Читать книгу Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали (Скотт Бембенек) онлайн бесплатно на Bookz (2-ая страница книги)
bannerbanner
Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали
Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали
Оценить:
Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали

5

Полная версия:

Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали

После отъезда из Пизанского университета Галилео продолжал изучать математику самостоятельно, а также давал частные уроки во Флоренции и Сиене. В это время Риччи познакомил Галилео с работами Архимеда (ок. 287–212 до н. э.). Работы Евклида предоставили Галилео твердую математическую базу, в то время как Архимед показал ему силу математики в приложении к проблемам физики. Действительно, Галилео был большим поклонником Архимеда и оставался им всю жизнь. Однако физика Архимеда относилась только к статичным объектам. Галилео же станет тем, кто расширит познания физики в отношении динамичных объектов.

В 1586 году Галилео написал свое первое научное эссе под названием «Маленькие весы», где он объяснил, как построить и применять устройство для измерения удельного веса. Эта работа содержала комбинацию прагматических и теоретических аспектов; последний он заимствовал из работ Архимеда. В 1587 году Галилео обнаружил способ вычислить центр тяжести определенных твердых тел. Используя инновационный и практический подход, он вышел за рамки работ Архимеда и привлек внимание выдающихся математиков в Италии и, впервые, за границей.

В 1588 году Галилео попытался устроиться на кафедру математики в Болонском университете. В это время его математический опыт состоял из отдельных встреч с Риччи, частных уроков, которые он давал во Флоренции и Сиене, и самостоятельного обучения. Хорошо осознавая, что профессионального опыта у него мало, Галилео указал, что ему «приблизительно 26». На самом деле ему было двадцать три года. Место на кафедре в итоге досталось Джованни Антонио Маджини (1555–1617). Маджини был астрономом, астрологом, издал некоторые книги и был на девять лет старше Галилео. Также, вероятно, сыграло свою роль и то, что он был выпускником университета.

Галилео становился известным, что, вкупе с помощью его покровителей, позволило ему получить должность преподавателя математики в Пизанском университете в 1589 году. Галилео получал всего половину зарплаты своего предшественника, что делало его одним из самых низкооплачиваемых среди его коллег в университете. Работая в Пизе, Галилео умудрился оскорбить преподавателей философии критикой физики Аристотеля, и становилось ясно, что его контракт в Пизе, вероятно, по истечении 1592 года не будут возобновлять.

Уже в 1590 году друзья и покровители Галилео начали искать возможность добиться для него места на кафедре математики в Падуанском университете, которое оставалось свободным с 1588 году. В 1592 году благодаря репутации хорошего математика Галилео стал преподавателем в университете Падуи, и платили ему в три раза больше, чем в Пизе.

В Падуе Галилео провел восемь лет, обустраиваясь на новом месте и завязывая знакомства. Он вел расслабленный образ жизни, уделяя время своим интересам и сосредотачивая свои научные исследования больше на практике, а не на теории. В 1599 году Галилео приобрел большой дом с садом и виноградником. Здесь он приютил студентов (с их слугами), которые подолгу оставались с ним и обслуживали вместе с медником мастерскую по изготовлению инструментов. Частные уроки, которые он давал, и университетские курсы оставляли Галилео мало свободного времени.

1602–1609 годы были для Галилео самыми творческими в изучении движения. В это время он, скорее всего, стремительно переходил от одной идеи к другой, позволив и теории, и точным экспериментам указать ему путь к умозаключениям, которые нанесут аристотелевской физике фатальный удар.

В 1583 году во время мессы в Соборе Пизы Галилео наблюдал, как под воздействием ветра качается светильник. Глядя на него, Галилео понял, что без дополнительного приложения сил постоянные колебания становятся все слабее и слабее[5]. Но сколько нужно времени, чтобы прошло каждое из этих колебаний? Используя свой пульс для измерения времени (точные часы еще не изобрели), он удивился, когда осознал, что, хотя амплитуда каждого колебания уменьшалась, затрачиваемое на каждое колебание время оставалось неизменным. Галилео был заинтригован.


