженный провоспалительный эффект. Кроме этого, подобные и другие фрагменты коллаген-эластического каркаса, появляющиеся в результате протеолитического действия всех 9 видов ММР (напомним, что коллагеназа и эластаза относятся к группе ММР) активно фагоцитируются клетками макрофагально-моноцитарного ряда in situ с последующей презентацией CD4+ и CD8+лимфоцитам в качестве ауто-АГ и индукцией аутоиммунного ответа [27, 86, 90].

В очаге ХПВ существенно усиливается активность ММР-8 и ММР-9. В зависимости от компонента основного вещества соединительной ткани, базальных мембран и синовиальной оболочки суставов, с которым они взаимодействуют, ММР разделяют на коллагеназы (ММР-1, – 8, – 13), желатиназы А и В (ММР-2, – 9), стромелизины (ММР-3, – 10, – 11), матрилизины (ММР-7, – 26). Активность ММР-1, – 3, – 9, – 8, – 13 индуцируется IL-1?, TNF-? и тканевой гипоксией. Некоторые ММР (ММР-1, – 13) продуцируются фибробластами и эндотелиоцитами, принимающими участие в процессах ангиогенеза, в частности, при РА [33, 118].

Значительная роль в презентации ауто-АГ принадлежит посттрансляционной модификации структуры ауто-АГ. Наличие конкретных аллелей МНС класса I и II на АГ-презентирующих клетках КВИ обуславливает статистически значимые ассоциации ревматических заболеваний с аллельными вариантами МНС, определяющих генетическую предрасположенность к ИВРЗ. Эти процессы обеспечивают синхронизированную активацию механизмов врождённого и адаптивного иммунитета, как in situ, так и при системных проявлениях.

Необходимо отметить, что специфичность TLR-, NOD- и RIG – рецепторов на АГ-презентирующих клетках в составе КВИ обеспечивает взаимодействие также и с нуклеиновыми кислотами бактерий и вирусов и биохимическими производными их ДНК и РНК, являющихся одними из основным кандидатов на роль триггеров иммуновоспалительного процесса при ревматических заболеваниях и формирования КВИ. В частности, речь идёт о вирусах краснухи, японского энцефалита, простого герпеса, цитомегаловируса, вируса Эпштейна-Барра [60, 111].

В схемах иммунопатогенеза ревматических заболеваний большое внимание уделяется феномену антигенной перекрёстной (кросс) презентации. Речь идёт о фагоцитозе и о внутриклеточном ограниченном протеолизе продуктов дезорганизации рыхлой волокнистой соединительной ткани клетками макрофагально-моноцитарного ряда, дендритными клетками различного гистогенеза, клетками Лангерганса. Процессинг пептидов коллагенового каркаса, продуктов деполимеризации основного вещества, некробиотически изменённых клеток, вирусных и бактериальных инфекционных агентов в очаге воспаления и последующая презентация в составе молекул МНС класса I активированным CD8+ Т-лимфоцитам является важным аспектом перекрёстной презентации. Активность коллагеназ, эластаз и других металлопротеиназ (ММР), вызывающих разволокнение и деструкцию коллагеновых и эдастических волокон – хорошо документированнный факт. На этом этапе формируются перекрест АГ-детерминант рыхлой волокнистой соединительной ткани с изменёнными ауто-АГ и АГ флогогенных агентов. Некоторые аспекты молекулярных процессов АГ перекреста изучены. В частности, показано, что процессинг упомянутых выше пептидов и внеклеточных белков, доставляемых в эндосомы и фагосомы, происходит за счёт цитозольной транслокации эндосомальных антигенов и связывания с протеосомальным комплексом вне эндоплазматического ретикулума (ER), где реализуется классический путь презентации пептидов в комплексе с MHC класса I TCR CD8+ клеток [26].

В процессе перекрёстной презентации могут участвовать внутриклеточные белки теплового шока, такие как HSP70 и HSP90. Известно, что клетки, подвергающиеся некробиотическим изменениям, экспрессируют повышенные уровни HSP и являются мишенью для фагоцитирующих клеток. HSP относятся к системе эндогенных сигналов опасности – аларминам (DAMP) и они экспрессируются при некротическом повреждении клеток и клеточном стрессе. Внутриклеточные HSP, такие как HSP70 и HSP90, могут участвовать в цитозольной транслокации эндосомальных антигенов или связываться с протеасомой, позиционируя их для приема пептидов по мере их образования. Распознавание макрофагами ассоциированных с мембраной некротических и некробиотических клеток молекул HSP70 и HSP90 с помощью лектиноподобного окисленного рецептора LDL 1 способствует перекрестному представлению клеточных антигенов [110, 174].

