banner banner banner
Курс «Применение трубопроводной арматуры». Модуль «Применение поворотной арматуры в энергетике»
Курс «Применение трубопроводной арматуры». Модуль «Применение поворотной арматуры в энергетике»
Оценить:
Рейтинг: 0

Полная версия:

Курс «Применение трубопроводной арматуры». Модуль «Применение поворотной арматуры в энергетике»

скачать книгу бесплатно


1. По результатам анализа технологической схемы выделяются контуры, где небольшие изменения параметров на входе приводят к непропорционально большому или малому изменению параметров на выходе. Эти контуры рассматриваются отдельно, и для них производится специальный выбор клапанов, способных работать в таких условиях.

2. Клапаны для этих контуров рассчитываются по специализированной программе расчета типа CONVAL или NELPROF (Metso Automation).

3. Далее проводится их оптимизация для конкретных контуров регулирования в соответствии с особенностями работы контура и заданием от системы АСУТП.

ТИПОВЫЕ СРЕДЫ В ЭНЕРГЕТИКЕ. ПРОБЛЕМЫ РЕГУЛИРОВАНИЯ ДВУХФАЗНЫХ ПОТОКОВ

Выбор регулирующих клапанов для многофазных потоков не является такой же хорошо проработанной и легкой задачей как расчет и выбор клапанов для однофазных потоков. Расчет регулирующих клапанов для чистых жидкостей или потока газа может быть сделан с использованием стандартных расчетных формул, основанных на динамике потока и относительных коэффициентов, применяемых при выборе клапана.

Когда регулирующий клапан рассчитывается для двухфазного потока, которым обычно является смесь жидкости и пара, не существует общепринятых методов, которые бы достоверно решали бы эту задачу. Это связано с тем, что двухфазный поток не может быть описан в одно и тоже время математически просто и без погрешностей. Также при экспериментальных исследованиях требуется провести множество испытаний с различными видами процентных композиций и фракций по весу, с использованием различных типов клапанов. Невозможно рассчитывать клапан для многофазного потока с той же точностью, как и для однофазных потоков.

Многое зависит и от испытательной базы компании – производителя клапанов, его опыта работы в отрасли. К примеру, для получения достоверных результатов компанией METSO AUTOMATION проведено множество исследований по определению поведения потоков многофазных смесей, включая пароконденсатные смеси при их прохождении через регулирующие клапаны. В качестве результата были выведены методы расчета и выбора клапанов для многофазных потоков, применимые ко всем видами клапанов с поворотным затвором, производимых Mетсо.

Расчет двухфазного потока

Метод основан на теории гомогенного потока, который допускает, что жидкость и пар движутся с одинаковой скоростью и гомогенно смешаны. Метод может быть применен в следующих 2-х случаях двухфазного потока:

– одно вещество – 2-х фазный поток, т.е. например, вода и пар,

– два вещества – например, вода и воздух.

Теория гомогенного потока основана на усреднении свойств, таких как плотность и скорость двухфазной смеси. После того, как свойства двухфазной смеси были усреднены и определены, клапан рассчитывается при помощи уравнений, близких к стандартным формулам для однофазного потока.

Плотность двухфазного потока вычисляется при использовании отдельных плотностей для двух фаз на стороне повышенного давления клапана. К тому же в расчет принимается расширение пара, когда он проходит через клапан. Плотность смеси, так называемая эффективная плотность, формулируется в уравнении. В уравнении учитываются следующие факторы, оказывающие влияние:

– доля расхода пара по весу от полного весового расхода,

– доля расхода жидкости по весу от полного весового расхода,

– плотность жидкой фазы на стороне входа в клапан,

– плотность паровой фазы на стороне входа в клапан,

– фактор расширения пара.

Производительность для дросселируемого двухфазного потока описывается также зависимостями, зависящими от следующих параметров:

– полного расхода смеси по массе

– фактора геометрии труб

– расходной характеристики клапана

– эффективной плотности

– характеристики падения давления по клапану.

Дросселируемый поток

Экспериментальное изучение дросселируемого двухфазного потока трудноопределимо, и это не позволяет дать точные данные по падению давлений. При расчете регулирующих клапанов аппроксимация падения давления смеси производится по аппроксимации доли падения давления чистой жидкости и чистого пара. Чистый паровой поток дросселируется, когда падение давления достигает определенной величины.

В случае, когда вся жидкость находится в жидком виде, дросселирование начинается, когда давление падает ниже критического значения. Когда малая доля пара добавляется в поток, то изменяется дифференциал давления, характерный для дросселирования, но он будет близок к обычному критическому давлению. Увеличение доли пара еще более изменяет критическую величину падения давления, что приводит к большему дросселированию, но не ясно, как это происходит в регулирующих клапанах.

