Читать книгу Buffon's Natural History. Volume X (of 10) (Georges Louis Leclerc Buffon) онлайн бесплатно на Bookz (18-ая страница книги)
bannerbanner
Buffon's Natural History. Volume X (of 10)
Buffon's Natural History. Volume X (of 10)Полная версия
Оценить:
Buffon's Natural History. Volume X (of 10)

3

Полная версия:

Buffon's Natural History. Volume X (of 10)

The brute matter, of which the body of the earth is principally composed, is a substance that has not undergone many alterations, though the whole has more than once been disturbed and put in motion by the hand of Nature. The globe of the earth has been penetrated by fire, and afterwards covered and disordered by water. The sand, which occupies the interior parts of the earth, is a vitrified matter; and the layers of clay, by which its surface is covered, are nothing but the same sand having been decomposed by the operation of the waters. Granite, free-stone, flint, nay, all metals, are composed of this same vitrified matter, whose particles have been condensed or separated, according to the laws of their affinity. These substances are totally destitute of animation; they exist, and will continue to do so, independently of animals and vegetables. There are, however, many other substances, which, although they have the appearance of being equally inanimate, originate from organized bodies; and of this description are marble, lime-stone, chalk, and marl; they being composed of the fragments of shells, and of those small animals which by transforming the water of the sea into stone, produce coral, and all the madrepores, whose varieties are numberless, and whose quantity are almost immense. Pit-coal, turf, and many other substances found in the upper strata, are also of this nature, they being only the residue of vegetables which have been more or less corrupted or consumed. Besides these, there are other substances which have been produced by the second action of fire upon original matter; these are but few in number, and consist of such as pumice-stones, sulphur, the scoria of iron, asbestos, and lava. To one or other of these three great combinations may be referred all the relations of brute matter, and all the substances of the mineral kingdom.

The laws of affinity, by which the various particles of these different substances separate from each other, in order to unite among themselves and form homogeneous masses, are perfectly similar to that general law by which the celestial bodies act upon each other; in both cases their exertions are the same. Globules of water, of sand, or of metal, have the same influence, and act upon each other as the earth acts upon the moon; and if the laws of affinity have hitherto been deemed different from those of gravity, it is because the subject has been considered in a very confined point of view. The mutual action of celestial bodies is very little influenced by figure; their distance from each other is so very great, that this is necessarily the case; but when they are not far asunder, then the effect of figure is considerable. For instance, if the earth and moon, instead of spherical figures, were both short cylinders, and exactly equal throughout in their diameters, their reciprocal action would be very little varied from what it is at present, because the distances of all their parts from each other would be very little changed. But if these two globes were cylinders of great extent, and approached near to each other, the law of their reciprocal action would seem to be different, inasmuch as the distances of their parts would be greatly varied; and hence whenever figure becomes a principle in distance the law will appear to vary, although in fact it is always the same.

The human intellect guided by this principle, may advance one step further in penetrating into the operations of nature. The figure of the constituent particles of bodies still remains unknown; we cannot entertain the smallest doubt that water, air, earth, metals, and all homogeneous particles, are composed of elementary particles, which are perfectly similar, although we are still ignorant of their figure. By the aid of calculation this at present unknown field of knowledge may be disclosed by posterity, and the figure of the elementary bodies be ascertained with tolerable precision. They may take the principle we have established as the basis of their enquiry; namely, “that all matter is attracted in the inverse ratio of the square of the distance; and this law seems to admit of no variation in particular attractions but what arises from the figure of the constituent particles of each substance, because this figure enters as an element or principle into the distance;” and having once discovered, by repeated experiments, the law of attraction in any particular substance, they may then, by the aid of calculation, be able to trace the figure of its constituent particles. To render this point more clear, let us suppose, that by placing mercury on a perfectly polished surface, repeated experiments prove that this fluid metal is always attracted in the inverse ratio of the cube of the distance; it will then become necessary to investigate what figure gives this expression; and this figure will be certainly that of the constituent particles of mercury. If it should appear, by such experiments, that the attraction of mercury was in the inverse ratio of the square of the distance, it would be clearly demonstrated that its constituent particles were spherical, because a sphere is the only figure which observes this law, and at whatever distance globes are placed the law of their attraction is always the same.