Эффективная перекрестная презентация осуществляется in vivo с помощью CD24+ дендритных клеток, экспрессирующих костимуляторные молекулы, необходимые для активации CD8+ клеток. Экспрессия костимуляторных молекул является результатом активации внутриклеточных сигнальных путей после взаимодействия TLR4- и TLR9- рецепторов с лигандами упомянутых выше продуктов дезорганизации основного вещества соединительной ткани и коллагенового каркаса. Не исключается участие инфекционных, в частности, вирусных агентов. ДК привлекаются в очаг воспаления хемокинами CCL3 и CCL4 [127]. Клетки Лангерганса, единственного типа ДК в эпидермисе кожи, также участвуют в АГ перекресте посредством рецепторов XCR1 и CLEC9A [20, 139, 163].

Как отмечалось выше аутоиммунный ответ при ИВРС может быть обусловлен в т. ч. и перекрестной реактивностью (кросс-реактивностью) АГ-детерминант инфекционных агентов и соединительной ткани. При этом модель молекулярной мимикрии, в которой инфекции (бактерии, вирусы) выступают в качестве кандидатных триггеров, является наиболее обоснованной как с клинической точки зрения, так и подтверждённой многочисленными экспериментальными данными [15,72]. Известно, что вирусная инфекция, взаимодействуя с TLR рецепторами, экспрессирующихся на плазмацитоидных ДК в составе КВИ, является мощным стимулом активации последних и продукции ими провоспалительных цитокинов – IFN I типа, TNF-?, TNF-? IL-1? и др., мобилизации CD4+ и CD8+лимфоцитов и других клеток воспалительного инфильтрата. Подобный механизм изучен в отношении вирусов Эпштейн-Барра, кори, парвовируса В19 при РА, СКВ, синдроме Шегрена, дерматомиозита [117,147].

1.8. Ассоциации аллелей МНС класса I и II при иммуновоспалительных ревматических заболеваниях

Маркерами активации клеток макрофагально-моноцитарного ряда, дендритных клеток различного гистогенеза, а также эндотелиоцитов в составе КВИ является экспрессия аллелей МНС класса II – HLA-DR, HLA-DP, HLA-DQ. Иммунологический смысл этой активации заключается в том, что клетки указанного гистогенеза могут участвовать в межклеточных контактах и выполнять функции АПК in situ. Известно, что аллельные варианты МНС класса II экспрессируются на синовиоцитах суставов при РА, на клетках тубулярного эпителия почек при СКВ и подобная эктопическая экспрессия аллелей МНС класса II свидетельствует о разгаре аутоиммунных процессов. Как неоднократно указывалось, клеточный состав КВИ, его организация вплоть до формирования фолликулоподобных лимфоидных структур, васкуляризация локуса воспаления, продукция и рецепция цито- хемокинов создают условия для индукции иммунного (аутоиммунного) ответа in situ, в т. ч. и за счет феномена перекрёстной презентации. Если говорить с общепатологических позиций, то количественный и качественный состав КВИ, наличие фолликулоподобных лимфоидных структур, наличие ГЗТ-гранулём, интенсивная васкуляризация локуса воспаления при ревматических заболеваниях отвечают необходимым условиям индукции иммунного ответа на любой антигенный триггер in situ. В принципе аналогичные условия создаются в лимфоидных органах при индукции АГ-специфического иммунного ответа. Таким образом реализуется общепатологический принцип по И. В. Давыдовскому “иммуногенез через болезнь“ [4].

Результаты многочисленных работ по ассоциациям аллелей и гаплотипов МНС класса II, а также МНС класса I, с ИВРЗ позволяют обосновать возможность индукции иммунного ответа в месте локализации КВИ на эндогенные АГ детерминанты в составе тех аллелей МНС-II класса, с которыми определена статистически значимая ассоциация при популяционно-иммуногенетических исследованиях. Так, показана статистически значимая ассоциация аллелей локуса HLA-DRB1 с РА. Генотип этого локуса HLA-DRB1*0401/*0404 при РА ассоциирован с повышенным риском заболевания, ранним началом, серопозитивностью, выраженным поражением суставов и наличием ревматоидных узелков. Молекулярная основа подобной ассоциации обусловлена тем, что последовательность пяти аминокислот в позиции 70–74 ?-цепи HLA-DR формирует щель, связывающую в т. ч. и ауто-АГ синовиальной оболочки. В результате Мф и ДК, на которых экспрессируется указанный генотип, осуществляют АГ-презентирующую функцию с последующим аутоиммунным ответом на собственные АГ-детерминанты синовии [58, 142].

