Читать книгу Учение о бытии (Георг Вильгельм Фридрих Гегель) онлайн бесплатно на Bookz (22-ая страница книги)
bannerbanner
Учение о бытии
Учение о бытииПолная версия
Оценить:
Учение о бытии

4

Полная версия:

Учение о бытии

Нужно, однако, прибавить к сказанному или, правильнее, удалить из него еще одно заключающееся в нем определение. Было именно сказано, что на переменную величину, в определение которой входит степень, следует смотреть внутри ее самой, как на сумму и притом как на систему членов, поскольку они суть функции возвышения в степень, причем также и корень должен рассматриваться, как сумма, и в своей простой определенной форме, как двучлен; xn=(у+z)n=(y+nyn–1z+…). Это изображение развития степени, т. е. получения функции возвышения в степень, исходит от суммы, как таковой; но здесь дело идет не о сумме, как таковой, равно как не о происходящем из нее ряде, а от суммы берется только отношение. Отношение величин, как таковое, есть то, что, с одной стороны, остается после того, как отвлекается от plus некоторой суммы, как таковой; и что, с другой стороны, необходимо для нахождения развития функций степени. Но это отношение определяется уже тем, что здесь предмет, уравнение уm=ахn, есть уже комплекс многих (переменных) величин, содержащий их степенное определение. В этом комплексе каждый из этих членов положен просто в отношении к другим со значением, как можно выразиться, plus в нем самом, как функция прочих величин; свойство членов быть функциями один другого сообщает им это определение plus’a, но тем самым чего-то совершенно неопределенного, что не есть ни приращение, ни инкремент и т. д. Но и эту совершенно отвлеченную точку зрения мы можем оставить в стороне; можно просто остановиться на том, что поскольку переменные величины даны в уравнении, как функции одна другой, так что эта определенность содержит в себе отношение степеней, то и функции возвышения в степень каждой из них сравниваются между собою, причем вторые функции определяются только через самое возвышение в степень. Первоначально можно считать лишь произвольным или возможным сведение степенного уравнения переменных величин к отношению функции его развития; лишь дальнейшая цель, польза, употребление указывают на пригодность такого преобразования; оно обусловливается исключительно своею полезностью. Если ранее исходили от изображения этих степенных определений некоторой величины, принимаемой за порозненную внутри себя сумму, то это служило отчасти лишь для указания того, какого вида эти функции, отчасти способа их нахождения.

Мы подошли, таким образом, к обычному аналитическому развитию, понимаемому для цели дифференциального исчисления так, что переменной величине дается приращение dx, i, и затем степень двучлена развертывается в соответствующий ей ряд. Но так называемое приращение должно быть не определенным количеством, а лишь формою, все значение которой состоит в том, чтобы быть вспомогательным средством раскрытия ряда; то, к чему по признанию, определеннее всего выраженному Эйлером и Лагранжем, а также подразумеваемому вышеупомянутым представлением о пределе, стремятся в этом случае, суть лишь получающиеся при этом степенные определения переменных величин, так называемые коэффициенты, хотя и присущие приращению и его степеням, составляющим порядок ряда и причастным различным коэффициентам. При этом следует заметить, что хотя приращение, не имеющее определенного количества, принимается лишь для целей развития, но было бы всего уместнее обозначить его единицею (1), так как она постоянно повторяется в развитии, только как множитель, причем именно множитель единица достигает той цели, что через приращение не получается никакой количественной определенности и изменения; между тем как dx, сопровождаемый ложным представлением некоторой количественной разности, и другие знаки, например i, имеющие здесь бесполезную видимость общности, всегда сопровождаются показностью и притязанием какого-то определенного количества и его степеней; каковое притязание вызывает затруднения отбросить их и пренебречь ими. Для сохранения формы ряда, развернутого по степеням обозначения показателей, последние как знаки (indices) могли бы с таким же удобством быть присоединяемы и к единице. Но сверх того должно отвлечь и от ряда, и от определения коэффициентов по месту, занимаемому ими в ряду, так как отношение между всеми ими одно и то же; вторая функция выводится из первой точно так же, как первая из первоначальной функции, и для той, которая считается второю, первая производная функция есть опять-таки первоначальная. По существу же интерес направляется не на ряд, но единственно на получаемое через развитие степенное определение в его отношении к ближайшей к нему величине. Поэтому вместо того, чтобы считать это определение коэффициентом первого члена развития, было бы предпочтительнее, так как каждый член есть первый относительно следующих за ним членов ряда, считать такую степень степенью приращения, или поскольку самые ряды не имеют здесь значения, употреблять выражение производная степенная функция или, как сказано выше, функция возвышения величины в степень; причем признается за известное, каким путем совершается вывод, как заключенное внутри некоторой степени развитие.

