banner banner banner
Физика. Порядок вещей, или Осознание знаний. Книга 2
Физика. Порядок вещей, или Осознание знаний. Книга 2
Оценить:
Рейтинг: 0

Полная версия:

Физика. Порядок вещей, или Осознание знаний. Книга 2

скачать книгу бесплатно


В соответствии с механизмом отражения, ускоренное удаление тела от радиуса в новом после отражения направлении, определяется, как проекция его ускорения на перпендикуляр к отражающему радиусу, что и есть ускорение переносной скорости по абсолютной величине. Следовательно, ускорение радиальной скорости по направлению и ускорение переносной скорости по величине это одна и та же физическая величина, равная ускорению отражения.

Кто то может возразить, что с ЦСУ осуществляется изменение относительной радиальной скорости исключительно только по направлению. Следовательно, для изменения линейной скорости переносного вращения по абсолютной величине необходимо дополнительное самостоятельное ускорение, как это декларируется в классической физике и в частности у Матвеева (см. фотокопию вначале настоящей главы). Однако, как показано в главе (3.1. и 3.2.) изменение скорости по направлению принципиально не возможно без изменения её абсолютной величины, если нет специального регулирования, которое осуществляется в классическом ЦСУ полного цикла.

Из этого следует, что «ЦСУ» в составе ускорения Кориолиса, в котором нет такого регулирования не является классическим ЦСУ полного цикла, а значит это собственно и вообще не ЦСУ в его классическом понимании. В поворотном движении изменение радиальной скорости по направлению происходит за счёт соответствующего приращения скорости переносного вращения по величине и наоборот, приращение скорости переносного вращения по величине является проекцией изменённой по направлению радиальной скорости на перпендикуляр к радиусу (см. Рис. 4.1.2.1, поз. 2, 3).

Естественно, что абсолютная величина каждого мгновенного ускорения отражения внутри цикла формирования ускорения Кориолиса может превышать среднее ускорение цикла не только вдвое, но и в десятки раз, что не меняет физического смысла ускорения Кориолиса. В конечном итоге тело не может двигаться в направлении линейной скорости переносного вращения быстрее соответственной точки на радиусе, как мяч в конечном итоге не может двигаться быстрее футболиста.

Если тело получит, например, в 10 раз большее мгновенное ускорение отражения, чем среднее обобщённое ускорение Кориолиса, то к моменту отрыва от радиуса оно наберёт и в 10 раз большую скорость. Но при этом и радиусу, вращающемуся с постоянной угловой скоростью, понадобится в 10 раз большее время, чтобы догнать тело. При этом среднее ускорение Кориолиса при неизменной угловой скорости и неизменной величине скорости относительного движения количественно останется неизменным:

а

= 10 * V

/ (10 * t) = V

/ t

Из классической физики, а именно из понятия годографа известно, что центростремительное ускорение – это линейная скорость линейной скорости. Поэтому на рисунке (4.1.2.1, позиция 3) вектор ускорения по изменению радиальной скорости по направлению (a

), как ему и положено быть по определению, размещён вдоль касательной к годографу вектора радиальной скорости (Vr).

Далее, если в конец вектора радиальной скорости параллельно самому себе перенести ещё и проекцию вектора абсолютного ускорения, то можно увидеть, что вектор (a

) в точности совпадает с вектором (a

), как с проекцией той же самой (a

) на ту же самую касательную к тому же самому годографу. При этом один вектор (a

) не может иметь две одинаковые, но независимые проекции на одно и то же направление. Следовательно, векторы (a

) и (a

) это одна и та же физическая величина, которая и является ускорением Кориолиса.

Природа никогда не повторяется, в ней нет двух одинаковых отпечатков пальцев и радужной оболочки глаз! И уж тем более в природе не может быть двух разных по своей физической сущности но абсолютно одинаковых по величине ускорений.

Таким образом, две половинки классического ускорения Кориолиса это одна и та же физическая величина, вдвое меньшая своего классического значения.