В конце, когда вся жидкость находится в паровой фазе, дросселирование начинается с падения давления по другой закономерности. В компании Метсо были проведены теоретические вычисления и испытания потока, чтобы определить критические давления для идеальных сопел. Эти результаты показывают, что линейные зависимости между критическим падением давления в жидкой и газообразной фазе в качестве доли от процентного соотношения доли пара по весу хорошо описывают критическое падение давления в дросселируемом двухфазном потоке с достаточной точностью и могут быть сведены в уравнения.

Когда действительное падение давления превышает значение по специальным уравнениям, двухфазный поток должен рассматриваться как дросселируемый поток и падение давления используется в уравнении расчета клапана чтобы вычислить фактор расширения пара. Минимальное значение фактора составляет примерно 0,667.

Точность и погрешности расчета

Из-за особенностей двухфазного потока жидкости и газа невозможно описать различные адекватные возможные формы потока простыми математическими формулами. Методы расчета основываются на так называемой теории гомогенного потока, который допускает, что скорости жидкости и газа одинаковы, и что они полностью перемешаны. Это наиболее частый тип потока. Можно считать, что описанный метод можно применять при расчетах многих 2-х фазных потоков.

Точность расчета уменьшается, если форма потока отклоняется от описанного типа. В трубах возможны следующие формы потока:

– пузырькового типа – когда жидкая, паровая и газовая фазы разделены на пузырьки и жидкости, пузырьки имеют скорость как у жидкости,

– пробкового типа – когда количество газа возрастает, пузырьки образуют пробки,

– взболтанного типа – когда количество газа еще больше возрастает, пробки и затычки разрушаются, что приводит к очень нестабильной форме потока,

– кольцеобразного типа – когда жидкость течет как тонкая пленка вдоль стенки трубы и газ течет при высокой скорости в середине,

– течение слоистого типа – когда в горизонтальной трубе фазы перемещаются слоями отделенными один от другого, благодаря силе тяжести. Когда скорость газа увеличивается, то на поверхности жидкости образуются волны.

– туманно-капелькового типа – когда почти вся жидкость находится в состоянии капелек, формируя туман и двигаясь вместе с газом.

Изменения в состоянии жидкости и пара, испарение жидкости или конденсация пара в жидкость делают вычисления доли, веса и эффективной плотности весьма затруднительными.

Эти факторы в точности расчета особенно очевидны в однокомпонентной двухфазной смеси. Когда давление уменьшается и температура всегда постоянна, жидкость имеет тенденцию испаряться, в то время как доля веса пара и требуемая производительность клапана увеличивается. С другой стороны, т. н. феномен метастабильности имеет тенденцию сглаживать изменения в фазах, что означает, что жидкость не испаряется, хотя термодинамическое равновесие вещества должно было бы показать необходимость этого, но вот испарение случается и после точки условного равновесия.

Влияние процентного соотношения по весу в погрешности расчета клапана особенно видно на малых долях воды и образующегося пара. Например, изменение в доли массы от 1 до 2% смеси насыщенного пара и воды до 7 Бар вызывает 73% изменение удельного объема в смеси. Это означает, что требуемая производительность возрастает на 30%. С другой стороны, если доля по массе потока изменяется от 98 до 99%, то удельный объем смеси изменяется на 1%. Если доля по массе с однокомпонентной двухфазной смесью не известна точно, то расчет может быть проверен, допуская, что вся масса течет как поток пара. Это гарантирует, что пропускная характеристика клапана адекватна во всех ситуациях.

В реальности расчет по пару и по пароконденсатной смеси показывает, что учет только пара приводит к завышению размера клапана по сравнению с необходимым, тогда как неучет наличия конденсата в трубе приводит к потере в теплопроизводительности и отклонениям в расходе пара.

Шум

Нет методов предсказания шума в двухфазных потоках. На практике установление и расчет шумовых характеристик в двухфазных потоках – сложная задача. Известно из опыта, что шум при кавитации в чистой жидкости ниже, например, чем воздуха, смешанного с жидкостью. Воздушные пузырьки вызывают волны давления, создаваемые микровзрывом кавитационных пузырьков.

СРАВНЕНИЕ РАСЧЕТА КЛАПАНОВ ПО ПАРУ И ПО ДВУХФАЗНОЙ СМЕСИ

Сравнение расчета по пару и двухфазной смеси важно тем, что не все производители делают это, не давая заказчикам получить дополнительную экономию от снижения потерь пара, устранения проблем с работоспособностью, снижения колебательности процесса и т.д.

Типичной задачей является расчет пропускной характеристики регулирующего клапана определенного DN по насыщенному пару при заданной расходной характеристике и параметрах клапана.

Расчет клапана по пару

При расчете такого клапана задаются значения потока, а именно расход пара, т\ч, температура на входе пара,

С, давление на входе и на выходе из клапана, Бар.

– Свойства жидкости – плотность, кг\м

, коэффициент удельной теплоемкости

– Геометрические характеристики трубы – диаметр на входе и диаметр на выходе, мм, гидравлические сопротивления и т.д.

– Коэффициенты для расчета клапана, фактор соотношения падения давления.