Рис. 2.1. Маятник сдвигают направо из точки покоя (нижнее положение, в котором он, по сути, висит вертикально) до начальной точки (амплитуда). Как только его отпускают, он качается влево, проходя через точку покоя (где его скорость теперь является максимальной) до противоположной стороны, где он достигает конечной высоты (которая соответствует начальной). Когда начальная высота мала, время, которое уходит на один такой цикл, зависит только от длины веревки.


Хотя неизвестно, правдива ли эта история[6], первые заметки Галилео о качающемся маятнике (рис. 2.1) – хорошей модели качающегося канделябра – появились в конце 1588 – начале 1589 года, хотя к самим экспериментам[7] он приступил только в 1602 году. Основываясь на своих опытах, Галилео заключил, что время, требуемое на колебание маятника (период), не зависит от размера колебания (амплитуды); и также не зависит от массы[8] в конечной точке. Единственное, от чего оно зависит, – длина веревки. Это означает, что если привести маятник в движение на высоте или на «маленькой»[9] амплитуде вне зависимости от начальной высоты, время, за которое маятник пройдет траекторию от начальной точки и обратно (колебание), всегда будет постоянным (учитывая колебание воздуха и внутреннее трение).

В «Диалоге о двух главнейших системах мира» [10]Галилео рассуждает об этом с точки зрения протагониста, Сальвиати:

«Соответственно, я взял два шара – один из свинца, один из пробки, – причем первый был в сто раз тяжелее второго, и подвесил их с помощью двух одинаковых, равных по размеру нитей около 4–5 локтей в длину. Запустив их движение (одновременно) как маятники, я увидел, что два эти тела совершали колебание по одному и тому же пути, и периоды легкого и тяжелого шара практически совпадали. Это свободное колебание повторялось сотни раз».

Это наблюдение точное лишь отчасти. Возможно, эксперименты Галилео с маятниками относились только к малым колебаниям – или часы, которыми он пользовался, были недостаточно точными. Справедливо, что период колебания маятника зависит от длины нити, а не от массы груза, однако если размах колебания станет достаточно большим, период будет также зависеть от амплитуды – или начальной высоты. В таком случае период станет длиннее, так как увеличивается амплитуда. Так что мы проводим различие и называем маятник, который качается с постоянным периодом, изохронным маятником.

Галилео полагал, что все маятники изохронные, и это послужило почвой для идеи построить надежные часы – в которых он отчаянно нуждался для своих экспериментов. Он хвастался такими часами Республике Соединенных провинций Нидерландов: «Эти часы действительно превосходны для тех, кто наблюдает за движением и астрономическими явлениями, а их устройство очень простое».

Галилей блефовал; у него не было работающей модели этих «простых в изготовлении» часов. Однако у него действительно была теория относительно того, как их построить, которую он разрабатывал со своим сыном, Винченцо (1606–1649), и студентом и первым биографом, Винченцо Вивиани (1622–1703). К сожалению, до самой смерти у Галилео не было готового прототипа. В итоге такой прототип построил его сын в 1649 году, а в Северной Европе о нем узнали из набросков Вивиани.

В 1656 году Христиан Гюйгенс (1629–1695) самостоятельно создал улучшенную версию часов. Он понял, что маятник будет сохранять постоянный период только малых колебаний. Он смог преодолеть этот недостаток, регулируя колебание маятника, чтобы тот двигался не по естественной, круглой, а по измененной кривой, которая поддерживала постоянный период для всех высот. Эта прямая известна как циклоида, или таутохрона. Гюйгенс описал свою версию (циклоидных) часов с маятником в 1658 году в труде Horologium (что на латыни означает «часы») и в 1673 году опубликовал геометрическое доказательство таутохроны как истинной постоянной кривой периода в Horologium Oscillatorium.