С подобных позиций можно обосновать ассоциацию аллеля HLA-DRB1*0405 с РА в азиатской популяции и аллеля HLA-DRB1*1402 у коренных американцев. Интересно, что генотип HLA-DRB1*13:01 в европейской популяции ассоциирован с устойчивостью к действию анти-цитруллиновых ауто-АТ, имеющих большое значение в индукции аутоиммунного ответа при РА, о чём говорилось выше [164].

У больных РА с наличием сывороточного ревматоидного фактора и прогрессирующей деструкцией суставного хряща определяется, по литературным данным, статистически значимая ассоциация с аллелем HLA-DRB1*0401, в то время как ассоциации с аллелями HLA-DRB1*0404 и B1*0101 определяются у серонегативных больных РА с более легким течением болезни. Аллели МНС класса II, такие как HLA-DR3 (DRB1*0301) and HLA-DR2 (DRB1*1501) статистически значимо ассоциированы с СКВ у лиц европеоидной популяции. В других исследованиях на европейской популяции с СКВ определены ассоциации гаплотипов МНС II класса, таких как DRB1*1501/DQB1*0602, DRB1*0301/DQB1*0201 и DRB1*0801/DQB1*0402. При системной склерозе (СС) статистически значимые ассоциации определены с аллелями МНС класса II – HLA-DRB1*01, HLA-DRB1*11 и аллелями МНС класса I – HLA-A*30 и HLA-A*32. При синдроме Шегрена ассоциации определяются с аллелями МНС класса II – HLA-DRB1*15:01 и HLA-DRB1*03:01, а также с аллелями МНС класса I HLA-B*008, HLA-A*024.

Представленные некоторые результаты по популяционно-иммуногенетическим исследованиям иллюстрируют участие АПК в составе КВИ, экспрессирующих конкретную комбинаторику аллелей МНС классов I и II, при ИВРЗ. Указанные аллельные варианты МНС, в соответствии с особенностями молекулярной организации (аминокислотная последовательность, вторичная структура полипептидной цепи, стереохимическая организация), комплементарны процессированным продуктам дезорганизации соединительной ткани, что позволяет Мф и ДК презентировать ауто-АГ в составе аллелей МНС классов I и II CD4+ и CD8+ клеткам с последующей индукцией аутоиммунного ответа. Подобный подход определяет молекулярно-клеточную основу при интерпретации феномена наследственной предрасположенности при ревматических заболеваниях в рамках модели МНС-рестрикции [55].

Резюме

Формирование КВИ – ключевое патогенетическое звено ИВРЗ. КВИ является динамичной структурой, отражающей этапность, рецидивирующее течение и исход ИВРЗ. В процессе хронического воспаления КВИ приобретает разные морфологически идентифицируемые формы. Организованными формами КВИ при ИВРЗ являются фолликулоподобные структуры (лимфоидный неогенез), ГЗТ-гранулёмы, неорганизованными формами – диффузный клеточный воспалительный инфильтрат.

Фолликулоподобные структуры и ГЗТ-гранулёмы имеют морфо-функциональное сходство с периферическими органами иммунной системы – лимфатическими узлами, пейеровыми бляшками, селезёнкой, что создаёт возможность индукции иммунного ответа на ауто-АГ в очаге воспаления (locus morbi).

Та или иная форма КВИ является отражением конкретного этапа иммуновоспалительного процесса. Плацдармом формирования КВИ при ревматических заболеваниях является рыхлая волокнистая неоформленная соединительная ткань. Состояние реактивности этой ткани и гистогенетически близких структур, состав активированных клеток воспалительного инфильтрата, состояние межклеточного матрикса формируют микроокружение, благоприятствующее для индукции АГ-специфического иммунного ответа на ауто-АГ in situ. Активация клеток макрофагально-моноцитарного ряда, дендритных клеток, Т- и В-лимфоцитов, тесный межклеточный контакт между ними создают условия для АГ-презентации, формирования иммунологического синапса (аллели МНС класса II – TCR-CD4+ или аллели МНС класса I – TCR-CD8+), экспрессии костимуляторных молекул CD80 (В7–1) и CD86 (В7–2) на АПК, CD28 на Т-хелперах, CD40 на В-лимфоцитах и генерации ауто-АТ или сенсибилизированных Т-лимфоцитов. Разволокнение коллагенового и эластического каркаса, дезорганизация основного вещества соединительной ткани, усиление фагоцитарной активности в отношении образовавшегося тканевого детрита, а также в отношении некротически и некробиотически изменённых клеток, обуславливают цитоплазматический ограниченный протеолиз фагоцитированного материала и презентацию процессированных продуктов в составе аллелей МНС классов I и II CD4+ и CD8+лимфоцитам. Фактором усиления ауто-АГ свойств клеточного и тканевого детрита является гиперцитрулинизация полипептидов, усиливающих цитолитический потенциал CD8+ лимфоцитов.