Newton had some idea that chemical affinities (which are nothing more in fact than these particular attractions which we have mentioned) were produced by the same kind of laws as those of gravitation; but he does not appear to have perceived that all those particular laws were merely simple modifications of the general one, and that their apparent difference arose solely from the circumstance of the figure of the atoms, which attract each other, having, when at small distances, a greater influence upon the force of this law than the mass of matter.

It is, notwithstanding, upon this theory that the perfect knowledge of brute matter depends. The basis of all matter is the same, and its form throughout would be perfectly similar, if the figures of its constituent particles were not different; and thus it is that one homogeneous substance can differ from another only in proportion to the difference of their original particles. A body composed of spherical particles ought to be one half specifically lighter than that whose particles are cubical, because as the first only touch each other by their points, they leave intermediate spaces equal to what they occupy, whereas the cubical particles join without leaving the smallest interval, and must consequently form a matter half as heavy again. Although the figures are considerably varied, that variation is by no means so great as we might imagine, since Nature has fixed the limits of lightness and gravity. Gold and air, with respect to density, are the two extremes, and therefore all the figures in Nature must be comprehended as coming between those two; such as would have produced heavier or lighter substances have been rejected.

In speaking of figures, as employed by Nature, I do not mean to imply that they must be necessarily, or are exactly, similar to those geometrical figures which we form in our imagination. We form laws by supposition, and then endeavour to render them simple by abstraction. It is very possible that there are neither exact cubes nor perfect spheres in the universe; but as nothing certainly exists without form, and as from the variation of substances the figures of the elements are different, some of them most undoubtedly must approach to the sphere, the cube, and all the other regular figures which we have conceived. The precise, absolute, and abstract figures which our minds are so frequently induced to admit, cannot have any existence, because all objects are related, and differ only by almost imperceptible shades. It is by the same rule that when I speak of one substance as being entirely full, because composed of cubical particles, and another as being not more than half full, because its parts are spherical, I mean only comparatively, and not that such substances really exist; for experience has fully informed us that in transparent bodies, such as glass, which is both dense and heavy, there is but a small quantity of matter in proportion to the extent of the intervals; nay, as we have before observed, it might be demonstrated that even gold, which is the most dense species of matter, has more vacuities than substance.

To investigate the powers of Nature is the object of rational mechanics, while active mechanics is solely confined to a combination of particular powers, and consequently the art of constructing machines. This art has at all times been certain of cultivation from necessity and convenience; and both ancients and moderns have equally excelled in it. But rational mechanics is a science invented in our days; for, from the days of Aristotle to those of Descartes, even the philosophers have reasoned no better upon the nature of motion, than uniformly to mistake the effect for the cause. Impulsion was the only force with which they were acquainted; to it they attributed the effects of others, and all the phenomena of the universe. If this idea of theirs had been probable, or even possible, impulsion, which they regarded as the sole cause, must have been a general effect, which equally belonged to all matter, and which equally exerted itself in all places, and at all times; but every day demonstrated the contrary to be the fact; for they must have perceived that this force had no existence in bodies at rest; that it had but a short subsistence in projected bodies, being soon destroyed by resistance; that a fresh impulse was absolutely necessary for its renewal, and that, consequently, so far from being a general cause, it was only a particular effect produced by others more general.

It is true, however, that we ought to consider a general effect as a cause, for we cannot become acquainted with the real cause of this effect, because all our knowledge is derived from comparison; and as there is not any thing to which we can compare an effect, which is supposed general, and equally belonging to every thing, we can know it only by the fact. According to this view, attraction, or gravity, being a general effect common to all matter, and clearly evinced by the fact, ought to be considered as a cause; and to which all particular causes should be referred, nay even that of impulsion, since it is less general and less constant; and the principal difficulty is to perceive how impulsion can be an effect of attraction; for if we rest on the communication of motion by impulse, we are then persuaded that it can only be transmitted from one body to another by elasticity, and that all the hypotheses, which suppose a communication of motion in hard bodies, are mere ideal fancies, which do not exist in Nature. A perfectly hard or a perfectly elastic body is entirely imaginary, as neither of them really exist; for it is certain that nothing exists absolutely or in extreme; and the idea of perfection must suppose one or the other.

