скачать книгу бесплатно
в течение 1 сек. может образовываться и схлопываться более 30 млн. кавитационных пузырьков.
При неправильном расчете материалов затвора и седла или неправильном направлении эрозионного потока он может направляться не на наиболее износостойкие седла, а на менее износоустойчивую поверхность шара, в результате чего будет происходить значительно более быстрая потеря надежности и увеличивается вероятность отказа.
ВЛИЯНИЕ КАВИТАЦИИ НА МЕТРОЛОГИЧЕСКУЮ НАДЕЖНОСТЬ
Влияние кавитации обычно связывают исключительно с отрицательным воздействием на механические части и значительным развитием шума и вибрации. Однако также важно учитывать и такие выходные параметры как рождение турбулентности. Возникают и соответствующие проблемы, такие как ухудшение условий течения потока, вероятность внезапных пульсаций давления и расхода, рост газонасыщенности потока. Из них наиболее серьезно снизят точность и надежность регулирования пульсации давления и расхода. Динамическая ошибка из-за растущей нелинейности движения потока и отклонения от основной расходной характеристики будет резко возрастать.
Из гидравлических характеристик снижается величина пропускной способности, повышается коэффициент гидравлического сопротивления, искажается вид пропускной характеристики. Может наступить такой момент, когда с увеличением перепада давления на клапане расход через клапан остается неизменным и регулирование как таковое прекратится.
Учитывая, что кавитация, как правило, возникает при определенном перепаде давления и расходе, ее появление может проявляться в работе клапана как сбой. Например, при малых углах открытия клапана и определенном перепаде давления увеличивается расход и может возникать временный переход в кавитационный режим. Если клапан рассчитан неправильно и все время работает в условиях малого диапазона регулирования, то такой кавитационный режим может быть постоянным.
В связи с вышеизложенным, регулирующую арматуру следует проверять на возможность возникновения кавитации. Проверка проводится на предельно допустимый бескавитационный перепад давлений на клапане в зависимости от среды, условий течения ламинарного или турбулентного потока и числа Рейнольдса. Расчет на бескавитационный режим проводится в расчетных компьютерных программах типа Conval, Nelprof и др.
ВЛИЯНИЕ КОРРОЗИИ НА НАДЕЖНОСТЬ
Для определения связи параметров надежности с коррозией приведем простой пример. Так, все элементы клапана, соприкасающиеся с агрессивной средой, рассчитываются на коррозионную устойчивость в этой среде. Из 10 элементов, соприкасающихся со средой, если всего один будет неустойчив, то такой клапан будет неработоспособен.
Для работы арматуры в условиях коррозии характерно дискретное распределение. Функционально это будет отказ в связи с утечками агрессивной среды. Вероятность того, что из 1000 клапанов 900 будут работать безотказно, с учетом ограничений по коррозионной стойкости одного из элементов (9%) и связи его с потерей герметичности (7%) равна при биноминальном дискретном распределении примерно только 0,32. Это означает, что даже при потере надежности всего лишь одного элемента в клапане, надежность всего изделия при большой выборке (1000 шт.) будет падать существенно, и каждый 3 клапан будет находиться в состоянии постоянно увеличивающегося вероятного отказа по критерию коррозии и утечкам. Постоянное увеличение вероятности отказа здесь будет связано с ростом коррозионных явлений со временем. Полная картина надежности может быть собрана при достаточно большом объеме статистики.
В этом плане дальнейшее рассмотрение надежности каждого элемента, подбор деталей и элементов клапана равной долговечности для выхода на определенный период работы с облегчением обслуживания является одним из преимуществ высоконадежных клапанов.
ВЛИЯНИЕ ВИБРАЦИИ НА НАДЕЖНОСТЬ.
ХАРАКТЕРИСТИКИ ПУЛЬСАЦИЙ В КЛАПАНАХ
Пульсации давления и связанные с ними вибрации возникают на многих участках. Пульсации – это периодические скачки давления высокой частоты, часто возникающие при действии вращающихся узлов. Возникающие волны давления распространяются во все стороны со скоростью звука, и эта скорость определяется содержанием воздуха в массе, уровнем давления и свойствами технологического оборудования. Пульсации с частотой ниже 30 Гц являются наиболее проблематичными, поскольку они могут распространяться бесконтрольно даже вплоть до контуров питательной воды, вызывая, таким образом, колебания расхода пара. Традиционный спектр пульсаций, возникающий из-за волн давления, в связи с работой различных узлов приведен в табл.2.14.