Но если в этой части аналитики собственно математическое начало есть не что иное, как нахождение функции, определенной через степенное развитие, то является дальнейший вопрос, что должно предпринять с полученным таким образом отношением, в чем его применение и употребление, или, на самом деле, для какой цели отыскиваются такие функции. Дифференциальное исчисление вызвало к себе большой интерес через нахождение таких отношений между конкретными предметами, которые сводятся к этим отвлеченным аналитическим отношениям. Относительно же приложимости оказывается ближайшим образом по самой природе вещей, не касаясь покуда еще самих случаев приложения, при помощи вышеуказанного вида моментов, степени, само собою следующее. Развитие степенных величин, через которое получаются функции их возвышения в степень, содержит в себе, не касаясь ближайшего определения, прежде всего вообще понижение величины на ближайшую низшую степень. Приложение этого действия имеет, стало быть, место к таким предметам, коим также свойственно такое различие степенных определений. Если мы рефлектируем, например, над пространственною определенностью, то мы находим, что она содержит в себе три измерения, которые мы для того, чтобы отличить их от отвлеченных различий высоты, длины и ширины, можем обозначить конкретно, как линию, поверхность и целостное пространство; и поскольку они взяты в их простейших формах и в отношении к самоопределению, а тем самым к аналитическим протяжениям, мы получаем прямую линию, плоскостную поверхность (и ее же как квадрат) и куб. Прямая линия имеет эмпирическое определенное количество, но уже в плоскости выступает качественное определение степени; более близкие (к прямой линии) модификации, например, что то же самое имеет место относительно кривой линии, мы можем, поскольку речь идет здесь о различии только вообще, оставить в стороне. Отсюда возникает потребность перехода от высшего степенного определения к низшему и наоборот, поскольку, например, линейные определения должны быть выведены из данных уравнений поверхностей и т. п. или наоборот. Далее движение, рассматриваемое в зависимости от отношения величины пройденного пространства и соответствующего протекшего времени, проявляется в различных определениях ложно равномерного, равномерно ускорительного, перемежающегося равномерно ускорительного и равномерно укоснительного – возвращающегося в себя – движения; поскольку эти различные виды движения выражаются в отношениях величины их моментов, пространства и времени, для них получаются уравнения, содержащие различные степенные определения, и если может оказаться надобность определить некоторый вид движения или те пространственные величины, с которыми он связан, посредством другого его вида, то это действие также приводит к переходу от степенной функции к высшей или низшей, чем она. Примерами этих двух предметов можно удовольствоваться для той цели, для которой они приведены.

Видимость случайности, представляемой дифференциальным исчислением в его приложениях, может быть упрощена уже сознанием природы той области, в которой имеет место это приложение, и своеобразных потребности и условии этого приложения. Но теперь является нужда узнать внутри самой этой области, между какими частями предметов математической задачи имеет место такое отношение, которое своеобразно положено дифференциальным исчислением. Должно уже предварительно заметить, что здесь нужно иметь в виду двоякое отношение. Действие понижения степени уравнения, рассматриваемое с точки зрения производных функций его переменных величин, дает результат, который в нем самом есть поистине уже не уравнение, но отношение; это отношение есть предмет собственно дифференциального исчисления. Ho тем самым, во-вторых, дается отношение высшего степенного определения (первоначального уравнения) к низшему (к производной функции). Это второе отношение мы покуда оставим в стороне; оно окажется собственным предметом интегрального исчисления.

