Читать книгу Как микробы управляют нами. Тайные властители жизни на Земле (Эд Йонг) онлайн бесплатно на Bookz (4-ая страница книги)
bannerbanner
Как микробы управляют нами. Тайные властители жизни на Земле
Как микробы управляют нами. Тайные властители жизни на Земле
Оценить:
Как микробы управляют нами. Тайные властители жизни на Земле

4

Полная версия:

Как микробы управляют нами. Тайные властители жизни на Земле

Эта позиция сохранилась по сей день. Если я зайду в библиотеку и вышвырну из окна любую книгу о микробиологии, проходящий в этот момент под окном человек наверняка получит черепно-мозговую травму. А вот если я вырву из этой книги все страницы, на которых рассказывается о полезных микробах, я разве что кого-нибудь бумагой смогу порезать. Микробиология до сих пор ассоциируется у нас в первую очередь с болезнями и смертью.


Пока одни ученые, греясь в лучах славы, вовсю открывали новые виды болезнетворных микробов, другие, пребывая в тени, вкалывали над исследованиями, которые в итоге представят микробов в совершенно ином свете.

Мартинус Бейеринк был одним из первых ученых, продемонстрировавших миру истинную важность микробов. Этот резкий, погруженный в себя и не пользующийся популярностью нидерландец терпеть не мог как людей, за исключением разве что нескольких коллег, так и медицинскую микробиологию[43]. Болезни его не интересовали. Он предпочитал изучать микробов в естественной среде обитания – в почве и воде, на корнях растений. В 1888 году он открыл бактерий, превращающих азот из воздуха в аммиак, который потом потребляли растения, а через некоторое время обнаружил новый вид бактерий, участвующих в круговороте серы в почве и атмосфере. Его открытия послужили толчком к возрождению микробиологии в Делфте – городе, где работал Бейеринк и где Левенгук два века назад впервые увидел бактерий. Члены созданной им Делфтской школы наряду с единомышленниками, среди которых был Сергей Виноградский из России, прозвали себя экологическими микробиологами[44]. Благодаря им выяснилось, что микробы – неотъемлемая часть нашей планеты, а не просто угроза человечеству.

Газеты того времени заговорили о «хороших бактериях», которые удобряли почву и участвовали в производстве выпивки и молочных продуктов. В учебнике 1910 года написано, что «плохие бактерии», которые так всех заинтриговали, «являются лишь небольшой специализированной ветвью бактерий и в целом особой важности не представляют»[45]. Авторы учебника утверждали, что большинство бактерий являются редуцентами, то есть возвращают питательные вещества из разлагающихся органических тканей в почву и воду. «Не будет преувеличением сказать, что без них… жизнь на нашей планете наверняка исчезнет».

Другие микробиологи рубежа веков выяснили, что многие микробы обитают в телах животных, растений и других видимых живых существ. Оказалось, что лишайник, украшающий цветными кляксами камни, стены, бревна и кору деревьев, состоит из множества микроскопических водорослей, живущих в симбиозе с хозяином-грибом и снабжающих его питательными веществами в обмен на воду и микроэлементы[46]. Выяснилось, что в клетках животных – например, морских анемонов и плоских червей – тоже содержатся водоросли, а у муравьев-древоточцев – бактерии. Растущие на корнях деревьев грибы, которые издавна считались паразитами, оказались партнерами – они обеспечивают деревья азотом, получая взамен углеводы.

Это партнерство получило название «симбиоз» – от греческого «совместная жизнь»[47]. Сам термин не имел какой-либо эмоциональной окраски и мог обозначать любую форму совместного существования. Если один партнер получал выгоду за счет другого, он считался паразитом (или патогеном, если он при этом причинял вред здоровью соседа). Если выгоду партнер получал, но хозяину от этого не было ни холодно, ни жарко – это комменсализм, а если хозяин тоже получал от сожительства выгоду – мутуализм. Все это разные формы симбиоза.