Табл. 2.14. Характеристики пульсаций оборудования
Пульсации высокой частоты характерны для быстровращающихся узлов оборудования. К таким узлам относятся насосы. Изменение числа лопаток крыльчатки у насоса и их расположения существенно влияют на частотные характеристики волн концентрации и давления.
Пульсации средней частоты характерны для элементов, работающих периодически, например, узлов с контурами разбавления, нагрузки\разгрузки линий. К ним, в частности, могут относиться грязевики песочниц, циклонов, вихревых очистителей, и других узлов, работающих периодически.
Пульсации низкой частоты связаны с элементами, осуществляющими загрузку или открытие\закрытие всей линии. Для них, как правило, характерны высокие значения расходов среды.
Нерегулярные пульсации могут быть связаны с несбалансированной работой оборудования, наличием вибрации и износа. Так, при расшифровке диаграммы пульсации потока может выясниться, что пульсация может быть связана с износом насоса или малым количеством лопаток в рабочем колесе насоса.
Собственные пульсации возникают в среде, при таких явлениях как кавитация, когда происходит вскипание жидкости с образованием пара или выделением газа из газонасыщенных жидкостей. Турбулентность сохраняется на значительном расстоянии от места образования кавитационной области. Это особенно необходимо учитывать при установке клапанов на участках, характеризующихся высокими перепадами давлений.
Пульсации могут возникать и в связи с изменением характера движения среды по трубопроводу, расслоением и осаждением взвесей. В качестве примера можно привести изменение профиля скоростей и концентраций течения жидкости при течении через колена и сужения. Образующаяся турбулентность увеличивает пульсации концентраций по сечению трубопровода и приводит к неравномерной по времени нагрузке на запирающие элементы клапанов.
Пульсации, усиленные неравномерным распределением скоростей по сечению трубопровода, приводят к быстрому выходу клапана из строя. Так, неправильная установка и монтаж поворотной заслонки перпендикулярно продольной оси колена за насосом без учета особенностей распределения скоростей и задаваемой пульсации, быстро приводит к потере герметичности или расшатыванию всех соединений и протечкам.
Пульсации концентрации и давления серьезным образом воздействуют на всю систему гидротранспорта. Причины и последствия воздействия пульсаций на трубопроводы в технологических схемах приведены в табл. 2.15.
Табл. 2.15. Причины и последствия пульсаций в трубопроводах
Как видно из таблицы, все причины появления волн давления и гидроударов в системе связаны с открытием или закрытием клапанов.
В технологических схемах особенным образом выступает и поведение потока при быстром открытии линии. В этом случае из-за особенностей т.н. «стержневого течения» поток может двигаться с нарастающим ускорением в виде пробки. Если в трубопроводе при этом был только воздух, то, как правило, не избежать сильного гидравлического удара в системе и в основном по следующему по ходу движения потока элементу. Частая технологическая ошибка состоит в том, что клапаны открываются или закрываются в соответствии с внезапно возникшей производственной задачей, без соблюдения технологического регламента пуска или останова.
Пульсации особенным образом воздействуют на клапаны. Известны случаи, когда при неправильно подобранном запирающем элементе с креплением болтами за незначительное время происходило вывинчивание таких болтов и заклинивание клапана даже при незначительном сроке эксплуатации. Сильные пульсации в совокупности с гидроударом могут приводить к вылету штока из запирающего элемента и нанести существенный вред жизни и здоровью обслуживающего персонала.
Источником пульсаций и волн давления является и сам клапан. В соответствии с характеристикой изменения момента сил при закрытии, максимальная волна давления, отдаваемая в поток, происходит в момент, когда угол закрытия составляет примерно 85-95%. Это особенно выражено у всех видов шиберных задвижек и поворотных заслонок. Чтобы избежать слишком сильной волны давления необходимо медленно закрывать клапан на последнем участке и тем самым избежать резкого гидроудара в системе.
