banner banner banner
Научные открытия
Научные открытия
Оценить:
Рейтинг: 0

Полная версия:

Научные открытия

скачать книгу бесплатно

Научные открытия
Лиза Заикина

Вначале я планировала написать книгу лишь с математическими теоремами, но потом поняла, что я слишком разносторонне развитый человек, чтобы делать акцент на чем–то одном. К сожалению, теоремы, которые я открывала в детстве, сейчас я вспомнить не смогла, поэтому написала новые. Эта книга включает в себя мое научное видение математики, геометрии, физики, химии, биологии, астрономии, географии, истории, литературы, искусства, спорта, медицины, психология, философии, религии, политики, экономики и дипломатии. В ней собраны мои теоремы, формулы, научные рассуждения, понятия и доказательства к ним.

Лиза Заикина

Научные открытия

Я с детства испытывала огромное пристрастие к науке. Учебе я уделяла все свое время. Из–за плохой, как мне казалось, памяти, но огромного желания все знать, я учила уроки до поздней ночи и без выходных. Меня нельзя было назвать ботаником, потому что я умела активно отдыхать, чтобы набраться новых сил. Я родилась такой. В два года стремление скорее научиться читать было важнее игрушек. Уже тогда во мне зарождалась сильная любовь к математике. В младших классах после школы я писала математические теоремы, формулы и их доказательства мелом на доме. Мое родные считали, что я просто ухожу гулять, и мое занятие им жутко не нравилось. Я же просто хотела писать формулу за формулой так, как требовала душа.

Я учила больше, чем требовалось. Одним летом, когда все дети гуляли, будучи уже повзрослевшими, я каждый день с утра до ночи читала классику. Мне многое хотелось знать наизусть, и я очень печалилась, когда мой мозг что–то забывал. От переизбытка информации я могла не вспомнить имя одноклассника, да и вообще имена своих многочисленных друзей. Меня и любили, и ненавидели. Для меня было важным знать каждый предмет на «отлично», но я могу сказать честно, я не испытывала ни разу ни с кем конкуренции. Для меня не было первых, потому что я занимала все позиции. На третьем курсе института меня приняли в ученый совет, правда, тогда я совсем не стремилась к этому, поэтому статус оказался для меня пустым местом.

Сегодня все страхи, насмешки и прочие комплексы остались позади. Я свободно могу писать научную книгу, веря, что она принесет пользу миру. Вначале я планировала написать книгу лишь с математическими теоремами, но потом поняла, что я слишком разносторонне развитый человек, чтобы делать акцент на чем–то одном. К сожалению, теоремы, которые я открывала в детстве, сейчас я вспомнить не смогла, поэтому написала новые. Эта книга включает в себя мое научное видение математики, геометрии, физики, химии, биологии, астрономии, географии, истории, литературы, искусства, спорта, медицины, психология, философии, религии, политики, экономики и дипломатии. В ней собраны мои теоремы, формулы, научные рассуждения, понятия и доказательства к ним. Я начинала писать книгу в очень большом объеме, с многословными рассуждениями и многочисленными примерами, но потом я решила сузить объем до минимума и привести лишь по одному примеру.

Спасибо Богу. Спасибо Божьей матери.

ГЛАВА 1. НАУЧНЫЕ ИССЛЕДОВАНИЯ

Теорема 1. Произведение n–го количество Х всегда равно произведению n–го количеству других Х, если мы имеем возможность вычислить хотя бы одно Х при некотором числе L.

Х1 * Х2 * Х3 * Хn – 1 = X4 * X5 * Xn, при числе L = Хn – Хn – 1

Доказательство:

Вычислим одно из Х, пусть это будет Х1

Х1 = Х4 * Х5 / Х2 * Х3, при L = (Х4 + Х5) – (Х2 + Х3)

Пусть Х2 = 1, Х3 = 2, Х4 = 3, Х5 = 4, тогда Х1 = 3 * 4 / 1 * 2 = 6

Полученный расчет в виде формулы: 6 * 1 * 2 = 3 * 4, при L = (3 + 4) – (1 + 2) = 4

Пример. Учитель купил 2 альбома, при этом в его классе 32 ученика. Сколько не хватает альбомов, чтобы раздать их каждому ученику?

Решение: Х2 = 2, Х3 = 32, Х1 – ?

Х1 * Х2 = Х3, при L = Х3 – Х2. Тогда Х1 = Х3 / Х2 = 32 / 2 = 16

В виде формулы: 16 * 2 = 32, при L = 32 – 2 = 30

Ответ: Чтобы раздать каждому ученику альбом, необходимо купленное количество альбомов увеличить в 16 раз, то есть закупить еще 30 штук.