Возникли эти понятия в крайне неудачное время. Биологи, находясь под влиянием дарвинизма, были заняты обсуждением теории естественного отбора. Считалось, что все формы жизни, не покладая лап, вели кровавую борьбу за выживание. Томас Гексли, «бульдог Дарвина», сравнивал мир животных с боем гладиаторов. Симбиоз же подразумевал сотрудничество и взаимопомощь. С идеями конкуренции и конфликта он не сочетался, как и с общепринятым мнением, что все микробы – злодеи. После того как Пастер провел свои исследования, присутствие микробов стали считать первым признаком болезни, а их отсутствие – знаком того, что все в порядке. Сама мысль о том, что микробы могут быть безвредными, казалась настолько абсурдной, что Фридриху Блохманну, впервые увидевшему бактерий в телах муравьев-древоточцев в 1884 году, пришлось прибегать к языковым выкрутасам, лишь бы не называть их бактериями[48]. В своих ранних записях он окрестил их «плазматическими прутиками» или «весьма заметными волокнистыми образованиями в плазме яйца». Лишь в 1887 году – после трех лет тщательной работы – он наконец занял четкую позицию по этому вопросу: «Ничего другого не остается, кроме как заявить, что эти прутики и есть бактерии».

Другие ученые тем временем выяснили, что в кишечнике у людей и других животных обитают целые армии бактерий-симбионтов. Ни болезней, ни разложения они не вызывали – просто жили себе спокойно, как «нормальная флора». «С появлением животных… бактерии время от времени должны были неизбежно попадать в их тела», – писал Артур Исаак Кендалл, один из первых исследователей кишечных бактерий[49]. Тело человека для микробов стало лишь очередным местом, куда можно заселиться, и Кендалл был убежден, что подавлять и уничтожать их не нужно – для начала с ними стоит хотя бы познакомиться. Конечно, проще сказать, чем сделать. Уже тогда было ясно, что микробов у нас в организме ну просто сокрушительно много. Теодор Эшерих, открывший кишечную палочку – бактерию, которая стала главным оплотом микробиологической науки, – как-то написал: «Сомнительное и бесполезное, казалось бы, занятие – пытаться разобраться в бактериях, вроде бы случайным образом оказывающихся в кишечнике и нормальном стуле, ведь на их появление, похоже, влияет множество не связанных между собой обстоятельств»[50].

Что ж, современников Эшериха это не останавливало. Они создавали описания бактерий, живущих в организмах котов, собак, волков, тигров, львов, лошадей, коров, овец, коз, слонов, верблюдов и людей, за сотню лет до того, как слово «микробиом» оказалось у всех на слуху[51]. Они в общих чертах описали микробную экосистему человека за несколько десятилетий до 1935 года, когда слово «экосистема» вообще появилось. Они доказали, что микробы скапливаются в теле человека с момента его рождения и что в разных органах могут преобладать разные виды бактерий. Они выяснили, что в кишечнике микробов особенно много и что они могут меняться в зависимости от того, чем животное питается. В 1909 году Кендалл характеризовал кишечник как «совершенный инкубатор» для бактерий, чья деятельность «не мешает деятельности хозяина»[52]. Теоретически, когда организм хозяина ослаблен, бактерии способны стать причиной болезни, но в целом они безопасны.

А приносить пользу они умеют? Как ни странно, Пастер – человек, из-за которого микробам была объявлена война, – считал, что да. Он утверждал, что бактерии могут быть важной и даже неотъемлемой частью жизни, ведь уже тогда было известно, что коровьи желудки могут переваривать клетчатку, тем самым снабжая коров легко всасывающимися летучими жирными кислотами. Кендалл высказал предположение, что микробы в кишечнике человека защищают его от чужеродных бактерий, не давая им прижиться (а вот в том, что они и в пищеварении играют какую-то роль, он сомневался)[53]. Илья Мечников, лауреат Нобелевской премии из России, в этом плане совсем впал в крайность. Его как-то назвали «сумасбродной особой, сошедшей со страниц романа Достоевского»[54]. Натурой он действительно был крайне противоречивой – будучи абсолютным пессимистом, как минимум дважды пытавшимся покончить с собой, он написал книгу под названием «Этюды оптимизма», в которой разобрал способы продления человеческой жизни. В этой книге его противоречия нашли выход, и направлены они были на мир микробов.