Плохая калибровка позиционера, неправильная задача командного сигнала со стороны системы управления приводит к разгону клапана и работе в режиме автоколебаний. Вынужденные автоколебания задают регулярные пульсации потока. Из-за особенностей реологических свойств и течения сложных смесей пульсации концентрации могут сохраняться на всем протяжении трубопроводной части до следующего технологического элемента.
ТРЕБОВАНИЯ К КЛАПАНАМ И АРМАТУРЕ
Фактор пульсаций, как связанный с надежностью и работоспособностью клапанов, пока не учитывается в их основных спецификациях. Только у нескольких фирм можно встретить информацию о характеристиках работы клапанов в условиях повышенных пульсаций, в частности, данные по ограничениям вибрации или по рекомендованным конструкциям для повышения надежности клапана.
Чтобы сгладить воздействие пульсаций и гидроударов и «мягких» гидроконцентрационных ударов на работу клапанов необходимо использовать специальную конструкцию клапана. Так для сглаживания волн давления, расхода или концентрации должно учитываться следующее:
– Клапаны, работающие в условиях гидроудара, должны предусматривать специальные решения для повышения надежности в условиях мало и высокоцикловой нагрузки.
– Надежность в условиях гидроудара должна учитываться в конструкции клапана.
– Для исключения образования пульсаций собственно от закрытия\открытия клапана, в нем должны быть предусмотрены предохранительные схемы сглаживания давления при помощи дополнительных устройств.
– Время срабатывания при открытии и закрытии клапана должно соответствовать требованиям образования или затухания волны давления и пульсаций для устранения гидравлического удара. Открывание и закрывание клапана должно происходить, как правило, медленно.
– Время реакции клапана на сигнал должно быть минимальны.
ПРИМЕНЕНИЕ КЛАПАНОВ ДЛЯ РАБОТЫ В УСЛОВИЯХ ГИДРОУДАРОВ
Гидроудары могут появляться в системе нерегулярно или периодически. Предсказуемыми являются только те, которые связаны с задаваемой работой технологического оборудования. К ним относятся, например:
– пуск\останов насоса
– быстрое опорожнение\заполнение емкости, технологического узла
– автоматическое перекрытие линии клапанами.
Непредсказуемыми являются процессы пульсаций, возникающие из-за отклонений в технологическом процессе. Они могут приводить к:
– кавитации
– повышенной виброактивности
– нарушению работоспособности.
Для условий пуска \останова насосов выбираются обычные клапаны с возможностью, как отсечки, так и регулирования.
Для условий быстрого опорожнения линии, а также в варианте предохранительного клапана для быстрого опорожнения линии клапаны должны иметь следующие особенности:
– Высокие коэффициенты пропускной способности клапанов (Кv): для обеспечения защиты трубопровода от волн давления потребуются меньшие размеры и (или) меньшее число таких клапанов. Этим обеспечивается снижение расходов на установку и снижение веса систем защиты трубопроводов.
– Быстродействие – быстрое открытие и плавное закрытие клапанов позволяют своевременное реагирование на изменение давления в системе жидкости.
– Дополнительный резерв по пропускной способности позволяет справляться с непредвиденными, более высокими, чем расчетные, скачками давления систем.
– Жесткость конструкции, исключает такие проблемы, как утечку среды через сальниковые уплотнения, разрыв элементов и их деформацию, что обычно приводит к выходу из строя клапанов.
– Простота обслуживания и надежность конструкции.
Для условий работы при автоматическом перекрытии линии автоматическими клапанами при условии возникновения гидроудара и пульсаций, клапаны должны иметь элементы повышения надежности. К ним относятся несколько основных элементов. Это такие элементы как:
– Жесткое соединение шара с осью, механизм противостояния выдавливанию оси, специальные способы запирания седел. Компания Метsо Automation использует для этих целей цельнолитой шар-ось «Stem Ball», исключающий возможность разъединения шара с осью, его заклинивание и потерю работоспособности.