Рассмотрим прежде всего первое отношение и возьмем из так называемого приложения для решающего определения того момента, в котором заключается интерес действия, простейший пример кривой, определяемой уравнением второй степени. Как известно, через уравнение непосредственно дается в степенном определении отношение координат. Следствиями основного определения служат определения других прямых линий, связанных с координатами, касательной, подкасательной, нормальной и т. п. Но уравнения, связующие эти линии с координатами, суть линейные уравнения; те целые, как части которых определяют эти линии, суть прямоугольные треугольники, составленные прямыми линиями. Переход от основного уравнения, содержащего степенное определение, к этим линейным уравнениям есть вышеуказанный переход от первоначальной функции, т. е. от уравнения, к производной функции, которая есть отношение и притом отношение между известными, содержащимися в кривой линиями. Связь между отношениями этих линий и уравнением кривой и есть искомое.

Не безынтересно привести здесь только ту историческую справку, что первые исследователи умели решать эту задачу лишь совершенно эмпирически, не отдавая себе отчета в совершенно внешнем характере действия. Я ограничусь указанием на Барроу, учителя Ньютона. В своих Lect. opt. et geom., в которых он решает задачи высшей геометрии по методу неделимых (частей), отличающемуся ближайшим образом от особенностей дифференциального исчисления, он сообщает, «так как на том настаивают его друзья (lect. X)», свой способ определения касательных. Нужно прочесть у него самого, как решает он эту задачу, чтобы составить должное представление о совершенно внешнем правиле этого способа, совершенно в том же стиле, как излагалось ранее в учебниках арифметики тройное правило. Он чертит те маленькие линии, которые впоследствии были названы приращениями в характеристическом треугольнике кривой линии, и затем предписывает в виде простого правила отбросить, как излишние, члены, получающиеся путем развития уравнений, как степени или произведения этих приращений (etenim isti termini nihilum valebunt), a также и те члены, которые содержат определенные величины лишь из первоначального уравнения (то, что впоследствии достигалось вычитанием первоначального уравнения из него же с приращениями), и напоследок вставить вместо приращения ординаты самую ординату и вместо приращение абсциссы – подкасательную. Невозможно, если позволительно так выразиться, изложить способ более педантично; это подстановление основано на принимаемой обычным методом дифференциального исчисления для определения касательной пропорциональности приращений ординаты и абсциссы с ординатою и подкасательною; в правиле Барроу это допущение является во всей своей наивной наготе. Простой способ определения подкасательной был уже найден; способы Роберваля и Ферма сводятся к подобному же; метод последнего находить наибольшие и наименьшие значения функций исходит из того же основания и того же предела. Математическою страстью того времени было изобретать так называемые методы, т. е. правила этого рода, и притом держат их в тайне, что было не только легко, но даже в известном отношении нужно и нужно именно потому, что было легко, именно потому, что изобретатели находили лишь внешнее эмпирическое правило, а не метод, т. е. не нечто, выведенное из признанных начал. Такие так называемые методы Лейбниц воспринял от своего времени, а также и Ньютон, и последний принял их непосредственно от своего учителя; они проложили новые пути в науке через обобщение их формы и приложимости, но при этом чувствовали потребность освободить прием от вида совершенно внешнего правила и дать ему потребное оправдание.