С одной стороны, он утверждал, что кишечные бактерии вырабатывают токсичные вещества, которые и становятся причиной болезней и старения организма. По его словам, именно они были «главной причиной краткости нашей жизни». А с другой стороны, он был уверен, что некоторые бактерии умеют продлевать жизнь. На эту мысль его подтолкнули болгарские крестьяне – они регулярно пили «кисело мляко», или болгарский йогурт, и жили больше ста лет. Эти свойства, как говорил Мечников, связаны между собой. В сквашенном молоке были бактерии, в том числе и так называемая болгарская бацилла. Они вырабатывали молочную кислоту, убивающую вредных, сокращающих продолжительность жизни микробов в кишечниках крестьян. Мечникову эта мысль так понравилась, что он и сам стал регулярно пить «кисело мляко». Многие другие вдохновились его примером – а как же, уважаемый ведь ученый! – и тоже начали. Кстати, благодаря его утверждениям даже вошла в моду колостомия, а Олдос Хаксли написал роман «Через много лет», в котором голливудский магнат объедается кишками карпов, чтобы заменить микробов в своем кишечнике и добиться бессмертия. Нет, люди, конечно, издавна употребляли в пищу забродившие молочные продукты, но теперь они это делали ради микробов. Этот пунктик, кстати, пережил самого Мечникова, который умер от сердечной недостаточности в 71 год.

Несмотря на все усилия Кендалла, Мечникова и других ученых, возрастающее внимание науки к патогенным бактериям задавило все попытки исследования бактерий-симбионтов в организмах человека и других животных. В памятках по здравоохранению начали рекомендовать избавляться от бактерий как в собственном теле, так и вокруг него, с помощью дезинфицирующих веществ и постоянного поддержания абсолютной чистоты. Тогда же ученые открыли первые антибиотики – вещества, подавляющие как микробов, так и их окружающую среду, – и пустили их в промышленное производство. У нас наконец-то появилась возможность одержать победу над нашими крошечными врагами. И вместе с тем начался период застоя в изучении бактерий-симбионтов, который продолжался вплоть до второй половины XX века. В опубликованном в 1938 году труде, посвященном истории бактериологии, живущие в наших телах микробы не упоминаются вообще[55]. Передовая на тот момент книга уделила им всего одну главу, в которой рассказывалось, как отличить полезных микробов от вредных. На них обращали внимание лишь затем, чтобы отделить их от микробов поинтереснее. Ученые, как правило, изучали бактерий только для того, чтобы лучше разобраться в других организмах. Выяснилось, что многие аспекты биоорганической химии – например, вопросы переключения генов и накопления энергии – у всех живых существ одинаковые. Путем изучения кишечной палочки ученые пытались понять, как устроены слоны. Бактерии стали «суррогатом для универсального, редукционистского восприятия жизни», как писала историк Фанке Сангодейи. «Микробиология стала служанкой других отраслей науки»[56].

И ее путь к признанию был очень долгим. Во многом помогли новые технологии, позволяющие, например, выращивать не выносящих кислород кишечных микробов, – благодаря им ученые смогли исследовать множество важных для нас микроорганизмов, которые раньше были им недоступны[57]. Да и отношение к микробиологии начало меняться. Благодаря экологическим микробиологам Делфтской школы до ученых дошло, что нужно изучать сообщества микробов в их естественной среде – в данном случае в организмах животных, – а не засовывать их по отдельности в пробирку. Врачи, работающие не в центральных отраслях медицины, таких как стоматология и дерматология, начали изучать микробную экологию органов, с которыми работают[58]. Они «противопоставляли свой труд тому, что на тот момент считалось в микробиологии важным», писала Сангодейи. Однако они работали в одиночку. Ботаники также изучали микробов, живущих на растениях, а зоологи разбирались с микробами животных. Микробиология была разделена по интересам, усилия отдельных ученых запросто игнорировались – ведь между ними не было связи. Не существовало единого сообщества ученых, занимающихся изучением микробов-симбионтов, а значит, не было и посвященной этому отрасли науки. Кто-то должен был в лучших традициях симбиоза соединить отдельные части в нечто большее.

В 1928 году этим занялся Теодор Розбери, микробиолог, специализирующийся на бактериях полости рта. В течение более 30 лет он по кусочку собирал все статьи, посвященные человеческому микробиому, а в 1962 году сплел из этих ажурных кусочков прочное полотно – открывающую новые горизонты книгу «Микроорганизмы, обитающие на человеке»[59]. «Насколько я знаю, никто до меня не пытался создать подобную книгу, – писал он. – Похоже, здесь эта тема впервые рассматривается как отдельная отрасль науки». И он был прав. Его книга поражала своей детальностью и масштабом, она стала предвестницей книги, которую вы сейчас читаете[60]. Он в подробностях рассказал об обычных бактериях, населяющих каждую часть нашего тела. Он описал, как микробы заселяют организм новорожденного ребенка. Он высказал предположение, что они вырабатывают витамины и антибиотики, а также защищают организм от вызванных патогенами инфекций. Он заметил, что после курса антибиотиков микробиом возвращается в свое нормальное состояние, но при постоянном приеме может преобразиться окончательно. «На нормальную флору так до сих пор и не обращают внимания, – огорчался он. – Эта книга написана в том числе и для того, чтобы навести на мысль, что пора бы начать».