– Специальный конструктивный элемент безопасности от выдавливания оси. Элементом повышения промышленной безопасности служит специальный литой элемент на клапане, с целью предотвращения выдавливания оси из своего гнезда. В этом случае предотвращается риск нанесения ущерба жизни и здоровью персонала, катастрофических аварий и наружных утечек среды.
– Специальное соединение клапана с приводом. Это специальный кронштейн для соединения оси с приводом.
– Позиционеры, способные работать в условиях высокой вибрации.
– Специальный инструментарий, включающий конечные выключатели типа SWITH GUARD, позволяющий обеспечить медленное открытие клапанов, работающих на создание гидроудара или медленное закрытие клапанов, работающих на создание обратного гидроудара. Для преодоления большого поворотного момента накоплении давления при закрытии шарового или дискового затвора при медленном закрытии может быть установлен бустер – усилитель давления.
– Учитывая, что при гидравлическом ударе обычно начинается протечка по фланцам, что и служит признаком повторяющихся гидравлических ударов, следует отметить возможность применения фланцев с поверхностями, выполненных по варианту «шип-паз».
Типы рекомендуемых клапанов METSO AUTOMATION для условий высоких пульсаций и гидроударов приведены ниже, табл.2.16.
Табл. 2.16. Типы клапанов Метсо, применяемых для условий высоких пульсаций и гидроударов
ВИБРАЦИЯ В СИСТЕМАХ ПАРОРАСПРЕДЕЛЕНИЯ И ЕЕ ВЛИЯНИЕ НА РАБОТОСПОСОБНОСТЬ КЛАПАНОВ
Клапаны испытывают нагрузки от вибрации. Наиболее часто это происходит в системах парораспределения. Эти проблемы встречаются в турбинном хозяйстве, ТЭС и ТЭЦ, системах подачи пара СРК и в пароконденсатных системах.
При эксплуатации систем парораспределения, особенно турбинного хозяйства, отмечаются систематические повреждения органов парораспределения. В большинстве случаев повреждения обусловлены обрывами штоков регулирующих клапанов, искажениями прилегания чаши к седлу, выпрессовкой седел, а также отклонениями в фиксации сегментов седел регулирующей ступени. К наиболее распространенным неполадкам в системах парораспределения относятся износ элементов подвески штоков, уплотнительных букс и поршневых колец. Износу подвергаются также тяги, серьги, подвески, ограничительные шпильки прижимных пружин, элементы шарнирных соединений и детали передачи усилий от сервомоторов.
При этом анализ характера повреждений, выполненных в работах ЦКТИ, ЛМЗ, МЭИ свидетельствуют об их вибрационном происхождении. Причина частых повреждений и поломок различных элементов систем парораспределения связана с наличием низко и высокочастотных колебаний, приводящих к относительно быстрому набору критического числа циклов нагружения, прежде всего деталей конструкций различных регулирующих клапанов. Например, за три часа эксплуатации детали при частоте нагружения f=100Гц число циклов достигает значения 10
. Зачастую высокочастотные колебания сопровождаются характерными звуковыми эффектами («пение» клапанов). Отмечаемые эффекты в форме «стука отбойного молотка» свидетельствуют о наличии низкочастотных колебаний. В результате прогрессируют усталостные явления, включая малоцикловую и звуковую усталость.
Основными причинами неустойчивой работы регулирующих клапанов систем парораспределения являются автоколебательные процессы в связи с эффектами статической неустойчивости, перемена знака усилия по мере открытия клапана. Продольные автоколебания могут формироваться вследствие инерционности потока рабочей среды, когда помимо парового усилия на чаше появляется дополнительная возмущающая сила. При совпадении частоты основного тона продольных колебаний чаши и штока клапана с собственными частотами парового объема, например, патрубков подвода рабочей среды возникают акустические резонансы, приводящие к росту амплитуды колебаний за чашей клапана. При наиболее критических режимах, например, сверхкритическом режиме течения рабочей среды, пульсации давления приводят в действие переменные усилия в окружном направлении с амплитудами в несколько десятков кN, а в осевом направлении – сотен кN. Они и становятся причиной повреждения, как клапанов, так и сопряженных узлов.
