
Полная версия:
The Plurality of Worlds
22. We may turn our consideration from Jupiter to Saturn; for in many respects the two planets are very similar. But in almost every point, which is of force against the hypothesis of inhabitants, the case is much stronger in Saturn than it is in Jupiter. Light and heat, at his distance, are only one ninetieth of those at the Earth. None but a very low degree of vitality can be sustained under such sluggish influences. The density of his mass is hardly greater than that of cork; much less than that of water: so that, it does not appear what supposition is left for us, except that a large portion of the globe, which we see as his, is vapor. That the outer part of the globe is vapor, is proved, in Saturn as in Jupiter, by the existence of several cloudy streaks or belts running round him parallel to his equator. Yet his mass, taken altogether, is considerable, on account of his great size; and gravity would be greater, at his outer surface, than it is at the earth's. For such reasons, then, as were urged in the case of Jupiter, we must either suppose that he has no inhabitants; or that they are aqueous, gelatinous creatures; too sluggish, almost to be deemed alive, floating on their ice-cold waters, shrouded forever by their humid skies.
23. Whether they have eyes or no, we cannot tell; but probably if they had, they would never see the Sun; and therefore we need not commiserate their lot in not seeing the host of Saturnian satellites; and the Ring, which to an intelligent Saturnian spectator, would be so splendid a celestial object. The Ring is a glorious object for man's view, and his contemplation; and therefore is not altogether without its use. Still less need we (as some appear to do) regard as a serious misfortune to the inhabitants of certain regions of the planet, a solar eclipse of fifteen years' duration, to which they are liable by the interposition of the Ring between them and the Sun.53
24. The cases of Uranus and Neptune are similar to that of Saturn, but of course stronger, in proportion to their smaller light and heat. For Uranus, this is only 1-360th, for Neptune, as we have already said, 1-900th of the light and heat at the earth. Moreover, these two new planets agree with Jupiter and with Saturn, in being of very large size and of very small density; and also we may remark, one of them, probably both, in revolving with great rapidity, and in nearly the same period, namely, about 10 hours: at least, this has been the opinion of astronomers with regard to Uranus. The arguments against the hypothesis of these two planets being inhabited, are of course of the same kind as in the case of Jupiter and Saturn, but much increased in strength; and the supposition of the probably watery nature and low vitality of their inhabitants must be commended to the consideration of those who contend for inhabitants in those remote regions of the solar system.
25. We may now return towards the Sun, and direct our attention to the planet Mars. Here we have some approximation to the condition of the Earth, in circumstances, as in position. It is true, his light and heat, so far as distance from the Sun affects them, are less than half those at the Earth. His density appears to be nearly equal to that of the Earth, but his mass is so much smaller, that gravity at his surface is only one-half of what it is here. Then, as to his physical condition, so far as we can determine it, astronomers discern in his face54 the outlines of continents and seas. The ruddy color by which he is distinguished, the red and fiery aspect which he presents, arise, they think, from the color of the land, while the seas appear greenish. Clouds often seem to intercept the astronomer's view of the globe, which with its continents and oceans thus revolves under his eye; and that there is an atmosphere on which such clouds may float, appears to be further proved, by brilliant white spots at the poles of the planet, which are conjectured to be snow; for they disappear when they have been long exposed to the sun, and are greatest when just emerging from the long night of their polar winter; the snow-line then extending to about six degrees (reckoned upon the meridian of the planet) from the pole. Moreover, Mars agrees with the earth, in the period of his rotation; which is about 24 hours; and in having his axis inclined to his orbit, so as to produce a cycle of long and short days and nights, a return of summer and winter, in every revolution of the planet.