При этом напряжение Кориолиса по абсолютной величине действительно соответствует классической силе Кориолиса (см. гл. 3.4.3 и настоящую 4.1.). Однако половина этого напряжения не реализуется в новое движение тела. Она компенсируется истинной силой Кориолиса—Кеплера, а энергия этого напряжения рассеивается среди элементов радиуса, тела и окружающей среды. В классической физике нет истинной силы Кориолиса—Кеплера. Поэтому для того, чтобы оправдать полную энергию реального напряжения Кориолиса и была придумана сказка про удвоенное ускорение Кориолиса (2?V).

***

Идентичность приращения линейной скорости переносного вращения по абсолютной величине и относительной скорости по направлению можно показать и аналитически. Приращение радиальной скорости относительного движения по направлению равно:

?Vr = Vr * ?? = Vr * ? * ?t

Это выражение соответствует третьему члену выражения (66.4) у Матвеева.

Произведение (Vr * ?t) в выражении для (?Vr) есть не что иное, как изменение радиуса переносного вращения (?r). Тогда выражение для (?Vr) можно записать в виде:

?Vr = Vr * ?? = Vr * ? * ?t = (Vr * ?t) * ? = ?r * ?

Но (?r * ?) есть не что иное, как прирост линейной скорости переносного движения в связи с изменением радиуса переносного вращения:

?Vл = r

* ? – r

* ? = (r

– r

) * ? = ?r * ?

Отсюда:

?Vr = ?Vл

Аналогичным образом можно показать, что прирост абсолютной скорости в направлении линейной скорости переносного вращения по абсолютной величине есть не что иное, как прирост радиальной скорости относительного движения по направлению.

?Vл = Vn

 – Vn

= ? * r

 – ? * r

? * ?r = ? * (Vr * ?t) =

= Vr * (? * ?t) = Vr * ?? = ?Vr

То есть:

?Vл = ?Vr

Следовательно, ускорение Кориолиса (w

) можно выразить через знак полного физического соответствия (?), обозначающий не просто математическое равенство, а одну и ту же физическую величину. Если такого знака нет в математике, то его следует ввести, поскольку подобных ситуаций в существующей математической физике предостаточно.

w

= (?Vл / ?t ? ?Vr / ?t) = ? * Vr

Как это ни парадоксально этот же самый математический вывод в классической физике приводится как подтверждение классической модели поворотного ускорения, а не как выражение одного и того же поворотного ускорения через взаимосвязь углового и линейного перемещения. Однако даже математическое равенство означает, прежде всего, идентичность физических величин количественно, но никак не их кратность.

Кроме того, полное совпадение математических формул ускорений, в которых присутствуют одни и те же базовые физические величины в соответствии с законом сохранения истины (см. гл. 2) должно, прежде всего, свидетельствовать о том, что речь идет об одной и той же физической величине. Следовательно, в классическом ускорении Кориолиса одна и та же физическая величина учтена дважды.

Для всех без исключения криволинейных движений в природе существует только один физический механизм изменения движения по направлению (см. гл.3.2). В этом механизме можно отыскать любые элементы поворотного движения. Даже в равномерном вращательном движении проекция вектора линейной скорости, изменяющегося как по величине, так и по направлению, на радиус так же, как и в поворотном движении образует радиальное ускоренное движение.

Однако при этом никто не утверждает, что центростремительное ускорение состоит из двух независимых ускорений – ускорения по изменению направления линейной скорости вращательного движения и поступательного радиального ускорения. Нет никаких оснований утверждать это и в отношении поворотного ускорения, которое, так же, как и ускорение вращательного движения формируется из элементарных отражений.

Классическое центростремительное ускорение ассоциируется в классической физике с единым линейным ускорением, направленным к центру вращения. При этом физически идентичное ему ускорение Кориолиса, как это ни странно, раскладывается на две одинаковые по абсолютной величине линейные составляющие в одном и том же направлении, которые вопреки всякой логике и законам природы якобы самостоятельно, т.е. независимо друг от друга определяют приращение двух разных видов движения.

