Читать книгу On the Philosophy of Discovery, Chapters Historical and Critical (William Whewell) онлайн бесплатно на Bookz (20-ая страница книги)
bannerbanner
On the Philosophy of Discovery, Chapters Historical and Critical
On the Philosophy of Discovery, Chapters Historical and CriticalПолная версия
Оценить:
On the Philosophy of Discovery, Chapters Historical and Critical

5

Полная версия:

On the Philosophy of Discovery, Chapters Historical and Critical

31. Mr. Mill has not noticed, in any considerable degree, what I have said of the formation of the Conceptions which enter into the various sciences; but he has, in general terms, denied that the Conception is anything different from the facts themselves. "If," he says (i. 301), "the facts are rightly classed under the conceptions, it is because there is in the facts themselves, something of which the conception is a copy." But it is a copy which cannot be made by a person without peculiar endowments; just as a person cannot copy an ill-written inscription, so as to make it convey sense, unless he understand the language. "Conceptions," Mr. Mill says (ii. 217), "do not develope themselves from within, but are impressed from without." But what comes from without is not enough: they must have both origins, or they cannot make knowledge. "The conception," he says again (ii. 221), "is not furnished by the mind till it has been furnished to the mind." But it is furnished to the mind by its own activity, operating according to its own laws. No doubt, the conception may be formed, and in cases of discovery, must be formed, by the suggestion and excitement which the facts themselves produce; and must be so moulded as to agree with the facts. But this does not make it superfluous to examine, out of what materials such conceptions are formed, and how they are capable of being moulded so as to express laws of nature; especially, when we see how large a share this part of discovery—the examination how our ideas can be modified so as to agree with nature,—holds, in the history of science.

32. I have already (Art. 28) given, as evidence that the conception enters as an element in every induction, the constant introduction in such cases, of a new fixed term or phrase. Mr. Mill (ii. 282) notices this introduction of a new phrase in such cases as important, though he does not appear willing to allow that it is necessary. Yet the necessity of the conception at least, appears to result from the considerations which he puts forward. "What darkness," he says, "would have been spread over geometrical demonstration, if wherever the word circle is used, the definition of a circle was inserted instead of it." "If we want to make a particular combination of ideas permanent in the mind, there is nothing which clenches it like a name specially devoted to express it." In my view, the new conception is the nail which connects the previous notions, and the name, as Mr. Mill says, clenches the junction.

33. I have above (Art. 30) referred to the difficulty of getting hold of the right conception, as a proof that induction is not a mere juxtaposition of facts. Mr. Mill does not dispute that it is often difficult to hit upon the right conception. He says (i. 360), "that a conception of the mind is introduced, is indeed most certain, and Mr. Whewell has rightly stated elsewhere, that to hit upon the right conception is often a far more difficult, and more meritorious achievement, than to prove its applicability when obtained. But," he adds, "a conception implies and corresponds to something conceived; and although the conception itself is not in the facts, but in our mind, it must be a conception of something which really is in the facts." But to this I reply, that its being really in the facts, does not help us at all towards knowledge, if we cannot see it there. As the poet says,

It is the mind that sees: the outward eyesPresent the object, but the mind descries.

And this is true of the sight which produces knowledge, as well as of the sight which produces pleasure and pain, which is referred to in the Tale.

34. Mr. Mill puts his view, as opposed to mine, in various ways, but, as will easily be understood, the answers which I have to offer are in all cases nearly to the same effect. Thus, he says (ii. 216), "the tardy development of several of the physical sciences, for example, of Optics, Electricity, Magnetism, and the higher generalizations of Chemistry, Mr. Whewell ascribes to the fact that mankind had not yet possessed themselves of the idea of Polarity, that is, of opposite properties in opposite directions. But what was there to suggest such an idea, until by a separate examination of several of these different branches of knowledge it was shown that the facts of each of them did present, in some instances at least, the curious phenomena of opposite properties in opposite directions?" But on this I observe, that these facts did not, nor do yet, present this conception to ordinary minds. The opposition of properties, and even the opposition of directions, which are thus apprehended by profound cultivators of science, are of an abstruse and recondite kind; and to conceive any one kind of polarity in its proper generality, is a process which few persons hitherto appear to have mastered; still less, have men in general come to conceive of them all as modifications of a general notion of Polarity. The description which I have given of Polarity in general, "opposite properties in opposite directions," is of itself a very imperfect account of the manner in which corresponding antitheses are involved in the portions of science into which Polar relations enter. In excuse of its imperfection, I may say, that I believe it is the first attempt to define Polarity in general; but yet, the conception of Polarity has certainly been strongly and effectively present in the minds of many of the sagacious men who have discovered and unravelled polar phenomena. They attempted to convey this conception, each in his own subject, sometimes by various and peculiar expressions, sometimes by imaginary mechanism by which the antithetical results were produced; their mode of expressing themselves being often defective or imperfect, often containing what was superfluous; and their meaning was commonly very imperfectly apprehended by most of their hearers and readers. But still, the conception was there, gradually working itself into clearness and distinctness, and in the mean time, directing their experiments, and forming an essential element of their discoveries. So far would it be from a sufficient statement of the case to say, that they conceived polarity because they saw it;—that they saw it as soon as it came into view;—and that they described it as they saw it.