К способам повышения вибрационной надежности относятся отстройка от резонанса путем изменения собственных частот механических колебаний клапанной системы, а также частоты внешних возмущений путем изменения геометрии, массы и размеров (длины и диаметра штока клапана, массы сегмента затвора и пр.). В некоторых случаях кардинальной мерой является полная замена конструкции клапана с изменением посадочных размеров.
Известно, что виброактивность регулирующих клапанов резко возрастает не только при малых степенях открытия клапана, но и в области зоны перемены знака направления давления пара. В этом случае работа возмущающих сил увеличивается вследствие роста амплитуды колебаний из-за люфтов в сочленениях элементов затвора клапана или его передаточных звеньев. В связи с этим эффективными будут нейтрализация люфтов, устранение неплотностей и подтяжка резьбовых соединений. Кардинальным методом является использование литых жестких затворов, прямая связь штока затвора с приводом и посадка позиционеров на привод.
Важным является и снижение вибраций клапанов за счет элементов демпфирования. В этом случае недопустима приварка специальных демпфирующих кронштейнов к корпусу клапанов, как это иногда встречается на предприятиях.
Технологически вибрации можно гасить, если нагрузка или расход клапана повышается совместно с его открытием и выводом из виброактивной области малого угла открытия клапана.
Если необходимо в течение длительного времени поддерживать заданную нагрузку, то необходимо осуществлять перестройку системы регулирования, изменяя последовательность открытия регулирующих контуров и клапанов в них.
Очевидно, что неустойчивость в работе регулирующего клапана определяется нестационарными процессами в его проточной части. Это такие процессы как источники автоколебаний. Они классифицируются по акустической, волновой и вихревой формам. Например, считается, что акустическая неустойчивость обусловлена особенностями течения струи пара в области чаши клапана. Она, как акустическая система выбирает из поступающей в нее рабочей среды – шума соответствующие полосы частот и усиливает их. Усиление колебаний происходит в том случае, если скорость поступления энергии в данной полосе колебаний превышает скорость диссипации (затухания) энергии. Основными факторами усиления колебаний здесь являются регулярные пульсации давления и изменения проходных сечений системы.
Частоты колебаний определяются формой подсоединенных трубопроводов, скоростью звука в рабочей среде. При данном виде неустойчивости могут возбуждаться как продольные, так и радиальные колебания. Волновая неустойчивость оценивается эффектами сверхзвуковых течений, которые могут происходить в области затвора клапана при малых его открытиях. Частотные характеристики колебаний в этом случае формируются нестационарностью различных видов волновых явлений (скачки уплотнений, волны разрежения и сжатия).
Вихревая неустойчивость определяется эффектами вихревых образований и закрутки потока. При движении вихрей с частотами, совпадающими или превышающими в определенной пропорции собственные акустические колебания проточной части, возникают явления резонанса, при котором амплитуда пульсаций давления существенно возрастает. Поскольку течение в клапане и за затвором клапана является закрученным, то могут формироваться совместные колебания и потока, и затвора. Если эта частота совпадает с собственной частотой акустических колебаний, то происходит возбуждение колебаний. Обычно вихревое ядро за затвором клапана формирует низкочастотные колебания давлений большой амплитуды. Резонирующими полостями являются также трубы и патрубки подвода пара к клапану. В целом рождается неустойчивость всей системы – трубопровода подвода пара, самого клапана и последующей регулирующей ступени. При этом каждый компонент реагирует с определенным запаздыванием. Это вызывает зависящие от частоты входящего импульса сдвиг фазы и изменение амплитуды в возмущения.
Для турбин повышенная вибрация клапанов влияет и на вибрации самой турбины, особенно ротора высокого давления. На ротор воздействуют пульсации давления (расхода) водяного пара, расширяющегося в той части, где работает вибронеустойчивый клапан. Из-за повышенной вибрации валопровода турбины повреждаются ее подшипники. Такие режимы возникают при переходных режимах и неполной нагрузке турбоагрегата, а также когда турбина работает в неустойчивом режиме и режиме частых пусков и остановов. Даже в режиме длительной постоянной нагрузки на турбине для потоков пара характерен нестационарный режим течения. Уровень пульсаций для различных частотных спектров может достигать до 1,2-1,7 МПа. Такой уровень пульсаций является причиной сокращения ресурса наиболее слабых элементов парораспределения.