И тем более странно, что во втором варианте классического проявления ускорения Кориолиса при окружном относительном движении центростремительное ускорение равномерного вращательного движения названо в классической физике ускорением Кориолиса (подробнее см. гл. 4.4).

***

Выводом формулы ускорения Кориолиса занимались множество авторов. Однако, несмотря на все перечисленные выше противоречия классической модели поворотного движения, в том числе и «трёхточки», выводы всех авторов формулы ускорения Кориолиса неизменно привязаны к результату, определяющемуся исторически сложившейся неправильной оценкой ускоренного геометрического приращения поворотного движения.

Например, в выводе формулы для ускорения Кориолиса, представленном в одном из многочисленных справочников по физике для высшей школы (см. Рис. 4.1.2.2), ускорение Кориолиса определяется как ускорение эквивалентного прямолинейного равноускоренного движения по формуле пути (S) для прямолинейного равноускоренного движения. Не изменяя оригинальный рисунок, мы выполнили дополнительные построения, облегчающие анализ вывода.

Рис. 4.1.2.2

«Пусть тело (Б), находящееся на расстоянии (А) от неподвижной точки (О), движется в направлении точки (Д) со скоростью (Vr). При отсутствии вращения тело (Б) через время (t) оказалось бы в точке (Д). А так как направляющая (ОД), вдоль которой движется тело, вращается в направлении (С), то фактически через время (t) тело (Б) окажется в точке (С) пройдя путь равный дуге окружности (ДС)».

Таким образом, ускорение Кориолиса определяется через дугу (ДС), которую предлагается считать расстоянием, пройденным с ускорением Кориолиса за вычетом расстояния, пройденного с постоянной начальной скоростью. Причем никаких пояснений, на каком основании это расстояние принимается за путь, пройденный с ускорением Кориолиса, в справочнике не приводится. Можно лишь предположить, что дуга (ДС) без расстояния, пройденного с начальной скоростью, ассоциируется с девиацией поворотного движения.

Девиация это академическое отклонение тела от реальной траектории движения с достигнутой на момент схода с траектории скоростью за период движения без ускорения. Чтобы вернуть тело на его место на траектории, необходимо обеспечить ему ускорение, дефицит которого образуется в течении времени образования девиации. Очевидно, что ускорение по преодолению девиации в малом интервале времени в некотором приближении соответствует реальному абсолютному ускорению криволинейного движения.

Очевидно, что как показано на рисунке (4.1.2.1) реальному пути с поворотным ускорением, т.е. девиации поворотного движения соответствует дуга окружности (ВГ) со средним радиусом. При этом, если вычесть начальный радиус (А), который обеспечивает движение с начальной линейной скоростью, то дуга окружности со средним радиусом будет вдвое меньше дуги с максимальным радиусом (ДС). Следовательно, в этом выводе ускорение Кориолиса так же как и в трёхточечной схеме завышено вдвое.

С учётом изложенного определим ускорение Кориолиса (а

) через чевиацию поворотного движения.

S

= Vл

* t + а

t

/ 2 (4.1.2.1)

Где Vл

 – линейная скорость точки (Б)

Определим средний радиус дуги (ВГ):

R

= (ОС + А) / 2 (4.1.2.2)

ОС = А + V

* t (4.1.2.3)

Подставляя (4.1.3) в (4.1.2) получим:

R

= (2A + V

* t) / 2 (4.1.2.4)

Путь (S), выраженный через угловую скорость (?), определится выражением:

S = R

* ? * t (4.1.2.5)

Подставляя (4.1.4) в (4.1.5) и приравняв (4.1.1) и (4.1.5) получим:



* t + а

* t

/ 2 = (А + Vр * t / 2) * ? * t

или

2 * Vл

* t + а

* t

= 2 * А * ? * t + Vр *? * t

или

2 * Vл

/ t + а

= 2 * А * ? / t + Vр * ? (4.1.2.6)

Отсюда находим ускорение Кориолиса (а

):

а