It is certain that if there were no elasticity in matter there would be no impulsive force; for instance, if we throw a stone, the motion it acquires is communicated by the elasticity of the arm. When motion is communicated by one body in action encountering another at rest, how can we possibly suppose it to be done otherwise than by compressing the spring of the elastic particles it contains, which recovering itself almost immediately after, gives to the whole mass a force equal to that which it re ceived? How a perfectly hard body should admit this force, or receive motion, is beyond comprehension; and the enquiry is unnecessary, since no such body exists; for, all bodies are endowed with elasticity. The force of electricity is proved by experiments to be elastic, and to belong to matters in general; and therefore, if no other elasticity existed in the interior parts of bodies but that of this electrical matter, that would be sufficient for the communication of motion; and consequently to this great spring, as a general effect, the particular cause of impulsion must be attributed.

A little reflection on the mechanism of elasticity will convince us that its force depends on that of attraction. To have a still more clear idea of this subject, let us suppose a spring the most simple, such as of a solid angle of iron, or of any other hard substance, and then see what will be the result of compressing it. By compression we oblige the parts adjacent to the top of the angle to bend, or to separate a little from each other; but the pressure being removed they again approach as near as they had done before. Their adhesion, from which the cohesion of bodies results, is clearly an effect of their mutual attraction. Upon the spring being pressed this adhesion is not de stroyed, because, although the particles are separated, they are not removed beyond the sphere of their mutual attraction; consequently the moment the pressure is taken away the force is renewed, the separated parts draw near, and their spring is restored. But if the pressure be too violent, they will, in that case, be removed beyond the sphere of their attraction, and the spring will break, because the compressing force will be greater than that of cohesion, or that of mutual attraction, by which the particles are kept together. This proves that elasticity can only exert itself in proportion to the cohesion of the particles of matter, that is, in proportion as they are united by the force of their mutual attraction; from which it results, that elasticity in general, which alone can produce impulsion, and impulsion itself, are owing to the force of attraction, and are only particular effects which depend on that general one.

Notwithstanding that these ideas appear to be perfectly clear to me, I do not expect to see them adopted. People in general reason only from their sensations, and natural philosophers determine from their prejudices; as, therefore, both these must be set aside, very few will remain to form a proper judgment; but such is the dignity of Truth, that she is content with a few admirers, and is always lost in a crowd; she is at all times august and majestic, notwithstanding which she is frequently obscured by fantastic opinions, and obliterated by fanciful chimeras. I, however, view and understand Nature in this manner, and am almost induced to believe that she is still more simple; the phenomena exhibited by brute matter is caused by a single force, and from this force, combined with that of heat, originate those living particles which gave rise to, and support all, the various effects of organized bodies.

FINNIS

1

Nullum animal cui ungues adunci, gregatile esse perpendimus. Arist. Hist. Anim. Lib. i. Cap. 1.

2

The fire, which arises from the fermentation of herbs heaped together, and which manifests itself in effervescences, is not an exception that can be opposed to me, since this production of fire depends, like all the rest, from the action of the shock of the parts of matter one against the other.

3

I have been assured, however, by a person of the first respectability, that platina is sometimes found in masses, and that he himself saw a piece that weighed twenty pounds, pure as it was extracted from the mine.

4

Baron Siekengen, minister of the elector Palatine, told M. de Milly, that he had then in his possession two memoirs which had been given to him by M. Kellner, chemist and metallurgist in the service of the Prince of Birckenfeld, at Manheim, and which offered to the court of Spain to return nearly as much gold as they would send him platina.

5

This is the reason that the small images which pass betwixt the leaves of high and full trees, and which falling on the walks are all oval or round.

6

It requires about half an hour to mount the mirror and to make all the images fall on the same point; but when this is once adjusted, it may be used at all times by simply drawing a curtain.

7

Many travellers have told and written to me, that Reaumur’s thermometers of spirit of wine, became quite useless to them, because this liquid lost its colour, and became charged with a sort of mud in a very short time.

8

Aristotle is, I believe, the first that ever mentioned this observation.

9

From time immemorial the Chinese, and particularly the Japanese, have possessed the art of working in steel both in large and small bodies; and hence I have thought that the words e ferro sinico in the preceding quotation should be understood as applying to polished steel.

10

Ripened or filled with sap.

11

See the Memoirs of Rheaumur in those of the Academy (year 1735 and 1741), and also of the Memoirs of M. de Mairan in those of the year 1765, p. 213.

bannerbanner