26. We have here a number of circumstances which speak far more persuasively for a similarity of condition, in this planet and the Earth, than in any of the cases previously discussed. It is true, Mars is much smaller than the earth, and has not been judged worthy of the attendance of a satellite, although further from the Sun; but still, he may have been judged worthy of inhabitants by his Creator. Perhaps we are not quite certain about the existence of an atmosphere; and without such an appendage, we can hardly accord him tenants. But if he have inhabitants, let us consider of what kind they must be conceived to be, according to any judgment which we can form. The force of his gravity is so small, that we may allow his animals to be large, without fearing that they will break down by their own weight. In a planet so dense, they may very likely have solid skeletons. The ice about his poles will cumber the seas, cold even for the want of solar heat, as it does in our arctic and antarctic oceans; and we may easily imagine that these seas are tenanted, like those, by huge creatures of the nature of whales and seals, and by other creatures which the existence of these requires and implies. Or rather, since, as we have said, we must suppose the population of other planets to be more different from our existing population, than the population of other ages of our own planet, we may suppose the population of the seas and of the land of Mars, (if there be any, and if we are not carrying it too high in the scale of vital activity,) to differ from any terrestrial animals, in something of the same way in which the great land and sea saurians, or the iguanodon and dinotherium, differed from the animals which now live on the earth.
27. That we need not discuss the question, whether there are intelligent beings living on the surface of Mars, perhaps the reader will allow, till we have some better evidence that there are living things there at all; if he calls to mind the immense proportion which, on the earth, far better fitted for the habitation of the only intelligent creature which we know or can conceive, the duration of unintelligent life has borne to that of intelligent. Here, on this Earth, a few thousand years ago, began the life of a creature who can speculate about the past and the future, the near and the absent, the Universe and its Maker, duty and immortality. This began a few thousand years ago, after ages and myriads of ages, after immense varieties of lives and generations, of corals and mollusks, saurians, iguanodons, and dinotheriums. No doubt the Creator might place an intelligent creature upon a planet, without all this preparation, all this preliminary life. He has not chosen to do so on the earth, as we know; and that is by much the best evidence attainable by us, of what His purposes are. It is also possible that He should, on another planet, have established creatures of the nature of corals and mollusks, saurians and iguanodons, without having yet arrived at the period of intelligent creatures: especially if that other planet have longer years, a colder climate, a smaller mass, and perhaps no atmosphere. It is also possible that He should have put that smaller planet near the Earth, resembling it in some respects, as the Moon does, but without any inhabitants, as she has none; and that Mars may be such a planet. The probability against such a belief can hardly be considered as strong, if the arguments already offered be regarded as effective against the opinion of inhabitants in the other planets, and in the Moon.
28. The numerous tribe of small bodies, which revolve between Jupiter and Mars, do not admit of much of the kind of reasoning, which we have applied to the larger planets. They have, with perhaps one exception (Vesta) no disk of visible magnitude; they are mere dots, and we do not even know that their form is spherical. The near coincidence of their orbits has suggested, to astronomers, the conjecture that they have resulted from the explosion of a larger body, and from its fracture into fragments. Perhaps the general phenomena of the universe suggest rather the notion of a collapse of portions of sidereal matter, than of a sudden disruption and dispersion of any portion of it; and these small bodies may be the results of some imperfectly effected concentration of the elements of our system; which, if it had gone on more completely and regularly, might have produced another planet, like Mars or Venus. Perhaps they are only the larger masses, among a great number of smaller ones, resulting from such a process: and it is very conceivable, that the meteoric stones which, from time to time, have fallen upon the earth's surface, are other results of the like process:—bits of planets which have failed in the making, and lost their way, till arrested by the resistance of the earth's atmosphere. A remarkable circumstance in these bodies is, that though thus coming apparently from some remote part of the system, they contain no elements but such as had already been found to exist in the mass of the earth; although some substances, as nickel and chrome, which are somewhat rare in the earth's materials, are common parts of the composition of meteoric stones. Also they are of crystalline structure, and exhibit some peculiarities in their crystallization. Such as these strange visitors are, they seem to show that the other parts of the solar system contain the same elementary substances, and are subject to the same laws of chemical synthesis and crystalline force, which obtain in the terrestrial region. The smallness of these specimens is a necessary condition of their reaching us; for if they had been more massive, they would have followed out the path of their orbits round the sun, however eccentric these might be. The great eccentricity of the smaller planets, their great deviation from the zodiacal path, which is the highway of the large planets, their great number, probably by no means yet exhausted by the discoveries of astronomers; all fall in with the supposition that there are, in the solar system, a vast multitude of such abnormal planetoidal lumps. As I have said, we do not even know that they are approximately spherical; and if they are of the nature of meteoric stones, they are mere crude and irregularly crystallized masses of metal and earth. It will therefore, probably, be deemed unnecessary to give other reasons why these planetoids are not inhabited. But if it be granted that they are not, we have here, in addition to the moon, a large array of examples, to prove how baseless is the assumption, that all the bodies of the solar system are the seats of life.