Маятник дает нам другое ценное понимание. Мы понимаем, что скорость маятника в определенной точке зависит от текущей высоты по отношению к начальной высоте, что приводит к самой высокой скорости в самой низкой точке колебания. Другими словами, его текущая скорость зависит от разности высот: чем больше это различие (дальше от отправной точки), тем выше его текущая скорость. Поэтому максимальная скорость достигается в самой низкой точке колебания, которая является также пунктом, в котором в конечном счете колебания прекратятся.

Отношения между высотой и скоростью дают нам лучшее понимание сохранения энергии. Галилео еще вернется к изучению маятника и еще больше приблизится к разгадке тайны энергии. Однако, прежде чем мы доберемся до этого, давайте поговорим о свободном падении.

Свободное падение

Из наших рассуждений о маятнике мы узнали, что:

• период колебания никогда не зависит от количества массы груза, присоединенного к концу веревки;

• скорость маятника увеличивается с уменьшением высоты, максимальная скорость – в самой низкой точке колебания.

Эти результаты интересны сами по себе, но станут еще интереснее, как только мы свяжем их с другими типами движения.

Маятник, качающийся назад и вперед, в действительности является просто объектом, «полное» падение которого остановили за счет натянутой веревки. Другими словами, веревка препятствует свободному падению маятника. Подумайте об этом как о человеке, который прыгает с моста с тарзанкой. В первый раз он прыгает как обычно, с тросом, обернутым вокруг тела, который гарантирует, что прыгун в конце не ударится о землю. Конечно, для этого длина троса должна быть (при полном натяжении) меньше, чем высота прыжка, чтобы торможение было безопасным. При втором прыжке длина троса (при полном натяжении) гораздо больше, чем высота падения. Тем не менее внизу находится огромный мат, который должен остановить падение и защитить прыгуна от травм.

Это очень похожие сценарии. Единственное значимое различие – длина троса: он меньше начальной высоты при первом прыжке и больше начальной высоты при втором прыжке. По существу, это отношения между качающимся маятником и свободно падающим объектом. Поэтому мы могли бы ожидать, что физические законы, управляющие обоими этими движениями, схожи.

Свободно падающие объекты привлекали внимание Галилея (см. рис. 2.2).

Аристотель считал, что более тяжелый объект упал бы на землю быстрее, чем легкий, но Галилео подозревал, что такого не будет. Изначально Галилео усомнился в этом, когда был студентом в Пизанском университете. В заметке, написанной несколькими годами позже, Галилео упомянул, что его наблюдения были основаны на наблюдениях за камнями разных размеров, падающими на землю. Галилео наблюдал, как большие и маленькие камни падают на землю одновременно вне зависимости от размера, а не как полагал Аристотель – сначала большой, потом маленький. Учитывая, что оба начали падение одновременно где-то высоко в небе, Галилей пришел к выводу, что Аристотель был неправ.

Галилео был не первым, кто поставил под сомнение теорию Аристотеля о падающих объектах[11], и даже не первым, кто проверил ее верность с помощью эксперимента[12]. Согласно записям Вивиани, когда Галилео был профессором в Пизе (1589–1592), он продемонстрировал ошибочность утверждения Аристотеля о падающих объектах из одинакового материала, но имеющих разный вес, с падающей Пизанской башни:


Рис. 2.2. Объект сталкивают со здания (или башни) – с начальной высоты. Пока он падает, его скорость растет (в то время как высота уменьшается). Он достигает максимальной скорости как раз перед тем, как столкнуться с поверхностью. Время до касания с поверхностью напрямую зависит от начальной высоты.


«…он полностью погрузился в исследование; в результате Галилео, к большому неудовольствию всех философов, с помощью опытов, наглядных примеров и аргументов опроверг идеи самого Аристотеля о движении, считавшиеся в то время истиной: как, например, тот факт, что вес объектов из одинакового материала при движении через одну и ту же среду будет влиять на их скорость (на самом деле она будет примерно одинаковой). Раз за разом в присутствии других преподавателей и студентов он подкреплял эти идеи экспериментами, которые проводил с высоты Падающей Пизанской башни».