Функцию презентации антигенного материала выполняют находящиеся в изобилии в составе КВИ Мф, ДК, а также В-лимфоциты, экспрессирующие молекулы MHC классов I и II, а также костимулирующие молекулы. Избыток всего спектра провоспалительных хемо- и цитокинов, продуцируемых в т. ч. и самими клетками воспалительного инфильтрата, вносит дополнительный вклад в усиление фагоцитарной активности Мф и ДК, усилению экспрессии костимуляторных молекул на АПК, экспрессии TLR-рецепторов, увеличению васкуляризации и эндотелиальной реакции на воспаление, усилению адгезионных межклеточных взаимодействий. Плазматизация лимфоидной ткани, столь свойственная ИВРЗ, является отражением активности В-лимфоцитов как в качестве АПК, так и в качестве клеток-предшественников плазматических клеток – продуцентов ауто-АТ. Этот этап можно рассматривать как момент запуска клеточного и гуморального иммунного ответа на ауто-АГ. Отметим, что во всех описанных процессах четко определяются и процессы пролиферации клеток макрофагально-моноцитарного ряда и лимфоидных клеток.

Тесная взаимосвязь и взаимозависимость между врождённым и адаптивным иммунитетом при ИВРЗ – хорошо документированный факт. В роли кандидатных триггеров ИВРЗ выступают широко распространённые вирусы, а также ряд факторов риска, известных для группы мультифакториальных заболеваний. Особое место в ряду факторов риска отводится иммуногенетическим факторам, а именно – ассоциированным с конкретными ревматическими заболеваниями аллелей МНС классов I и II. Эти факты вполне объяснимы, поскольку индивидуальное носительство определённых аллелей МНС классов I и II, их конформационное состояние, стереохимическая комплементарность ауто-антигенов АГ-связывающим щелям аллелей МНС классов I и II детерминирует индукцию клеточного или гуморального иммунного ответа на ауто-АГ хозяина. Комбинаторика аллелей МНС также в определённой степени определяет ответ и на медикаментозную терапию.

В ответе на ауто-АГ задействованы все известные на сегодняшний день механизмы врождённого и адаптивного иммунитета. При интерпретации иммунопатогенеза ревматических заболеваний и формирования КВИ применяются все модели и схемы из области фундаментальной иммунологии. Прежде всего, это модель МНС-рестрикции, модель молекулярной мимикрии, или перекрёстной (кросс) АГ-презентации, модель срыва центральной или периферической толерантности к ауто-АГ, модель кандидатных “триггеров” аутоиммунных и аутовоспалительных процессов, модель ассоциаций аллелей МНС классов I и II с конкретными, нозологически уникальными, ревматическими заболеваниями. Обоснованность подобного подхода подтверждается разработкой на этой платформе многочисленных генно-инженерных иммунотропных противовоспалительных препаратов, обладающих статистически значимыми лечебными эффектами.

Патогенетическое значение КВИ не исчерпывается интерпретацией клеточно-молекулярных процессов, лежащих в основе формирования КВИ. Понимание общепатологических и иммунологических закономерностей ХПВ является основой нозологической классификации ИВРЗ. В ревматологии известны многие перекрестные синдромы, имеющие “размытые” диагностические критерии. Актуальность дальнейшего изучения всех аспектов ХВП при ИВРЗ очевидна, не менее очевидна и востребованность подобных знаний в сфере практической медицины.

Литература

1. Адо А. А. Патофизиология фагоцитов (краткий очерк истории и современного состояния учения о фагоцитозе). М.: Медгиз, 1961, 295 с.

2. Богомолец А. А. Избранные труды в трёх томах. Издательство Академии наук УССР, Киев, 1957, том 2, c.312–323.

3. Воспаление. Руководство для врачей. Под редакцией В. В. Струкова, В. С. Паукова. Медицина, 1995, с. 219.

4. Давыдовский И. В. Общая патология человека. М. Медицина, 1969, с. 425, с.317.

5. Кумар А., Аббас А. К., Фаусто А. Основы патологии заболеваний по Роббинсу и Котрану, М., Логосфера, 2016, т. 2, 3.

6. Маянский Д. Н. Хроническое воспаление. Медицина, 1991, с. 24.

7. Мечников И. И. Лекции о сравнительной патологии воспаления. М. АН СССР, 1954, 267 с.