29. We have thus performed our journey from the extremest verge of the Universe, so far as we have any knowledge of it, to the orbit of our own planet; and have found, till we came into our own most immediate vicinity, strong reasons for rejecting the assumption of inhabited worlds like our own; and indeed, of the habitation of worlds in any sense. And even if Mars, in his present condition, may be some image of the Earth, in some of its remote geological periods, it is at least equally possible that he may be an image of the Earth, in the still remoter geological period before life began. Of peculiar fitnesses which make the earth suited to the sustentation of life, as we know that it is, we shall speak hereafter; and at present pass on to the other planets, Venus and Mercury. But of these, there is, in our point of view, very little to say. Venus, which, when nearest to us, fills a larger angle than any other celestial body, except the Sun and the Moon, might be expected to be the one of which we know most. Yet she is really one of the most difficult to scrutinize with our telescopes. Astronomers cannot discover in her, as in Mars, any traces of continents and seas, mountains and valleys; at least with any certainty.55 Her illuminated part shines with an intense lustre which dazzles the sight;56 yet she is of herself perfectly dark; and it was the discovery, that she presented the phases of the Moon, made by the telescope of Galileo, which gave the first impulse to planetary research. She is almost as large as the earth; almost as heavy. The light and heat which she receives from the Sun must be about double those which come to the earth. We discern no traces of a gaseous or watery atmosphere surrounding her. Perhaps if we could see her better, we might find that she had a surface like the moon; or perhaps, in the nearer neighborhood of the sun, she may have cooled more slowly and quietly, like a glass which is annealed in the fire; and hence, may have a smooth surface, instead of the furrowed and pimpled visage which the Moon presents to us. With this ignorance of her conditions, it is hard to say what kind of animals we could place in her, if we were disposed to people her surface; except perhaps the microscopic creatures, with siliceous coverings, which, as modern explorers assert, are almost indestructible by heat. To believe that she has a surface like the earth, and tribes of animals, like terrestrial animals, and like man, is an exercise of imagination, which not only is quite gratuitous, but contrary to all the information which the telescope gives us; and with this remark, we may dismiss the hypothesis.
30. Of Mercury we know still less. He receives seven times as much light and heat as the Earth; is much smaller than the earth, but perhaps more dense; and has not, so far as we can tell, any of the conditions which make animal existence conceivable. If it is so difficult to find suitable inhabitants for Venus, the difficulty for Mercury is immensely greater.
31. So far then, we have traversed the Solar System, and have found even here, the strongest grounds that there can be no animal existence, like that which alone we can conceive as animal existence, except in the planet next beyond the earth, Mars; and there, not without great modifications. But we may make some further remarks on the condition of the several planets, with regard to what appears to us to be the necessary elements of animal life.
CHAPTER X
THEORY OF THE SOLAR SYSTEM1. We have given our views respecting the various planets which constitute the Solar System;—views established, it would seem, by all that we know, of the laws of heat and moisture, density and attraction, organization and life. We have examined and reasoned upon the cases of the different planets separately. But it may serve to confirm this view, and to establish it in the reader's mind, if we give a description of the system which shall combine and connect the views which we have presented, of the constitution and peculiarities, as to physical circumstances, of each of the planets. It will help us in our speculations, if we can regard the planets not only as a collection, but as a scheme;—if we can give, not an enumeration only, but a theory. Now such a scheme, such a theory, appears to offer itself to us.