Галилео пришел к выводу, что объекты с разным весом из одного и того же материала падают с одинаковой скоростью и за одинаковое время; теория Аристотеля была опровергнута раз и навсегда. Эту историю рассказал Вивиани, который вел записи за Галилео в его последние годы, в 1657 году. Сегодня большинство историков не верят, что Галилео действительно бросал предметы с Пизанской башни.

Независимо от этого, мы не можем не гадать, вывел ли Галилей это следствие из своих наблюдений за маятником.

В конце концов, как мы отметили прежде, маятник – просто измененная версия свободного падения. Поэтому, так как период маятника – также определяющий его время падения [13](время, которое требуется для падения в низшую точку качания) – не зависит от массы[14], не должно быть сюрпризом и то, что время свободного падения объекта (время, через которое он коснется поверхности) также не зависит от нее.

Мы находим между качающимся маятником и свободно падающим объектом и другие общие черты. Опять-таки, скорость в любом пункте во время падения зависит от разности высот, и максимальная скорость все еще достигается в самой низкой точке – прямо перед тем, как объект коснется земли. А что же насчет времени падения? Мы уже отметили, что время падения маятника определяется периодом. Для изохронного маятника это означает, что время падения, как и период, зависит только от длины нити; то есть не зависит от начальной высоты (амплитуды). Тем не менее мы также заметили, что это особый случай для маятника, а в общем период – а, следовательно, и время падения – будет зависеть от изначальной высоты, так что большая высота увеличивает время падения.

Это также справедливо и для свободно падающих объектов: чем выше начальная высота падения, тем больше времени требуется объекту, чтобы достичь поверхности. Таким образом, взаимоотношения между высотой и скоростью проявляются при свободном падении так же, как и при движении маятника. И снова все это имеет отношение к сохранению энергии. Давайте посмотрим на другую систему – наклонную плоскость.

Движение по наклонной плоскости

Мы уже говорили о наклонной плоскости, когда обсуждали простые механизмы, но теперь мы хотим понять принцип движения катящегося по наклонной плоскости объекта (рис. 2.3)[15]. Сейчас вам должно быть ясно, что, как и в случае с маятником, это еще одна форма свободного падения. Тогда как свободному падению маятника препятствовал трос (нить), движение объекта на наклонной плоскости ограничено только тем, что он катится по наклону.


Рис. 2.3. После толчка объект катится по наклонной плоскости со своей начальной высоты. По ходу движения его скорость растет (а высота уменьшается). Объект достигнет максимальной скорости в самом конце движения по этой плоскости. Время, которое потребуется ему, чтобы достичь поверхности, зависит от начальной высоты (и угла) (см. также сноску 1 на стр. 40, чтобы узнать больше).


Скорее всего, Галилео начал изучать объекты, катящиеся по наклонной плоскости, в 1602 году, но тогда, будучи не уверенным в результате, перефокусировался на маятник. Однако в 1604 году Галилео придумал способ измерить увеличивающуюся скорость объекта, двигающегося по наклонной плоскости. Последовавшие за этим эксперименты предоставили Галилео точные результаты, которые он применял к свободному падению и маятнику.

Галилео было недостаточно знать, что два объекта, отличающиеся массой, падают с одинаковой скоростью. Он хотел знать, как скоро падающий объект достигнет определенной высоты над землей. К сожалению, Галилео встретил на этом пути проблемы, которые необходимо было преодолеть.

Хотя в то время существовали очень точные способы измерить расстояние и вес, подобного прибора для измерения времени не было; Галилео было необходимо создать «секундомер». Секундомер Галилео состоял из контейнера с водой и отверстием внизу. Поскольку вода вытекала из основания контейнера с постоянной скоростью (приблизительно по три унции жидкости в секунду), у Галилео был точный способ измерить время. Галилео описывает свое устройство и гарантирует его точность в «Диалог о двух главнейших системах мира» (снова через Сальвиати) так:

«Для измерения времени мы использовали большой сосуд, наполненный водой, который был расположен под наклоном; к днищу этого судна была припаяна труба маленького диаметра, по которой текла тонкая струя воды, которую мы собрали в маленьком стакане после каждого спуска… Собранную таким образом воду тщательно взвешивали после каждого раза; разница этих весов позволяла нам измерить разницу времени с поразительной точностью, хотя операция повторялась множество раз, – и никакого заметного отличия в результатах замечено не было».