8. Насонов Е. Л., Авдеева А. С. Иммуновоспалительные ревматические заболевания, связанные с интерфероном типа I: новые данные // Научно-практическая ревматология, 2019. Т.57, № 4. С.452–461. doi: 10.14412/1995–4484–2019–452–61.

9. Раденска-Лоповок С. Г. Иммуноморфологическая характеристика синовиальной оболочки при ревматических заболеваниях // Архив патологии, 2016. № 4. C. 64–68. doi:10.17116/patol201678464–68.

10. Саидов М. З., Насонова В. А., Османов А. О., Мамаев И. А., Раденска-Лоповок С. Г., Насонов Е. Л. Иммунофенотипирование клеток воспалительного инфильтрата при ревматоидных синовитах // Иммунология, 2002. Т. 23, № 1. С.18–22.

11. Саидов М. З., Насонова В. А., Османов А. О., Мамаев И. А., Раденска-Лоповок С. Г., Насонов Е. Л. Иммуногистохимическое изучение клеток воспалительного инфильтрата при дерматомиозите. Иммунология. 2002. Т.23, № 3. 147–152.

12. Серов В. В., Шехтер А. Б. Соединительная ткань. 1981, М., Медицина. 312 с.

13. Струков А. И., Бегларян А. Г. Патологическая анатомия и патогенез коллагеновых болезней. Медгиз. 1963 г. 323 с.

14. Эйнгрон А. Г. Патологическая анатомия и патологическая физиология. М. Медицина, 1983. с.304.

15. Alam J., Yong C.K, Choi Y. Potential role of bacterial infection in autoimmune diseases: a new aspect of molecular mimicry. Immune Network, 2014, Vol.14, no 1, pp. 7–13. doi: 10.4110/in.2014.14.1.7.

16. Alsina L., Israelsson E., Altman M. C., Dang K. K., Ghandil P., Chaussabel D. A narrow repertoire of transcriptional modules responsive to pyogenic bacteria is impaired in patients carrying loss-of-function mutations in MYD88 or IRAK4. Nat. Immunol., 2014, Vol. 15, no. 12, pp.1134–1142. doi: 10.1038/ni.3028 (https://dx.doi.org/10.1038%2Fni.3028).

17. Angiolillo A. L., Kanegane H., Sgadari C., Reaman G. H., Tosato G. Interleukin-15 promotes angiogenesis in vivo. Biochem. Biophys. Res. Commu… 1997, Vol. 233, no.1, pp. 231–237. doi: 10.1006/bbrc.1997.6435.

18. Arai M., Ikawa Y., Chujo S., Hamaguchi Y., Ishida W., Hasegawa M., Mukaida N., Fujimoto M., Takehara K. Chemokine receptors CCR2 and CX3CR1 regulate skin fibrosis in the mouse model of cytokine-induced systemic sclerosis. J. Dermatol. Sci., 2013, Vol. 69, no.3, pp. 250–258. doi: 10.1016/j.jdermsci.2012.10.010.

19. Auerbach W., Auerbach R. Angiogenesis inhibition: a review. Pharmac. Ther., 1994, Vol. 63, no. 3, pp. 265–311. doi: 10.1016/0163–7258(94)90027–2.

20. Bachem A., Hartung E., Guttler S., Mora A., Zhou X…Kroczek A. Expression of XCR1 characterizes the Batf3-dependent lineage of dendritic cells capable of antigen cross-presentation. Front. Immunol., 2012, Vol. 3, Article 214.

doi: 10.3389/fimmu.2012.00214. eCollection 2.

21. Banchereau J., Pascual V. Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity, 2006, Vol. 25, no.3, pp.383–392. doi: 10.1016/j.immuni.2006.08.010.

22. Banchereau R., Cepika A. M., Banchereau J., Pascual V. Understanding Human Autoimmunity and Autoinflammation Through Transcriptomics. Annu. Rev. Immunol., 2017, Vol. 35, pp.337–370. doi: 10.1146/annurev-immunol-051116–052225.

23. Barkauskaite V., Ek M., Popovic K., Harris H. E., Wahren-Herlenius M., Nyberg F. Translocation of the novel cytokine HMGB1 to the cytoplasm and extracellular space coincides with the peak of clinical activity in experimentally UV-induced lesions of cutaneous lupus erythematosus. Lupus, 2007, Vol. 16, no. 10, pp. 794–802. doi.org/10.1177/0961203307081895 (https://doi.org/10.1177%2F0961203307081895).