2. The planets exterior to Mars, Jupiter, and Saturn especially, as the best known of them, appear, by the best judgment which we can form, to be spheres of water, and of aqueous vapor, combined, it may be, with atmospheric air, in which their cloudy belts float over their deep oceans. Mars seems to have some portion at least of aqueous atmosphere; the earth, we know, has a considerable atmosphere of air, and of vapor; but the Moon, so near to her mistress, has none. On Venus and Mercury, we see nothing of a gaseous or aqueous atmosphere; and they, and Mars, do not differ much in their density from the Earth. Now, does not this look as if the water and the vapor, which belong to the solar system, were driven off into the outer regions of its vast circuit; while the solid masses which are nearest to the focus of heat, are all approximately of the same nature? And if this be so, what is the peculiar physical condition which we are led to ascribe to the Earth? Plainly this: that she is situated just in that region of the system, where the existence of matter, both in a solid, a fluid, and a gaseous condition, is possible. Outside the Earth's orbit, or at least outside Mars and the small Planetoids, there is, in the planets, apparently, no solid matter; or rather, if there be, there is a vast preponderance of watery and vaporous matter. Inside the Earth's orbit, we see, in the planets, no traces of water or vapor, or gas; but solid matter, about the density of terrestrial matter. The Earth, alone, is placed at the border where the conditions of life are combined; ground to stand upon; air to breathe; water to nourish vegetables, and thus, animals; and solid matter to supply the materials for their more solid parts; and with this, a due supply of light and heat, a due energy of the force of weight. All these conditions are, in our conception, requisite for life: that all these conditions meet, elsewhere than in the neighborhood of the Earth's orbit, we see strong reasons to disbelieve. The Earth, then, it would seem, is the abode of life, not because all the globes which revolve round the Sun may be assumed to be the abodes of life; but because the Earth is fitted to be so, by a curious and complex combination of properties and relations, which do not at all apply to the others. That the Earth is inhabited, is not a reason for believing that the other Planets are so, but for believing that they are not so.
3. Can we see any physical reason, for the fact which appears to us so probable, that all the water and vapor of the system is gathered in its outward parts? It would seem that we can. Water and aqueous vapor are driven from the Sun to the outer parts of the solar system, or are allowed to be permanent there only, as they are driven off and retained at a distance by any other source of heat;—to use a homely illustration, as they are driven from wet objects placed near the kitchen-fire: as they are driven from the hot sands of Egypt into the upper air: as they are driven from the tropics to the poles. In this latter case, and generally, in all cases, in which vapor is thus driven from a hotter region, when it comes into a colder, it may again be condensed in water, and fall in rain. So the cold of the air in the temperate zone condenses the aqueous vapors which flow from the tropics; and so, we have our clouds and our showers. And as there is this rainy region, indistinctly defined, between the torrid and the frigid zones on the earth; so is there a region of clouds and rain, of air and water, much more precisely defined, in the solar system, between the central torrid zone and the external frigid zone which surrounds the Sun at a greater distance.