И у нее это получилось. Созданный Розбери сборник трудов вернул чахнувшую отрасль науки к жизни и побудил множество ученых к новым исследованиям[61]. Одним из них стал Рене Дюбо, обаятельный американец французского происхождения. К тому времени он уже заявил о себе, следуя учениям Делфтской школы об экологии. Изучая почвенных микробов, он сумел получить лекарства, которые в числе других положили начало эпохе антибиотиков. Однако Дюбо считал, что с помощью этих лекарств микробов нужно приручать, а не уничтожать. Он предпочитал не называть микробов врагами человечества и избегал воинственных метафор даже в своем позднем труде о туберкулезе и пневмонии. Он всем сердцем обожал природу, а микробы – это ее часть. «В течение всей своей жизни он был уверен, что живой организм можно понять лишь через его связи со всем остальным», – писала Сьюзен Моберг, составительница его биографии[62].

Он видел, что наши микробы-симбионты важны, и его удручало то, что никто не обращал на них внимания. «Сведения о том, что микроорганизмы могут быть человеку полезны, никогда никого особо не привлекали, ведь, как правило, люди предпочитают разбираться с тем, что непосредственно им угрожает, забывая про силы природы, от которых зависит их жизнь, – писал он. – История военных действий всегда манит сильнее, чем рассказы о сотрудничестве. Чума, холера и желтая лихорадка становятся героями романов, пьес и фильмов, но никто еще не прославился, написав повесть о пользе микробов в кишечнике или желудке»[63]. Вместе со своими коллегами Дуэйном Сэвиджем и Расселом Шедлером он попытался выяснить, какую роль в организме играют микробы. Они доказали, что после уничтожения местных видов микробов их место занимают более вредные захватчики. Изучая мышей, выращенных в стерильных инкубаторах, они выяснили, что эти грызуны меньше жили и медленнее росли, имели предрасположенность к стрессу и инфекционным заболеваниям, а их пищеварительная и иммунная системы не могли нормально развиваться. «Некоторые виды микробов играют важнейшую роль в развитии и физиологии обычных животных и людей», – писал он[64].

Однако Дюбо понимал, что это только начало. «Очевидно, что [уже известные бактерии] являются лишь небольшой частью всего местного сообщества микробов, причем не самой важной», – писал он. Все остальные – что-то около 99 % от всех наших микробов – наотрез отказывались расти в лабораторных условиях. Это «некультурное большинство» обескураживало. Несмотря на все исследования со времен Левенгука, микробиологи не знали ровным счетом ничего о существах, которых, по идее, должны изучать. Мощные микроскопы не помогали. Разные методы культивации микробов тоже не помогали. Нужен был другой подход.


В конце 1960-х молодой американец Карл Везе начал работу над проектом весьма узкой направленности. Проект заключался в сборе различных видов бактерий и анализе молекулы 16S рРНК, присутствовавшей в каждой бактерии. Ни один из его коллег не представлял, зачем это нужно, так что конкурентов у Везе не было. «В этом забеге участвовала лишь одна лошадь», как он потом говорил[65]. Забег дорого ему обходился, медленно продвигался и был довольно опасным – для него требовалось немалое количество жидких радиоактивных веществ. Вместе с тем он оказался революционным.

В те времена для установления родственных связей между видами биологи полагались исключительно на физические черты особей. Чтобы понять, кто кому приходился родичем, их сравнивали по размеру, форме и устройству организма. Везе же считал, что молекулы жизни – ДНК, РНК и белки, без которых не обходится ни одно живое существо, – помогут ему лучше справиться с этой задачей. Со временем в этих молекулах накапливаются изменения, так что у близкородственных видов они более похожи, чем у состоящих в дальнем родстве. Везе был убежден, что, сравнив нужную молекулу у достаточного количества разных видов бактерий, он прольет свет на все ветви и стволы древа жизни[66].