Тем не менее Галилео было непросто даже с водяными часами – скорость объекта в свободном падении для точных измерений была слишком высока. Вместо этого Галилео создал способ замедлить свободное падение, сохраняя ключевые физические результаты, которые и позволили ему позже сделать точные измерения при помощи водных часов[16]. План Галилео был прост и изящен: рассмотреть объект, который катится по наклонной плоскости. Теперь объект «падал» гораздо медленнее, что позволило Галилео произвести точные измерения при помощи часов. Галилео был убежден, что основные принципы физики одинаковы, катится ли объект с определенной высоты (по наклонной плоскости) или совершает свободное падение с той же самой высоты. Следовательно, он предвидел, что математические выражения для расчета времени достижения высоты – пусть и не одинаковые[17] – будут похожи для обоих маршрутов. В конце концов, единственная разница между находящимся в состоянии свободного падения и катящимся вниз с одной и той же высоты объектами заключается в том, что последний двигается как по вертикали (высота), так и по горизонтали (длина)[18], а первый только по вертикали, так как просто падает на землю.

Изначально Галилей предполагал, что вертикальное и горизонтальное направления движения объекта вниз по наклонной плоскости не зависят друг от друга, и их можно рассматривать отдельно. Это означало бы, что законы физики для движения в вертикальном направлении (которое интересовало его больше всего) одинаковы для свободного падения и движения по наклонной плоскости. Что же, оказывается, гипотезы Галилео были верны.

К данному моменту вас не должно удивлять, что скорость объекта, катящегося по наклоненной плоскости[19], увеличивается по мере снижения высоты. Максимальная скорость достигается в самой низкой точке, а время падения (время, которое требуется, чтобы скатиться к основанию наклонной плоскости) не зависит от массы, но непосредственно связано с начальной высотой, как и для (общего случая) маятника, и для свободно падающего объекта.

Так, для всех трех систем результаты одинаковы из-за того, что природа требует сохранения энергии. Кстати, мы не обсуждали подробно, что же в действительно влечет за собой это самое сохранение энергии; похоже, я немного затянул. Тем не менее для обсуждаемых систем у нас есть два фундаментальных типа отношений между высотой и скоростью:

– более низкая высота (от отправной точки) означает, что объект перемещается быстрее – это значит, что его наивысшая скорость будет достигнута в самой низкой точке;

– чем выше начальная высота, тем больше времени будет затрачено на падение, за исключением изохронного маятника, у которого время падения одинаково для каждой высоты.

Давайте посмотрим на другую версию эксперимента Галилео с маятником.

Повторное рассмотрение маятника

В эксперименте с «прерванным маятником» Галилео раскрыл еще больше последствий сохранения энергии. Вспомните, что маятник Галилео был просто свинцовым шаром, весящим одну-две унции, подвешенным на нити. Теперь вообразите маятник, спущенный от гвоздя, вбитого в стену, – маятник, который может свободно качаться из одной стороны в другую. От его точки покоя (где он висит вертикально) мы перемещаем маятник, скажем, вправо на некоторую начальную высоту и затем выпускаем его, не придавая ему ускорения[20].

Поскольку маятник качается справа налево, мы видим, что он достигает своей конечной высоты. Галилео, вероятно, делал это много раз на различных начальных высотах и каждый раз получал один и тот же результат: начальная высота всегда равняется конечной. Ну, честно говоря, конечная высота, вероятно, немного ниже из-за некоторого сопротивления воздуха, но Галилео вывел, что пренебрежение этим приведет к равным высотам, что и было ключевым в этом исследовании.