При ближайшем анализе метода истинный ход действия оказывается таков. Во-первых, степенные определения (само собою разумеется переменных величин), содержащиеся в уравнении, приводятся к их первым производным функциям. Тем самым изменяется значение членов уравнения; уравнения уже более не остается, но возникает лишь отношение между первою производною функциею одной переменной величины и такой же функциею другой; вместо рх=у2 получается р:2у, вместо 2ах – х2=у2 получается (а – х):у, что впоследствии и было обозначено, как отношение dx/dy. Это уравнение есть уравнение кривой, а это отношение, вполне зависимое от уравнения и выведенное из последнего (как указано выше, по простому правилу), есть, напротив, линейное, равное отношению между линиями; р:2у или (а – х):у суть сами отношения прямых линий кривой, координат и параметра; но тем самым знание еще не подвигается вперед. Интерес состоит в том, чтобы узнать и о других связанных с кривою линиях, что им свойственно это отношение, найти равенство двух отношений. Поэтому, во-вторых, является вопрос, какие прямые линии, определенные свойствами кривой, находятся в таком отношении. Но это есть то, что было узнано уже ранее, а именно, что такое этим путем полученное отношение есть отношение ординаты к подкасательной. Старые математики нашли это остроумным геометрическим способом; то, что было открыто новыми исследователями, есть эмпирический прием, состоящий в выводе такого уравнения прямой, из которого было бы видно то первое отношение, о коем уже известно, что оно равно отношению, содержащему линии, в данном случае, подкасательные, подлежащие определению. Этот вывод уравнения понимался и исполнялся отчасти методически, путем дифференцирования, отчасти же были изобретены воображаемые приращения координат и воображаемый образованный из них и такого же приращения касательной характеристический треугольник, дабы пропорциональность отношения, найденного через понижение степени уравнения, с отношением ординаты и подкасательной, оказалась полученною не эмпирически, как уже давно знакомая, но путем доказательства. Однако, старое знакомство проявляется вообще и, несомненно, в том, что вышеуказанная форма правила оказывается единственным поводом и относительным оправданием к принятию характеристического треугольника и упомянутой пропорциональности.