Частота пульсаций давления в регулирующих клапанах турбин также существенно зависит от режима нагрузки турбоагрегата. Тренды частот различны, вплоть до скачкообразных. Стабильность частотных характеристик наблюдается только в установившихся режимах течения при нагрузках, близких к номинальным. Особенно неблагоприятны режимы несения частичных нагрузок при малых степенях открытия затвора регулирующего клапана и не только из-за нестационарности процесса в клапане, но и из-за изменения характеристик потока в котельном агрегате и паропроводе. Т.е. даже при удовлетворительном сопротивлении вибрации клапана амплитуда пульсаций среды за ним может быть высокой. И это не только накопление усталостных эффектов, но и резкие скачки уровня вибрации опор валопровода.
При пусковых режимах пульсации начинаются с момента открытия клапанов. По отношению к уровню давления рабочей среды после клапана их уровень достаточно высок и достигает 15-25% с уровнем до 1,6 МПа. При этом регулирующий клапан в момент открытия генерирует высокочастотные пульсации давления. В зависимости от степени открытия клапана, превалирующие частоты изменяются. И, как правило, с открытием клапана частота пульсаций падает.
В целом уровень пульсаций давления пара после его дросселирования по отношению к давлению может достигать 30% при относительно высоких частотах. Образование пульсаций чувствительно даже к небольшим отклонениям положения штоков клапанов. Пульсации имеют тенденцию к росту при повышении нагрузки и после определенной границы начинают снижаться. Стабильность частоты пульсаций характерна только в условиях установившегося режима эксплуатации ТЭЦ.
Наибольшая степень влияния пульсаций давления в регулирующих клапанах наблюдается на ближайших к ним областях валопровода. При открытии регулирующих клапанов на турбинах происходит скачкообразный рост виброскорости из-за ударного воздействия пара за клапаном при его открытии. При этом изменяется вектор окружной составляющей этой силы. Корреляции всплесков вибрации с определенными частотами возбуждения регулирующих клапанов свидетельствует о начале автоколебаний.
Большие проблемы вызывают т.н. квазистационарные вибрации, рождающиеся из взаимосвязи направленности виброскорости по времени или нагрузке и соответствующих пульсаций в клапанах. Причинами квазистационарной вибрации могут быть и тепловые дисбалансы, режимная и тепловая расцентровка и др. В ряде случаев наблюдается скачкообразный характер изменения параметра интенсивности вибраций, и его повышенный уровень. Существенный вклад должна вносить аэродинамическая нестационарность процесса, влияющая на нестационарный характер колебаний и вибрации турбины. Признаком такой вибрации от процессов в системе парораспределения может служить увеличение вибрации мелкими скачками, неравномерно распределенными по времени. Другим признаком может быть избирательность неравномерности вибрации по частотному диапазону, соответствующему собственным частотам колебаний регулирующих клапанов.
Признаком автоколебательных и акустических явлений в системе парораспределения можно считать богатый спектр высокочастотных составляющих пульсаций. Однако однозначную трактовку дать достаточно трудно. Так, при отрыве затвора от седла могут возникать ударные нагрузки из-за высоких уровней пульсаций давления. Они, в свою очередь, вызовут сложные колебания и вибрацию сопряженных узлов.
Сложно диагностируются акустические эффекты в системе парораспределения. Например, наличие при малых степенях открытия клапана сверхзвуковых течений в области его чаши приводит к возможности формирования акустических резонансов. В большей степени подобные эффекты могут инициировать разного рода отрывы потока, а также поперечные колебания затворов клапанов.
Как показано в исследованиях ЦКТИ, среди таких определяющих факторов влияния на повреждаемость подшипников, как особенности центровки подшипников и линии валопровода, эксплуатационные расцентровки опор под воздействием валопровода и нагрева фундаментов, проблемы тепловых расширений цилиндров и скольжения корпусов подшипников по опорным поверхностям фундаментных рам, фактор влияния вибрационных характеристик системы парораспределения на уровень вибрации ротора турбины является равнозначным.