24. Baumann I., Kolowos W., Voll R. E., Manger B., Gaipl U., Neuhuber W. L. Impaired uptake of apoptotic cells into tingible body macrophages in germinal centers of patients with systemic lupus erythematosus. Arthritis Rheum., 2002, Vol. 46, no.1, pp.191–201. doi: 10.1002/1529- 0131(200201)46:1<191::AID-ART10027>3.0.CO;2-K.

25. Blanco P., Palucka A. K., Gill M., Pascual V., Banchereau J. Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus. Science, 2001, Vol. 294, pp.1540–1543. doi: 10.1126/science.1064890.

26. Blander J. M. Regulation of the Cell Biology of Antigen Cross-Presentation. Annu. Rev. Immunol., 2018, Vol.36, pp.717–753. https://doi.org/10.1146/annurev-immunol-041015–055523 (https://doi.org/10.1146/annurev-immunol-041015-055523).

27. Blissett A. R., Garbellini D., Calomeni E. P., Mihai C., Elton T. S., Agarwai G. Regulation of Collagen Fibrillogenesis by Cell-surface Expression of Kinase Dead DDR2. J. Mol. Biol., 2009, Vol. 385, 902–911 doi:10.1016/j.jmb.2008.10.060.

28. Blokland L. M., Hillen M. R., Kruize A. A., Meller S., Homey B., Smithson G. M. … van Roon J.. Increased CCL25 and T helper cells expressing CCR9 in the salivar glands of patients with primary sjogren’s syndrome: potential new axis in lymphoid neogenesis. Arthr. Rheumatol., 2017, Vol. 69, no.10, pp.:2038–2051. doi: 10.1002/art. 40182.

29. Braga T. T., Agudelo J. S., Camara N. O. Macrophages during the fibrotic process: M2 as friend and foe. Front Immunol., 2015, Vol. 6, Article 602. doi: 10.3389/fimmu.2015.00602.

30. Breitfeld D., Ohl L., Kremmer E., Ellwart J., Sallusto F., Lipp M. Forster R. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med., 2000, Vol. 192, no.11, pp.1545–1552. doi: 10.1084/jem.192.11.1545.

31. Bresnihan B, Pontifex E, Thurlings RM, Vinkenoog M, Gabalawy H, Fearon U…Tak P. Synovial tissue sublining CD68 expression is a biomarker of therapeutic response in rheumatoid arthritis clinical trials: consistency across centers. J. Rheumatol., 2009, Vol.36, no. 8, pp.1800–1802. doi:10.3899/jrheum.090348.

32. Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D., Weinrauch Y., Zychlinsky A.. Neutrophil extracellular traps kill bacteria. Science, 2004, Vol. 303, pp. 1532–1535. doi: 10.1126/science.1092385.

33. Burrage P. S., Mix K. S., Brinckerhoff C. E. Matrix metalloproteinases: role in arthritis. Front Biosci., 2006, Vo l. 11, no. 1, pp.529–543. doi: 10.2741/1817.

34. Canna S. W., de Jesus A. A., Gouni S., Brooks S. R., Marrero B…. Golbdach-Mansky R. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat. Genet., 2014, Vol. 46, no.10, pp.1140–1146. doi: 10.1038/ng.3089.

35. Carmona-Rivera C., Zhao W., Yalavarthi, S., Kaplan, M. J. Neutrophil extracellular traps induce endothelial dysfunction in systemic lupus erythematosus through the activation of matrix metalloproteinase-2. Ann. Rheum., Dis. 2015, Vol.74, no.7, pp. 1417–1424. doi: 10.1136/annrheumdis-2013–204837.

36. Carulli M. T., Ong V. H., Ponticos M., Shiwen X., Abraham D. J., Black C. V., Denton C. P. Chemokine receptor CCR2 expression by systemic sclerosis fibroblasts: evidence for autocrine regulation of myofibroblast differentiation. Arthritis Rheum., 2005, Vol. 52, no12, pp. 3772–3782. doi: 10.1002/art.21396.

37. Casciola-Rosen L. A., Anhalt G., Rosen A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J. Exp. Med., 1994, Vol. 179, no.4, pp.1317–1330. doi: 10.1084/jem.179.4.1317.

38. Chang A., Henderson S. G., Brandt D., Liu N., Guttikonda R., Hsieh C…Clark R. In situ B cell-mediated immune responses and tubulointerstitial inflammation in human lupus nephritis. J. Immunol., 2011, Vol. 186, no.3, pp.1849–1860. doi: 10.4049/jimmunol.1001983.

39. Christensen S. R., Shupe J., Nickerson K., Kashgarian M., Flavell R. A., Shlomchik M. J. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity. 2006. Vol. 25, no.3, pp.417–428. doi: 10.1016/j.immuni.2006.07.013.