Лагранж отбросил эту симуляцию и вступил на истинно научный путь; его метод привел к правильному взгляду, так как этот метод состоит в том, чтобы разделить оба перехода, потребные для решения задачи, и каждый из них разработать и доказать для себя. Одна часть этого решения – остающаяся ближайшим образом при примере элементарной задачи нахождения подкасательной – теоретическая или общая часть, именно нахождение первой функции из данного уравнения кривой, регулируется сама для себя; она дает линейное отношение, т. е. отношение прямых линий, входящих в систему определения кривой. Другая часть решения есть нахождение тех связанных с кривою линий, которые состоят в таком отношении. Это достигается прямым путем (Théorie des fonct. anal. p. II chap. II), т. е. без характеристического треугольника, без того, чтобы прибегать к бесконечно малым дугам, ординатам и абсциссам и давать им определения dy и dx, т. е. членов этого отношения, и вместе с тем без того, чтобы непосредственно установлять их равенство с ординатою и подкасательною. Таково, говоря мимоходом, основное положение аналитической геометрии, которое исходит от координат или, чтó то же самое, механики – от параллелограмма сил, и именно потому не испытывает потребности задавать себе труд доказательства. Подкасательная полагается стороною треугольника, другие стороны которого суть ордината и соответствующая ей касательная. Последняя, как прямая линия, имеет своим уравнением р=aq (прибавление +b бесполезно для определения и обусловливается лишь любовью к обобщению); определение отношения p/q есть а, коэффициент q, который есть относительно первая функция уравнения, вообще же должно быть рассматриваемо, лишь как а=p/q, т. е., как сказано, как существенное определение прямой линии, составляющей касательную к кривой. Поскольку затем берется первая функция уравнения кривой, она (функция) есть также определение некоторой прямой линии; поскольку далее одна координата р первой прямой линии и у, ордината кривой, отожествляются, т. е. точка, в которой она, принимаемая за касательную, прикасается к кривой, есть равным образом исходная точка прямой, определяемой первою функциею кривой, то вопрос сводится к доказательству, что эта вторая прямая линия совпадает с первою, т. е. есть касательная; или выражаясь алгебраически, что если y=fx, a p=Fq и если у=р, т. е. fx=Fx, то f'x=F'q. A что принимаемая за касательную прямая и та прямая, которая определяется из уравнения его первою функциею, совпадают, что вторая прямая есть также касательная, – это показывается при помощи приращения i абсциссы и определяемого через развитие функции приращения ординаты. Здесь, следовательно, опять-таки выступает пресловутое приращение; но так как оно вводится для только что объясненной надобности, то и развитие функции при его помощи должно, конечно, считаться чем-то другим сравнительно с ранее упомянутым употреблением приращения для нахождения дифференциального уравнения и для характеристического треугольника. Допускаемое здесь употребление правомерно и необходимо; оно входит в круг геометрии, так как оно служит для геометрического определения касательной, как таковой, которое не может между касательною и кривою, с коею первая имеет общую точку, найти никакой прямой линии, также проходящей через эту точку. Ибо этим определением качество касательной и не-касательной сводится к различению величины, и касательною оказывается та линия, на которую с точки зрения лишь определения приходится наименьшая величина (die grössere Kleinheit). Эта по-видимому лишь относительно наименьшая величина не содержит в себе ничего эмпирического, т. е. зависящего от определенного количества, как такового, она положена качественно самым свойством формулы, если только различие момента, от которого зависит сравниваемая величина, есть различие степени; если последняя объемлет i и i2, и если i, долженствующее в конце концов означать число, изображается дробью, то i2 в себе и для себя менее, чем i, так что даже представление любой величины, которую можно приписать i, здесь излишне и даже неуместно. Поэтому и доказательство наименьшей величины не имеет ничего общего с бесконечно малым, которое тем самым здесь совершенно не выступает, Просто ради его красоты и ради ныне забываемой, но вполне заслуженной славы, я хочу здесь сказать о декартовом методе касательных; он имеет впрочем отношение к природе уравнений, о которых нужно сделать еще дальнейшее замечание. Декарт излагает этот самостоятельный метод, в котором искомое линейное определение также находится путем той же производной функции, в своей и в других отношениях оказавшейся столь плодотворною геометрии (liv. II. 357 и сл. Oeuvres compl. ed. Cousin t. V), в которой он научил великим основоположениям касательно природы уравнений и их геометрического построения, а с тем вместе и приложению анализа к геометрии. Проблема имеет у него форму задачи – провести прямые линии перпендикулярно к любому месту кривой, чем определяются подкасательные и т. п.; понятно то удовлетворение, которое он выражает по поводу своего открытия, касавшегося предмета господствовавшего в то время общего научного интереса, открытия, которое столь геометрично и тем самым столь возвышается над вышеупомянутыми методами простых правил его соперников: «я осмеливаюсь сказать, что эта самая полезная и самая общая из геометрических задач, не только из тех, которые я знаю, но даже из тех, которые я когда-либо желал знать в геометрии». Он основывает решение ее на аналитических уравнениях прямоугольного треугольника, образуемого ординатою точки кривой, в которой должна быть перпендикулярно проведена требуемая прямая линия, затем самою этою линиею, нормальною, и, в третьих, частью оси, отрезаемой ординатою и нормальною, поднормальною. Из известного уравнения кривой подставляется за сим в уравнение треугольника значение или ординаты или абсциссы так, что получается уравнение второй степени (причем Декарт показывает, как к тому же можно свести и кривые, уравнения коих содержат высшие степени), в котором дана лишь одна из переменных величин и притом в квадрате и в первой степени; квадратное уравнение, которое прежде всего является так называемым нечистым. За сим Декарт рассуждает, что если представить себе одну точку кривой точкою пересечения ее с кругом, то этот круг должен пересечь кривую еще в одной точке, и тем самым должны получиться для двух происходящих таким образом и неравных х два уравнения с теми же постоянными величинами и одинаковой формы, – или же лишь одно уравнение с разными значениями х. Но уравнения могут быть сделаны одним для одного треугольника, в котором гипотенуза есть перпендикулярная к кривой, нормальная, что представляется так, что обе точки пересечения становятся совпадающими, если круг становится касающимся к кривой. Но при этом устраняется и неравенство корня х или у квадратного уравнения. В квадратном же уравнении с двумя равными корнями коэффициент члена, содержащего неизвестное в первой степени, вдвое более одного корня, что дает уравнение, посредством которого находятся искомые определения. Этот способ должен считаться гениальным приемом истинно аналитической головы, которому далеко уступает совершенно ассерторически принимаемая пропорциональность подкасательной и ординаты долженствующим быть бесконечно малыми так называемым приращениям абсциссы и ординаты.