Он остановился на молекуле 16S рРНК, за которую отвечает одноименный ген. Она составляет часть производящего белки аппарата, имеющегося у всех живых организмов, а Везе как раз это и было нужно. К 1976 году он составил описание 16S рРНК около 30 разных видов микробов. В июне того года он занялся видом, который вскоре изменил его жизнь – а также биологию.

Вид этот ему предоставил Ральф Вулф – к тому времени уже эксперт по малоизученной группе микробов, называемых метаногенами. Для жизни этим крошкам требовались в основном лишь водород и углекислый газ, которые они превращали в метан. Обитали они в болотах, океанах и человеческом кишечнике – Methanobacterium thermoautotrophicum, что прислал Вулф, была найдена в горячих канализационных отходах. Везе, как и все остальные, решил, что это всего лишь очередная бактерия, хоть и со странными привычками. Однако, взглянув на ее 16S рРНК, он удивился – молекула оказалась какой-то небактериальной! Есть разные версии того, насколько полно он осознал свое открытие, как отреагировал на него и запросил ли повторный эксперимент. Однако одно мы знаем точно: к декабрю его научная группа провела секвенирование еще нескольких метаногенов и заметила в каждом из них те же особенности. Вулф делится воспоминаниями о словах Везе: «Эти штуки и бактериями-то не являются».

Результаты исследования Везе опубликовал в 1977 году. В своей статье он назвал метаногенов архебактериями – позже их стали называть археями[67]. По словам Везе, они были не бактериями со странностями, а представителями совершенно новой формы жизни. Утверждение было действительно шокирующим. Везе в прямом смысле вытащил этих микробов из навозной кучи и поставил на один уровень с вездесущими бактериями и могучими эукариотами! Как будто все вокруг разглядывали карту мира, а Везе, не говоря ни слова, разложил перед ними еще треть карты, прежде скрытую.

Разумеется, без шумной критики не обошлось, причем даже от других ученых-бунтарей. Журнал Science позже окрестил его «покрытым шрамами эволюционером микробиологии», и шрамы эти остались у него до конца жизни, завершившейся в 2012 году[68]. Сегодня его наследие не вызывает сомнений. Он оказался прав: археи действительно не являются бактериями. И что еще более важно, разработанный им подход – сравнение генов для выяснения степени родства между видами – в современной биологии является одним из главных[69]. Его методы позволили другим ученым – например, его давнему другу Норману Пейсу – начать исследовать мир микробов по-настоящему.

В 1980-х годах Пейс принялся изучать рРНК архей, населяющих места с чрезвычайно высокой температурой. Особенно ему понравилась Октопус Спрингс, глубокая котловина с голубой водой, температура которой достигала аж 91 градуса по Цельсию. В этом источнике было очень много неизвестных микробов, предпочитающих погорячее, – настолько много, что их скопления образовывали видимые розовые волокна. Пейс вспоминает, как прочел об этом источнике и кинулся в лабораторию с криком: «Эй, ребята, вы только взгляните! Их же там килограммы! Хватайте ведро и поехали за ними». Один из коллег возразил: «Ты ведь даже не знаешь, что это за организм».

И Пейс ответил: «Ничего. Просеквенируем и узнаем».

Он мог бы вполне прокричать: «Эврика!» До Пейса дошло: благодаря методам Везе больше не нужно было выращивать микробов, чтобы их изучать! Да чего уж там, даже видеть их было необязательно. Можно было просто вытащить из среды ДНК и РНК и секвенировать их. Так Пейс мог узнать, что там обитает и где оно находится на микробиологическом древе жизни, – биогеография и эволюционная биология в одной пробирке. «Так мы и отправились с ведерком в Йеллоустон», – рассказывает он. В водах этого «спокойного, прекрасного и смертельного» места команда Пейса нашла два вида бактерий и один вид архей, неизвестных до этого науке. Результаты исследования увидели свет в 1984 году[70] – впервые ученым удалось открыть новый организм только по его генам. И тот первый раз был не последним.