Расчет состоит в определении фактора относительного падения давления, включая фланцы трубы, относительное значение удельной теплоемкости, проверки потока на дросселирование и фактора расширения пара. Из этих данных получают пропускную характеристику клапана и относительное значение открытия клапана для обеспечения линейности регулирования. Это значение должно попадать в диапазон 50-70%.

Расчет клапана по двухфазной смеси пара и конденсата

При расчете задаются исходные данные по потоку:

– расход по воде, кг\ч, расход по пару, кг\ч,

– температура воды на входе,

С,

– давление на входе клапана, давление на выходе, Бар.

– свойства жидкости – плотность жидкости, плотность пара на входе, критическое давление по воде, Бар, давление пара в жидкости (давление вскипания) при температуре Т

, относительная удельная теплоемкость.

– конфигурацию труб – диаметр трубы на входе и выходе, мм, гидравлические сопротивления.

– безразмерные коэффициенты для расчета клапанов, включая коэффициент падения давления, коэффициент возврата давления.

Расчет состоит в определении полного расхода потока по весу (массе), кг\ч, определении доли конденсата в полном расходе по весу и пара, вычислении коэффициента падения давления, включая фланцы труб, относительное значение удельной теплоемкости, коэффициент возврата давления, включая фланцы, коэффициент критического давления по жидкости, критическое падение давления дросселируемого двухфазного потока, проверки потока на наличие дросселирования, фактора расширения пара, эффективной плотности смеси,

Далее выводится пропускная характеристика клапана и относительное открытие клапана. В случае если открытие выходит за пределы 50-70%, необходимо проводить перерасчеты заново.

Тестовые расчеты клапанов по пару, в условиях идеальных условий и по пароконденсатной смеси (до 5-10% конденсата), характерных для реальных условий систем парораспределения, например, обогреваемых валов, показывает, что отклонения регулирующей способности клапанов от оптимального может составлять до 20-30%.

3. Применение поворотной арматуры в энергетике

3.1. Применение поворотной арматуры для воды и пара

Вода является основой процессов в энергетике и используется в значительных объемах. Ее применение возможно в виде энергетической воды, охлаждающей воды, горячей воды, технологического пара и возвратного конденсата, а также пароконденсатной и паровоздушной смеси. Как вода, так и конденсат характеризуются чистотой по содержанию солей, минеральных кислот и т.п. В случае ее плохой очистки значительные проблемы могут возникнуть из-за накипи или корродирующего действия конденсата, в первую очередь оседающего при прохождении через более холодные тепловые мостики арматуры.

В связи с этим стремятся очистить воду на узлах водоочистки, где в воду добавляют специальные реагенты и ингибиторы. Химически чистая вода должна иметь рН=7. В качестве контуров, где широко используется поворотная арматура, можно привести ионные фильтры, контуры осветления, отстойники, суспензионные осветлители, участки дозирования химикатов (добавки коагулянтов, умягчителей, обессоливателей), установки деаэрации воды.

Большая часть поворотной арматуры для применения в распределительных трубопроводах воды и пара используется в качестве воздушников для выпуска воздуха при заполнении жидкостью трубопроводной системы, а также в качестве дренажных устройств для выпуска конденсата, например, при опорожнении системы. Ранее для этих целей широко использовались вентили, поскольку считалось, что он значительно меньше подвержен коррозии и износу, чем, например, шаровой кран. Однако, решение проблемы коррозии при применении более качественных, стойких к конденсату материалов, эффективных сальников и уплотнений, например, из материала X-treme способствовали значительному повышению доли использования шаровых кранов, особенно малых диаметров. К тому же вентили малых диаметров показали недостаточную способность служить долговременно из-за малого числа нормируемых циклов открытия и закрытия. Переход от критерия дешевизны при закупке к критерию общей стоимости владения значительно увеличил долю применения поворотных шаровых кранов и поворотных заслонок для подобных видов применений.

Для резервуаров и указателей уровня также эффективно применять шаровые краны с мягкими уплотнениями в качестве пробно-спускной арматуры.

Для воды и пара повышенных и энергетических параметров также во многом можно применять поворотную арматуру. В частности это может быть отвод пароконденсатных смесей, в которых наблюдается значительный разброс по температуре и давлению. Если температура пара при 16-20 Бар может составлять 160-180

С, то температура конденсата при этом же давлении может равняться температуре стенки трубопровода. Таким образом, уплотнения будут работать в условиях термоциклирования, рождающего дополнительные напряжения. Если используются некачественные или обладающие значительным коэффициентом термического расширения полимерные материалы, то это приводит к быстрому старению. Срок службы таких материалов будет значительно ниже, чем, если для этих условий были бы выбраны материалы с низким коэффициентом термического расширения, например из класса фторопластов.


Вы ознакомились с фрагментом книги.
Для бесплатного чтения открыта только часть текста.
Приобретайте полный текст книги у нашего партнера:
Полная версия книги
(всего 1 форматов)