Теорема 2. Произведение n чисел определяет некое число L с вероятностью +/– число N (количество n). Причем разница между плюсовым и минусовым выражением значения L+/– N составляет 2N.

И наоборот, произведение n чисел определяет некое число L, которое вычисляется от числа N (количество n) с вероятностью +/– . Причем разница между плюсовым и минусовым выражением значения N+/– L составляет N+K, где K=Z–N при условии, что N не равно L.

Z = (Х1 * Х2 * Хn = L + N) – (Х1 * Х2 * Хn = L – N) = 2N, и наоборот

Z = (Х1 * Х2 * Хn = N + L) – (Х1 * Х2 * Хn = N – L) = N + K (при K = Z – N, N не равно L)

Доказательство:

Обозначим Х1 = 1, Х2 = 2, пусть число N = 2

Подставив значения в формулы:

Z = Х1 * Х2 = L + N, получим Z = 1 * 2 = 3 + 2 = 5,

Z = Х1 * Х2 * Хn = L – N, получим Z = 1 * 2 = 3 – 2 = 1.

Следовательно, Z = Z1 – Z2 = 5 – 1 = 4 и 4 = 2N, где N по условию было 2

Подставим значения в общую формулу: Z = (1 * 2 = 3 + 3) – (1 * 2 = 3 – 3) = 2 * 3, то есть 2N

И наоборот, при тех же значениях, где N не равно L, подставим значения в общую формулу Z = (Х1 * Х2 * Хn = N + L) – (Х1 * Х2 * Хn = N – L) = N + K, где К = Z – N

Z = (1 *2 = 2 + 3) – (1 * 2 = 2 – 3) = 5 – (–1) = 6 = 2 + 4, то есть N + K

Пример. У Славы было 4 карандаша, Никиты 2, Данилы 7, Маши 2. У скольких ребят были карандаши?

Решение: Х1 = 4, Х2 = 2, Х3 = 7, Х4 = 2, доказать что N = 4

Z = (4 * 2 * 7 * 2 = 112 + 4) – (4 * 2 * 7 * 2 = 112 – 4) = 8 = 2 * 4, что доказывает теорему, т.к. Z = 2N

Рассмотрим наоборот:

Z = (4 * 2 * 7 * 2 = 4 + 112) – (4 * 2 * 7 * 2 = 4 – 112) = 224 = 4 + 220 (где N не равно L), то есть у 4 ребят при некотором числе L = 220

Ответ: У 4 ребят были карандаши.

Теорема 3. Произведение Хn чисел равно значение NХ, где N – некое число, Х – общее значение произведения Хn.

Х1 * Х2 * Хn = NX

Доказательство:

Пусть Х1 = 1, Х2 = 2, то Х1 * Х2 = 1 * 2 = 2

Число 2 в свою очередь можно представить в выражении NX, то есть 1 * 2 (где N = 1, а Х = 2) или 2 * 1, а можно и 0,5 * 4 или 4 * 0,5 и тд.

Следовательно, Х1 * Х2 * Хn действительно имеет равенство NX. Если мы будем знать Х1, Х2 и N, то сможем вычислить общее значение Х.

Пример. В класс привезли 2 парты и 3 стула для 4 учеников. Сколько парт было укомплектовано, если учесть, что за 1 партой сидят 2 ученика.

Решение: Х1 = 2 (парты), Х2 = 3 (стула), N = 4 (человек), Х – ?

Подставим значения в формулу: Х1 * Х2 * Хn = NX, получим 2 * 3 = 4Х

Вычислим Х = 2 * 3/4 = 1,5 (укомплектовано парт)

Ответ: В классе было укомплектовано 1,5 парты, то есть 3 ученика могли занять свои места.

Теорема 4. Любое свободное число Х имеет вероятность равняться другому свободному числу Х, где одно из Х состоит из сумм Хn, образуя в дополнении свободное число L.

Х1 = Х2 + Х3 + Хn, где Х3 + Хn = L

Доказательство:

Пусть Х1 = 5, Х2 = 10. Подставим значения в формулу, где представим, что 10 = 5 + 5, то 5 = 5 + 5, где L = 5

Пример. У девочки было 10 конфет, через три дня у нее осталось 7. Сколько съела конфет за три дня девочка?

Решение: Х1 = 10, Х2 = 7, L – ?