Найденное таким путем конечное уравнение, в котором коэффициент второго члена квадратного уравнения равен удвоенному корню или неизвестному, тожественно уравнению, находимому посредством дифференциального исчисления. Дифференцирование х2—ах – b=0 дает новое уравнение 2х – а=0; а дифференцирование х3—рх – q=0 дает 3x2—р=0. Но здесь должно заметить, что правильность таких производных уравнений отнюдь не самоочевидна. Из уравнения с двумя переменными величинами, которые оттого, что они переменны, еще не перестают быть неизвестными, возникает, как указано выше, лишь отношение, по тому приведенному выше простому основанию, что через подстановление функций возвышения в степень вместо самих степеней изменяется значение обоих членов уравнения, и остается еще неизвестным, сохраняется ли между ними уравнение при таком изменении значения. Уравнение dy/dx=Р выражает собою только то, что Р есть отношение, а затем dy/dx не приписывается никакого реального смысла. Об этом отношении =Р также еще неизвестно, какому другому отношению оно равно; оно получает значение лишь через уравнение пропорциональности. Так как было указано выше, что это значение, именуемое приложением, берется извне, эмпирически, то о сказанных выведенных путем дифференцирования уравнениях должно быть также известно извне, имеют ли они равные корни для того, чтобы знать, правильно ли полученное уравнение. Но на это обстоятельство в учебниках определительно не указывают; оно устраняется тем, что, приравнивая нулю уравнение первой степени, сейчас же получают =у, откуда затем при дифференцировании все же получается dy/dx, т. е. лишь отношение. Исчисление функций, конечно, должно во всяком случае иметь дело с функциями возвышения в степень, а дифференциальное исчисление – с дифференциалами, но отсюда еще не следует для себя, что если берутся дифференциалы или функции возвышения в степень каких-либо величин, то эти величины должны быть только функциями других величин. И кроме того, в теоретической части при выводе дифференциалов, т. е. функций возвышения в степень, еще вовсе не думают о том, что величины, с которыми приходится иметь дело после такого вывода, сами должны быть функциями других величин.

Еще можно заметить относительно опущения постоянных величин при дифференцировании, что оно имеет здесь тот смысл, что постоянная величина при равенстве корней безразлична для их определения, так как это определение исчерпывается коэффициентами второго члена уравнения. Так, в приведенном примере Декарта постоянная величина есть квадрат самого корня, следовательно, то последний может быть определен как из нее, так и из коэффициентов, поскольку она, как и коэффициенты, есть функция корней уравнения. В обычном изложении устранение связанной с прочими членами посредством знаков + и – постоянной величины достигается простым механизмом приема, состоящего в том, что для нахождения дифференциала сложного выражения дается приращение лишь переменным величинам, и полученное таким образом выражение вычитается из первоначального. О значении постоянных величин и их опущения, поскольку они сами суть функции и являются нужными или ненужными по этому определению, не поднимается и речи.

bannerbanner