4. The Earth's Orbit is the Temperate Zone of the Solar System. In that Zone only is the play of Hot and Cold, of Moist and Dry, possible. The Torrid Zone of the Earth is not free from moisture; it has its rains, for it has its upper colder atmosphere. But how much hotter are Venus and Mercury than the Torrid Zone? There, no vapors can linger; they are expelled by the fierce solar energy; and there is no cool stratum to catch them and return them. If they were there, they must fly to the outer regions; to the cold abodes of Jupiter and Saturn, if on their way, the Earth did not with cold and airy finger outstretched afar, catch a few drops of their treasures, for the use of plant, and beast, and man. The solid stone only, and the metallic ore which can be fused and solidified with little loss of substance, can bear the continual force of the near solar fire, and be the material of permanent solid planets in that region. But the lava pavement of the Inner Planets bears no superstructure of life; for all life would be scorched away along with water, its first element. On the Earth first, can this superstructure be raised; and there, through we know not what graduation of forms, the waters were made to bring forth abundantly things that had life; plants, and animals nourished by plants, and conspiring with them, to feed on their respective appointed elements, in the air which surrounded them. And so, nourished by the influences of air and water, plants and animals lived and died, and were entombed in the scourings of the land, which the descending streams carried to the bottom of the waters. And then, these beds of dead generations were raised into mountain ranges; perhaps by the yet unextinguished forces of subterraneous fires. And then a new creation of plants and animals succeeded; still living under the fostering influence of the united pair, Air and Water, which never ceased to brood over the World of Life, their Nurseling; and then, perhaps, a new change of the limits of land and water, and a new creation again: till at last, Man was placed upon the Earth; with far higher powers, and far different purposes, from any of the preceding tribes of creatures: and with this, for one of his offices;—that there might be an intelligent being to learn how wonderfully the scheme of creation had been carried on, and to admire, and to worship the Creator.
5. But we have a few more remarks to make on the structure of the Solar System, in this point of view. When we say that the water and vapor of the System were driven to the outer parts, or retained there, by the central heat of the Sun, perhaps it might be supposed to be most simple and natural, that the aqueous vapor, and the water, should assume its place in a distinct circle, or rather a spherical shell, of which the Sun was the centre; thus making an elemental sphere about the centre, such as the ancients imagined in their schemes of the Universe. Nor will we venture to say that such an arrangement of elements might not be; though perhaps it might be shown that no stable equilibrium of the system would be, in this way, mechanically possible. But this at least we may say; that a rotatory motion of all the parts of the universe appears to be a universal law prevalent in it, so far as our observation can reach: and that, by such rotation of the separate masses, the whole is put in a condition which is everywhere one of stable equilibrium. It was, then, agreeable to the general scheme, that the excess of water and vapor, which must necessarily be carried away, or stored up, in the outer regions of the System, should be put into shapes in which it should have a permanent place and form. And thus, it is suitable to the general economy of creation, that this water and vapor should be packed into rotating masses, such as are Jupiter and Saturn, Uranus and Neptune. When once collected in such rotating masses, the attraction of its parts would gather it into spheroidal forms; oblate by the effect of rotation, as Jupiter, or perhaps into annular forms, like the Ring of Saturn;57 for such also is a mechanically possible form of equilibrium, for a fluid mass. And these spheroids once formed, the water would form a central nucleus, over which would hang a cover of vapor, raised by the evaporating power of the Sun, and forming clouds, where the rarity of the upper strata of vapor allowed the cold of the external space to act; and these clouds, spun into belts by the rotation of the sphere. And thus, the vapor, which would otherwise have wandered loose about the atmosphere, was neatly wound into balls; which, again, were kept in their due place, by being made to revolve in nearly circular orbits about the Sun.
6. And thus, according to our view, water and gases, clouds and vapors, form mainly the planets in the outer part of the solar system; while masses such as result from the fusion of the most solid materials, lie nearer the sun, and are found principally within the orbit of Jupiter.58 To conceive planetary systems as formed by the gradual contraction of a nebular mass, and by the solidification of some of its parts, is a favorite notion of several speculators. If we adopt this notion, we shall, I think, find additional proofs in favor of our view of the system. For, in the first place, we have the zodiacal light, a nebulous appendage to the Sun, as Herschel conceives, extending beyond the orbits of Mercury and Venus. These planets, then, have not yet fully emerged from the atmosphere in which they had their origin:—the mother-light and mother-fire, in which they began to crystallize, as crystals do in their mother-water. Though they are already opaque, they are still immersed in luminous vapor: and bearing such traces of their chaotic state being not yet ended, we need not wonder, if we find no evidence of their having inhabitants, and some evidence to the contrary. They are within a nebular region, which may easily be conceived to be uninhabitable. And where this nebular region, marked by the zodiacal light, terminates, the world of life begins, namely at the Earth.