40. Crawford Y., Kasman I., Yu L. Zhong C., Wu X., Modrusan Z., Kaminker J., Ferrara N. PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell, 2009, Vol.15, no.1, pp.21–34. doi: 10.1016/j.ccr.2008.12.004.

41. Crosby J. R., Tappan K. A., Seifert R. A., Bowen-Pope D. F. Chimera analysis reveals that fibroblasts and endothelial cells require platelet-derived growth factor receptor-beta expression for participation in reactive connective tissue formation in adults but not during development. Am. J. Pathol., 1999, Vol. 154, pp. 1315–1321.

42. Crotty S. Follicular helper CD4 T cells (TFH). Ann Rev Immunol., 2011, Vol. 29, pp. 621–663. doi: 10.1146/annurev-immunol-031210–101400.

43. Crow Y. J. Type I interferonopathies: a novel set of inborn errors of immunity. Ann. N. Y. Acad. Sci., 2011; 1238(1), pp.91–98. doi: 10.1111/j.1749–6632.2011.06220.x.

44. Darrah E., Rosen A. Granzyme B cleavage of autoantigens in autoimmunity. Cell Death Differ., 2010, Vol.17, no.4, pp.624–632. doi: 10.1038/cdd.2009.197.

45. De Paepe B., Creus K. K., De Bleecker J. L. Chemokines in idiopathic inflammatory myopathies. Front. Biosci., 2008, Vol. 13, pp. 2548–2577. DOI: 10.2741/2866 (https://doi.org/10.2741/2866).

46. De Paepe B., Creus K. K., De Bleecker J. L. Role of cytokines and chemokines in idiopathic inflammatory myopathies. Curr. Opin. Rheumatol., 2009, Vol. 21, no.6, pp.610–616. DOI: 10.1097/bor.0b013e3283317b31 (https://doi.org/10.1097/bor.0b013e3283317b31).

47. Decker P., Kotter I., Klein R., Berner B., Rammensee H. G. Monocyte-derived dendritic cells over-express CD86 in patients with systemic lupus erythematosus. Rheumatology, 2006, Vol. 45, no.9, pp.1087–1095. doi: 10.1093/rheumatology/kel061.

48. Dennis G. Jr., Holweg C. T., Kummerfeld S. K., Choy D. F., Setiadi A. F., Hackney J.A…Townsend M.. Synovial phenotypes in rheumatoid arthritis correlate with response to biologic therapeutics. Arthr. Res. Ther., 2014, Vol.16, no.2, R90. doi: 10.1186/ar4555.

49. Dieguez-Gonzalez R., Calaza M., Perez-Pampin E. Association of interferon regulatory factor 5 haplotypes, similar to that found in systemic lupus erythematosus, in a large subgroup of patients with rheumatoid arthritis. Arthritis Rheum., 2008, Vol. 58, no.5, pp.1264–1274. doi: 10.1002/art.2342.

50. Doster R. S., Rogers L. M., Gaddy J. A., Aronoff D. M. Macrophage Extracellular Traps: A Scoping Review. J. Innate Immun., 2017, Vol.10, no.1, pp.3–13. doi: 10.1159/000480373.

51. Ek M., Popovic K., Harris H. E., Naucler C. S., Wahren-Herlenius M. Increased extracellular levels of the novel proinflammatory cytokine high mobility group box chromosomal protein 1 in minor salivary glands of patients with Sjogren’s syndrome. Arthritis Rheum., 2006, Vol. 54, no. 7, pp.2289–2294. doi: 10.1002/art.21969.

52. Eming S. A., Wynn T. A., Martin P. Inflammation and metabolism in tissue repair and regeneration. Science, 2017, Vol.356, pp.1026–1030. doi: 10.1126/science.aam7928.

53. Fang C., Luo T., Lin, L. The correlational research among serum CXCL13 levels, circulating plasmablasts and memory B cells in patients with systemic lupus erythematosus: a STROBE-compliant article. Medicine, 2017, 96(48), e8675. doi: 10.1097/MD.0000000000008675.

54. Feng D., Sangster-Guity N., Stone R., Korczeniewska J… Mancl M. E., Fitzgerald-Bocarsly P., Barnes B. J. Differential requirement of histone acetylase and deacetylase activities for IRF5-mediated proinflammatory cytokine expression. J. Immunol., 2010, Vol. 185, no.10, pp.6003–6012. doi: 10.4049/jimmunol.1000482 (https://dx.doi.org/10.4049%2Fjimmunol.1000482).

55. Fernando M. A., Stevens C. R., Walsh E. C., Jager F., Goyette P., Plenge R., Vyse T., Rioux J.. Defining the Role of the MHC in Autoimmunity: A Review and Pooled Analysis. PLoS Genet 4(4): e1000024. doi:10.1371/journal.pgen.1000024.

