banner banner banner
Нейросети. Основы
Нейросети. Основы
Оценить:
Рейтинг: 0

Полная версия:

Нейросети. Основы

скачать книгу бесплатно


– В каждом эпизоде агент взаимодействует с окружением, выполняя действия и записывая последовательность состояний, действий и наград.

– После завершения эпизода вычисляется общий возврат `G` путем обратного прохода по эпизоду и обновляется Q-таблица для уникальных пар «состояние-действие».

5. Тестирование агента:

– После завершения обучения агент тестируется в окружении, используя политику, основанную на максимальных Q-значениях.

– Выводится статистика побед, ничьих и поражений.

Этот пример демонстрирует использование методов Монте-Карло для оценки стратегий на основе эпизодических возвратов в задаче блэкджека. Агент учится принимать оптимальные решения, основываясь на накопленном опыте из большого числа эпизодов.

Deep Q-Learning

Deep Q-Learning – это расширение Q-обучения, которое использует глубокие нейронные сети для представления и обновления Q-значений. Это позволяет агентам принимать более сложные и информированные решения в средах с высоким уровнем сложности и большим количеством состояний и действий. В традиционном Q-обучении Q-таблица используется для хранения значений всех возможных пар «состояние-действие», что становится неосуществимым в задачах с большой размерностью. Deep Q-Learning решает эту проблему, используя нейронные сети для аппроксимации функции Q. Агент обучается обновлять параметры нейронной сети, минимизируя разницу между предсказанными и реальными Q-значениями, что делает возможным обучение на больших наборах данных и в сложных средах. Один из ключевых компонентов Deep Q-Learning – это опытный буфер (experience replay), который позволяет агенту запоминать и повторно использовать предыдущие опыты для обучения, что повышает стабильность и эффективность процесса обучения.

Обучение с подкреплением применяется в робототехнике, играх, управлении ресурсами и других задачах, где требуется разработка стратегий и принятие решений в динамических и неопределённых средах.

Описание задачи

Рассмотрим задачу "CartPole" из OpenAI Gym. В этой задаче агент управляет тележкой, на которой закреплен вертикально стоящий столб. Цель агента – балансировать столб, не позволяя ему упасть, двигая тележку влево или вправо.

Описание среды "CartPole"

Состояния:

– Положение тележки (отрицательное значение – тележка слева от центра, положительное – справа).

– Скорость тележки.

– Угол отклонения столба от вертикального положения.

– Угловая скорость столба.

Действия:

– Двигать тележку влево.

– Двигать тележку вправо.

Награды:

– Агент получает награду +1 за каждый шаг, пока столб остается вертикально.

Конечное состояние:

– Эпизод заканчивается, если столб отклоняется слишком сильно от вертикального положения или тележка выходит за пределы поля.

Пример кода для Deep Q-Learning

Для реализации DQN мы будем использовать библиотеку PyTorch для создания и обучения нейронной сети.

Установка необходимых библиотек

Для начала нужно установить OpenAI Gym и PyTorch, если они еще не установлены:

```bash

pip install gym torch

```

Пример кода

```python

import gym

import torch

import torch.nn as nn

import torch.optim as optim

import numpy as np

from collections import deque, namedtuple

import random

# Определение архитектуры нейронной сети

class DQN(nn.Module):

def __init__(self, state_size, action_size):

super(DQN, self).__init__()

self.fc1 = nn.Linear(state_size, 24)

self.fc2 = nn.Linear(24, 24)

self.fc3 = nn.Linear(24, action_size)

def forward(self, x):

x = torch.relu(self.fc1(x))

x = torch.relu(self.fc2(x))

return self.fc3(x)

# Параметры обучения

env = gym.make('CartPole-v1')

state_size = env.observation_space.shape[0]

action_size = env.action_space.n

batch_size = 64

gamma = 0.99 # Коэффициент дисконтирования

epsilon = 1.0 # Вероятность случайного действия

epsilon_min = 0.01

epsilon_decay = 0.995

learning_rate = 0.001

target_update = 10 # Как часто обновлять целевую сеть

memory_size = 10000

num_episodes = 1000

# Определение памяти для опыта

Transition = namedtuple('Transition', ('state', 'action', 'next_state', 'reward'))

memory = deque(maxlen=memory_size)

# Инициализация сети и оптимизатора

policy_net = DQN(state_size, action_size)

target_net = DQN(state_size, action_size)

target_net.load_state_dict(policy_net.state_dict())

target_net.eval()

optimizer = optim.Adam(policy_net.parameters(), lr=learning_rate)

# Функция для выбора действия

def select_action(state, epsilon):

if random.random() < epsilon:

return env.action_space.sample()

else:

with torch.no_grad():

return policy_net(torch.tensor(state, dtype=torch.float32)).argmax().item()

# Функция для обновления памяти

def store_transition(state, action, next_state, reward):

memory.append(Transition(state, action, next_state, reward))

# Функция для обучения сети

def optimize_model():

if len(memory) < batch_size:

return

transitions = random.sample(memory, batch_size)

batch = Transition(*zip(*transitions))

state_batch = torch.tensor(batch.state, dtype=torch.float32)

action_batch = torch.tensor(batch.action).unsqueeze(1)

reward_batch = torch.tensor(batch.reward, dtype=torch.float32)

non_final_mask = torch.tensor(tuple(map(lambda s: s is not None, batch.next_state)), dtype=torch.bool)

non_final_next_states = torch.tensor([s for s in batch.next_state if s is not None], dtype=torch.float32)

state_action_values = policy_net(state_batch).gather(1, action_batch)

next_state_values = torch.zeros(batch_size)

next_state_values[non_final_mask] = target_net(non_final_next_states).max(1)[0].detach()

expected_state_action_values = reward_batch + (gamma * next_state_values)

loss = nn.functional.mse_loss(state_action_values.squeeze(), expected_state_action_values)

optimizer.zero_grad()