Подставим значения в формулу Х1 = Х2 + Х3 + Хn, получим 10 = 7 + 3, где L = 3

Ответ: За три дня девочка съела 3 конфеты.

Теорема 5. Одно некое меньшее число равно другому большему числу и наоборот. А также числа равны между собой, если имеют одинаковое значение.

Х1 = Х2, при этом Х1 > или < Х2

Доказательство:

Пусть Х1 = 1, Х2 = 1 млн., то 1 = 1 млн., где 1 = 1 млн

Пример. В России в 2016 году 2 млн. детей получили путевки в лагеря. Для кого были представлены путевки?

Решение: Х1 = 1 (ребенок), Х2 = 2 млн. (путевки), вероятность получения путевки?

Подставим значения в формулу Х1 = Х2, получим 1 = 2 млн.

Ответ: Путевки были предоставлены для человека с вероятностью ее получения 1 к 2 млн.

Теорема 6. Ноль имеет отличное от нуля значение, если был получен путем умножения числа Ln на ноль. Именно число Ln и есть значение отличное от 0.

0 = Ln * 0, где Ln – любое число или произведение чисел

Доказательство:

Пусть L =5 * 6, тогда 0 = 5 * 6 * 0 и получаем 0 = 0, значит ранее было значение 5 * 6

Пример. Катя съела 4 яблока и 7 апельсинов. Сколько у нее было яблок и апельсинов?

Решение: L1 = 4, L2 = 7, L – ?

Подставим значения в формулу 0 = Ln * 0, получим: 0 = 4 * 7 * 0, где L = 4 * 7

Ответ: У Кати было 4 яблока и 7 апельсинов.

Теорема 7. Бесконечное число М убирает из расчета появление числа L, что невозможно и поэтому любая бесконечность, имеет конец N.

М1 * M2 * Mn * L = N

Доказательство:

Пусть M1 = 1, М2 = 100, Mn = бесконечность, L = 0. Подставив в формулу М1 * M2 * Mn * L = N данные значения, получаем 1 * 100 * … * 0 = 0. Число L определило конец бесконечности, равный 0.

Пример. У мальчика было много карандашей и одна ручка. Он пересчитал карандаши и обнаружил, что у него 140 карандашей. Какую бесконечность карандашей мальчик имела до подсчета?

Решение: M1 = бесконечность, N = 140, бесконечность –?

Согласно формуле М1 * M2 * Mn * L = N получаем бесконечность * L = 140

Ответ: До подсчета мальчик имел бесконечность карандашей в количестве 140 штук при неизвестной величине L.

Теорема 8. Любое ошибочное число Х не подлежит исправлению, потому что за ним следует число Y. Ошибочное число Х принимается произошедшим, а значит явным. Правка числа Х не приведет к верному решению.

X * У = Т, где Т – решение

Доказательство:

Пусть Х = 2, У = 3, тогда подставив значения в формулу X * У = Т, получаем 2 * 3 = 6. Таким образом мы определили, что Т = 6. Поменяем значение Х = 3, тогда 3 * 3 = 9, где Т = 9. В первом случае Т имело другое значение, чем во втором. Таким образом, ошибочное число Х не подлежит исправлению.

Пример. Наташа купила 5 яблок, одно из которых съела по дороге домой. Сколько принесла бы домой яблок Наташа, если бы она не съела одно яблоко?

Решение: Х = 5, У = 1 – 1. Во втором случае Х = 5, У = 1, Т – ?

Подставим значения в формулу X * У = Т, получим в первом случае 5 * 1 – 1 = 4, а во втором 5 * 1 = 5

Ответ: Если бы Наташа не съела одно яблоко, то она принесла бы домой 5 яблок.

Теорема 9. Любое число А позволяет использовать счет В, но у любого числа и счета есть некая характеристика N.

А * N = В * N

Доказательство:

Пусть А = 2, N = 5. Определяя число В по формуле А * N = В * N, получим 2 * 5= ? * 5. Значит счет В как и число А имеет значение равное 2.

Пример. У Алены остался один мяч, в то время как второй мяч она отдала Коле. Сколько у ребят было мячей?

Решение: А = 1, В = 1, A + B – ?

Подставим значения в формулу А * N = В * N, получим 1 * N = 1 * N, где N – это Алена и Коля. Тогда 1 N + 1 N = 2 N.

Ответ: У ребят было два мяча.

Теорема 10. Число, увеличенное (уменьшенное) во много раз всегда имело свое первоначальное значение, которое потребовалось другому числу увеличить (уменьшить).