В 1991 году Пейс и его ученик Эд Делонг исследовали образцы выуженного в Тихом океане планктона. Сообщество микробов, которое они там нашли, оказалось еще более разнообразным, чем в Йеллоустоне: 15 новых видов бактерий, два из которых явно отличались от всех известных тогда групп. На скудном древе жизни бактерий потихоньку вырастали новые листья, ветви и даже стволы. В 1980-х годах все известные науке бактерии входили в дюжину основных таксономических групп. К 1998 году их уже стало около 40. Пейс во время нашего разговора сказал, что сейчас их примерно сотня, причем около 80 из них так и не культивировали. Спустя месяц Джилл Бэнфилд известила мир об открытии 35 новых таксономических групп – и это лишь в одном месторождении подземных вод в Колорадо[71].

Теперь микробиологи, освобожденные от необходимости выращивать микробов и разглядывать их в микроскоп, имели возможность провести более полную перепись микробного населения планеты. «Наша цель в этом всегда и заключалась, – утверждает Пейс. – Микробная экология, казалось, отжила свой век. Кто-то заглянул под камень, нашел там бактерию и решил, что у остальных все так же. Это же глупо! Мы с первых дней исследований распахнули ворота в настоящий микробный мир. Пусть в моем некрологе так и напишут. Это прекрасное ощущение, таким оно и останется».

Одной лишь 16S рРНК они не ограничивались. Пейс, Делонг и другие скоро научились секвенировать каждый микробный ген в горстке земли или ковшике с водой[72]. Нужно было извлечь ДНК из всех находящихся там микробов, покромсать ее на небольшие фрагменты и сразу все секвенировать. «Да мы, черт возьми, могли так любой ген достать!» – хвастается Пейс. С помощью 16S рРНК они могли узнать, кто там был, но еще у них была возможность выяснить, на что местные виды бактерий были способны. Для этого нужно было поискать гены, отвечающие за синтез витаминов, переваривание клетчатки или невосприимчивость к антибиотикам.

Раз уж эта технология должна была стать для микробиологии революционной, нужно было придумать для нее название поинтереснее. Его придумала Джо Хэндельсман в 1998 году – метагеномика, то есть геномика сообществ[73]. Она как-то сказала, что «появление метагеномики, пожалуй, стало самым важным событием в микробиологии со времен изобретения микроскопа». Наконец-то появился ключ к пониманию того, каких масштабов достигла на Земле жизнь. Хэндельсман и другие начали изучать микробов, обитающих в почве Аляски, на полях Висконсина, в кислотных отходах шахт в Калифорнии, в водах Саргассова моря, в телах глубоководных червей и пищеварительных трактах насекомых. Разумеется, некоторые микробиологи, как и Левенгук в свое время, решили работать в одиночку.

Как и многие другие ученые, в конце концов пересмотревшие свое отношение к микробам, Дэвид Релман изначально собирался их уничтожать и даже стал для этого практикующим врачом, специализирующимся на инфекционных заболеваниях. В конце 1980-х годов он воспользовался методикой Пейса, чтобы выяснить, что за микробы становились причиной загадочных болезней у людей. Поначалу вся его работа казалась тщетной, ведь в каждом образце тканей, где мог потенциально находиться новый патоген, было полно микробов, составляющих нормальную микрофлору. Они лишь сбивали Релмана с толку, пока он не решил, что эти микробы сами по себе могут представлять для него интерес. Почему бы не заняться описанием этих микробов вместо поисков болезнетворного меньшинства?

Для начала Релман отправился к стоматологу и попросил его соскоблить немного налета с десны, а затем поместить образец в стерильную пробирку – так у микробиологов появилась традиция секвенировать собственный микробиом. Этот образец он отнес в свою лабораторию и расшифровал содержащуюся в нем ДНК, зная, что это вряд ли к чему-то приведет. Рот на предмет микробов к тому времени исследовали вдоль и поперек. Микробов полости рта разглядывал Левенгук и изучал Розбери. Микробиологам удалось вырастить почти 500 штаммов бактерий из различных уголков рта. Если и была часть тела, на которой было открыто все, что можно, то только рот. Тем не менее Релман выявил целый ряд новых бактерий на своих деснах – намного больше, чем он смог бы вырастить из тех же образцов[74]. Даже в самой тщательно исследованной среде в теле человека новые виды в огромном количестве сидели и ждали, пока их кто-нибудь откроет. В 2005 году Релман обнаружил то же самое в кишечнике. Он взял пробы с различных участков кишечника у трех добровольцев и обнаружил почти 400 видов бактерий и один вид архей, причем 80 % из них прежде не были известны науке[75]. Другими словами, догадки Дюбо оказались верны – все исследования человеческой микрофлоры в его время были только началом.

bannerbanner