56. Firestein G. S. Invasive fibroblast-like synoviocytes in rheumatoid arthritis. Passive responders or transformed aggressors? Arthritis Rheum., 1996, Vol. 39, no.11, pp. 1781–1790. doi: 10.1002/art.1780391103.

57. Garcia-Romo G. S., Caielli S., Vega B., Connolly J., Allantaz F….Pascual V. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med., 2011, Vol. 3, issue73, 73ra20. doi: 10.1126/scitranslmed.3001201.

58. Gregersen P. K., Silver J., Winchester R. J. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheumatol., 1987, Vol. 30, no.11, pp.1205–1213. doi: 10.1002/art.1780301102.

59. Griffith, J. W., Sokol C. L., Luster A. D. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu. Rev. Immunol., 2014, Vol. 32, pp. 659–702. doi: 10.1146/annurev-immunol-032713–120145.

60. Gross H., Hennard C., Masouris I., Cassel C., Barth S. Binding of the heterogeneous ribonucleoprotein K (hnRNP K) to the Epstein-Barr virus nuclear antigen 2 (EBNA2) enhances viral LMP2A expression. 2012; PLOS ONE 7:e42106.

61. Gupta A. K., Joshi M. B., Philippova M., Erne P., Hasler P., Hahn S., Resink T. J. Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Lett., 2010; 584, pp.3193–3197. doi: 10.1016/j.febslet.2010.06.006.

62. Hase K., Tani K., Shimizu T, Ohmoto Y., Matsushima K., Sone S. Increased CCR4 expression in active systemic Lupus erythematosus. J. Leukocyte Biol., 2001, Vol. 70, pp. 749.

63. Helming L., Gordon S. Molecular mediators of macrophage fusion. Trends Cell Biol., 2009, Vol. 19, no.5, pp.514–522. doi: 10.1016/j.tcb.2009.07.005.

64. Hernandez-Molina G., Michel-Peregrina M., Hernandez-Ramirez D. F., Sanchez-Guerrero J., Llorente L. Chemokine saliva levels in patients with primary Sjogren’s syndrome, associated Sjogren’s syndrome, pre-clinical Sjogren’s syndrome and systemic autoimmune diseases. Rheumatology, 2011, Vol. 50, no.7, pp.1288–1292. doi: 10.1093/rheumatology/ker019.

65. Herrmann M., Voll R. E., Zoller O. M., Hagenhofer M., Ponner B. B., Kalden J. R. Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum.,1998, Vol.41, no.7, pp.:1241–1250. doi: 10.1002/1529- 0131(199807)41:7<1241::AID-ART15>3.0.CO;2-H.

66. Higashi-Kuwata N., Makino T., Inoue Y., Takeya M., Ihn H. Alternatively activated macrophages (M2 macrophages) in the skin of patient with localized scleroderma. Exp Dermatol., 2009, Vol. 18, no.8, pp.727–729. doi: 10.1111/j.1600–0625.2008.00828.x.

67. Higgs B. W., Liu Z., White B., Zhu W., White W., Morehouse C….Yao Y.. Patients with systemic lupus erythematosus, myositis, rheumatoid arthritis and scleroderma share activation of a common type I interferon pathway. Ann. Rheum. Dis., 2011, Vol.70, no. 11, pp. 2029–2036. doi: 10.1136/ard.2011.150326.

68. Hjelmstro?m P. Lymphoid neogenesis – de novo formation of lymphoid tissue in chronic inflammation through expression of homing chemokines. J. Leuk. Biol., 2001, Vol.69, pp.331–339. doi: 10.1097/BOR.0b013e32835fd8eb.

69. Hjelmstro?m P., Fjell J., Nakagawa T., Sacca R., Cuff C. A., Ruddle N. H. Lymphoid tissue homing chemokines are expressed in chronic inflammation. Am. J. Pathol., 2000, Vol.156, no.4, pp.1133–1138. doi: 10.1016/S0002–9440(10)64981–4.

70. Horikawa S., Ishii Y., Hamashima T., Yamamoto S., Mori H., Fujimori T….Sasahara M.. PDGFR? plays a crucial role in connective tissue remodeling. Scientific RepoRts., 2015; 5:17948. doi: 10.1038/srep17948.

71. Humby F., Bombardieri M., Manzo A., Kelly S., Blades M. C., Kirkham B. Ectopic lymphoid structures support ongoing production of class- switched autoantibodies in rheumatoid synovium. PLoS Med. 2009; 6:e1. doi: 10.1371/journal.pmed.0060001.