ПОВЫШЕНИЕ НАДЕЖНОСТИ НА ЭТАПЕ ПРОЕКТИРОВАНИЯ И ИНЖИНИРИНГА.
ИСПОЛЬЗОВАНИЕ РАСЧЕТНЫХ КОМПЬЮТЕРНЫХ ПРОГРАММ
Наиболее эффективный способ повышения надежности – использование критериев надежности уже на этапе проектирования. Например, рабочие зазоры в клапанах, в т.ч. и ремонтные, формируются из учета знаний эксплуатации клапана в конкретной рабочей среде, здесь же задаются параметры коррозионной стойкости для всех элементов клапана, соприкасающихся со средой. Зная характеристики максимальных и минимальных, а также номинальных значений давления, температуры, расхода, колебаний характеристик среды можно добиться повышения надежности уже на этапе проектирования клапана.
Правильно рассчитанные клапаны задают возможность их использования с повышением долговечности и дают возможность предложить специальные программы повышения надежности и гарантий для предприятий. На примере одного предприятия, где был установлен клапан завышенного размера, работавший в неэффективных для него условиях от 0 до 10% открытия, был обнаружен повышенный местный износ привода, высокий расход воздуха, работа всех систем проходила в нестабильных условиях.
Гарантии могут быть повышены, если специалисты предприятия пройдут обучение и будут аттестованы на расчет и применение клапанов, при ремонте будут использованы только оригинальные запасные части, ремонт будет производиться по процедурам и технологии завода изготовителя, клапан будет предварительно рассчитан, на него будет заведен технический паспорт, специалисты будут проходить периодическую переаттестацию, а до момента поставки клапан будет дополнительно тестирован в соответствии с условиями процесса. Приемку и тестовые испытания при необходимости желательно осуществлять в присутствии специалистов производителя и заказчика.
Надежность может понижаться постепенно в связи с постепенным износом, накоплением усталости и др. Однако, необходимо внимательно отнестись к каждому из элементов клапана, поскольку надежность каждого из них может отличаться в разы. Именно с этим связана проблема, где клапан при одних и тех же условиях может работать в несколько раз меньше. Обычно это связано с тем, что при расчете не был принят во внимание какой-либо из существенных параметров. И тогда один и тот же клапан может работать на одном процессе в 10-20 раз меньше, чем другой. Точное выделение наиболее слабого элемента, который и определяет надежность клапана в целом, и позволяет существенно повысить надежность и долговечность. Программы оказывают существенную помощь в выявлении слабых мест и перерасчете клапанов.
Особое внимание следует уделять элементам, испытывающим нагрузки от воздействия среды. Для шаровых, сегментных клапанов и поворотных заслонок наиболее характерными являются затворы, седла, штоки и уплотнения.
ПРИМЕРЫ КОНСТРУКТИВНЫХ СПОСОБОВ ПОВЫШЕНИЯ НАДЕЖНОСТИ КЛАПАНОВ
1.1. Дублирование. Например, используется двойное верхнее уплотнение.
1.2. Снижение вероятности катастрофических отказов за счет специальных конструктивных элементов, например, механизма против выдавливания оси
1.3. Использование специальных материалов, отвечающих требованиям эксплуатации. Например, поверхность шара – из специального хромового или нитридтитанового покрытия, поверхность седла – из стеллита.
1.4. Сменные и модульные элементы. Используются сменные седла, и иногда вся внутренняя начинка клапана может быть заменена на более соответствующие условиям эксплуатации.
1.5. Долговечность и надежность в течение длительного срока эксплуатации за счет использования самоочищающегося седла, наплавка седла стеллитом.
1.6. Разгрузка нагруженных элементов клапана, например через уравнивание давления. Так, разгрузка золотника на 99% приводит к снижению требований к мощности привода и устраняет трение в нем.
1.7. Специальная конструкция при высоких перепадах давления не допускает скачкообразного роста давления. Например, нет скачкообразного начала регулирования при открытии в связи с большим холостым ходом.