Но тогда Галилео добавил к оригинальному эксперименту поворот. Теперь вообразите те же условия, за исключением того, что на этот раз мы забиваем гвоздь в стену таким образом, что струна неизбежно столкнется с ним, поскольку маятник качается справа налево (рис. 2.4). Хотя колебание маятника изменились из-за гвоздя, мы опять понимаем, что начальная высота и конечная равны. Однако что будет, если мы поменяем положение гвоздя? Это не имеет значения. Нить просто зацепится за гвоздь, колебание изменится, и маятник достигнет своей конечной высоты, которая (как и прежде) совпадет с начальной высотой.


Рис. 2.4. Как и прежде, маятник перемещается направо, покидая точку покоя (самую низкую точку, в которой он висит вертикально), а затем поднимается на прежнюю высоту. При движении справа налево маятник цепляется за гвоздь, который вынуждает его изменить путь. Независимо от этого, маятник все равно достигает конечной высоты, которая совпадает с начальной.


Давайте рассмотрим еще одну, последнюю возможность: что если гвоздь лишает маятник возможности изменять свое колебание таким образом, чтобы он мог на самом деле достигнуть конечной высоты, которая равна начальной? В этом случае маятник просто продолжает двигаться, поскольку он оборачивается вокруг гвоздя.

Когда мы говорили о маятнике прежде, мы узнали, что, поскольку он качается вниз, удаляясь от начальной высоты, его скорость увеличивается. Другими словами, уменьшение в высоте приводит к увеличению скорости. Теперь мы видим, что, поскольку маятник продолжает движение на подъеме, его конечная высота (или максимальная высота) совпадет с начальной. Как связаны эти концепции? Оказывается, взаимодействие между высотой и скоростью четко уравновешено. Мы выяснили, что сила тяготения, действующая на объект на данной высоте, передает ему потенциальную энергию, но мы никогда не говорили о ее коллеге, имя которой кинетическая энергия. Тогда как потенциальная энергия – «сохраненная энергия», кинетическая энергия – «энергия движения», которая придает объекту его скорость.

Ранее мы обсуждали, как работа сохраняется таким образом, что уменьшение в необходимой силе приводит к увеличению расстояния, на которое она прилагается, при использовании простой машины. Тем не менее общая работа, затрачиваемая на выполнение задачи, сохраняется.

Принципы сохранения кинетической и потенциальной энергии похожи. В случае маятника это означает, что, поскольку высота уменьшается, потеря потенциальной энергии компенсируется увеличением кинетической энергии, что означает увеличение скорости. И наоборот: в то время как маятник продолжает движение на подъем, он становится все ближе и ближе к своей начальной высоте (но с другой стороны), и, соответственно, уменьшается кинетическая энергия, маятник замедляется и останавливается на мгновение на финальной высоте (равной той, с которой он начал движение), перед тем как упасть обратно вниз. Поэтому маятник двигается с самой высокой скоростью в самой низкой точке колебания, в то время как его скорость ниже всего в самом верху колебания. Этот обмен между потенциальной энергией и кинетической энергией не уникален для маятника; это относится ко всем системам (наклонной плоскости, объектам в свободном падении и другим) и прекрасно сбалансировано, когда отсутствует трение[21].

В середине 1609 года Галилео работал над своим трактатом о науке о движении и, услышав об изобретении подзорной трубы (предвестника телескопа), бросил все, чтобы сделать свою собственную версию. К концу августа у Галилео был 9-кратный телескоп, который он представил венецианскому Сенату и высокопоставленным лицам. За старания его вознаградили двойной зарплатой и жильем. Однако были некоторые недоразумения, о которых Галилео узнал после. До истечения его текущего контракта зарплата не повышалась, и он должен был преподавать в Университете Падуи всю жизнь. Недовольный этой договоренностью, Галилео смог добиться нового соглашения в 1610 году, став главным математиком Пизанского университета и философом[22] и математиком Великого герцога Тосканы. Назначение было пожизненным, и он не был обязан преподавать в университете. Он также не был обязан проживать в Пизе, что позволило ему наконец вернуться в любимую Флоренцию.

bannerbanner