35. The way in which such conceptions acquire clearness and distinctness is often by means of Discussions of Definitions. To define well a thought which already enters into trains of discovery, is often a difficult matter. The business of such definition is a part of the business of discovery. These, and other remarks connected with these, which I had made in the Philosophy, Mr. Mill has quoted and adopted (ii. 242). They appear to me to point very distinctly to the doctrine to which he refuses his assent,—that there is a special process in the mind, in addition to the mere observation of facts, which is necessary at every step in the progress of knowledge. The Conception must be formed before it can be defined. The Definition gives the last stamp of distinctness to the Conception; and enables us to express, in a compact and lucid form, the new scientific propositions into which the new Conception enters.

36. Since Mr. Mill assents to so much of what has been said in the Philosophy, with regard to the process of scientific discovery, how, it may be asked, would he express these doctrines so as to exclude that which he thinks erroneous? If he objects to our saying that when we obtain a new inductive truth, we connect phenomena by applying to them a new Conception which fits them, in what terms would he describe the process? If he will not agree to say, that in order to discover the law of the facts, we must find an appropriate Conception, what language would he use instead of this? This is a natural question; and the answer cannot fail to throw light on the relation in which his views and mine stand to each other.

Mr. Mill would say, I believe, that when we obtain a new inductive law of facts, we find something in which the facts resemble each other; and that the business of making such discoveries is the business of discovering such resemblances. Thus, he says (of me,) (ii. 211), "his Colligation of Facts by means of appropriate Conceptions, is but the ordinary process of finding by a comparison of phenomena, in what consists their agreement or resemblance." And the Methods of experimental Inquiry which he gives (i. 450, &c.), proceed upon the supposition that the business of discovery may be thus more properly described.

37. There is no doubt that when we discover a law of nature by induction, we find some point in which all the particular facts agree. All the orbits of the planets agree in being ellipses, as Kepler discovered; all falling bodies agree in being acted on by a uniform force, as Galileo discovered; all refracted rays agree in having the sines of incidence and refraction in a constant ratio, as Snell discovered; all the bodies in the universe agree in attracting each other, as Newton discovered; all chemical compounds agree in being constituted of elements in definite proportions, as Dalton discovered. But it appears to me a most scanty, vague, and incomplete account of these steps in science, to say that the authors of them discovered something in which the facts in each case agreed. The point in which the cases agree, is of the most diverse kind in the different cases—in some, a relation of space, in others, the action of a force, in others, the mode of composition of a substance;—and the point of agreement, visible to the discoverer alone, does not come even into his sight, till after the facts have been connected by thoughts of his own, and regarded in points of view in which he, by his mental acts, places them. It would seem to me not much more inappropriate to say, that an officer, who disciplines his men till they move together at the word of command, does so by finding something in which they agree. If the power of consentaneous motion did not exist in the individuals, he could not create it: but that power being there, he finds it and uses it. Of course I am aware that the parallel of the two cases is not exact; but in the one case, as in the other, that in which the particular things are found to agree, is something formed in the mind of him who brings the agreement into view.

IV. Mr. Mill's Four Methods of Inquiry.—38. Mr. Mill has not only thus described the business of scientific discovery; he has also given rules for it, founded on this description. It may be expected that we should bestow some attention upon the methods of inquiry which he thus proposes. I presume that they are regarded by his admirers as among the most valuable parts of his book; as certainly they cannot fail to be, if they describe methods of scientific inquiry in such a manner as to be of use to the inquirer.

Mr. Mill enjoins four methods of experimental inquiry, which he calls the Method of Agreement, the Method of Difference, the Method of Residues, and the Method of Concomitant Variations271. They are all described by formulæ of this kind:—Let there be, in the observed facts, combinations of antecedents, ABC, BC, ADE, &c. and combinations of corresponding consequents, abc, bc, ade, &c.; and let the object of inquiry be, the consequence of some cause A, or the cause of some consequence a. The Method of Agreement teaches us, that when we find by experiment such facts as abc the consequent of ABC, and ade the consequent of ADE, then a is the consequent of A. The Method of Difference teaches us that when we find such facts as abc the consequent of ABC, and bc the consequent of BC, then a is the consequent of A. The Method of Residues teaches us, that if abc be the consequent of ABC, and if we have already ascertained that the effect of A is a, and the effect of B is b, then we may infer that the effect of C is c. The Method of Concomitant Variations teaches us, that if a phenomenon a varies according as another phenomenon A varies, there is some connexion of causation direct or indirect, between A and a.

39. Upon these methods, the obvious thing to remark is, that they take for granted the very thing which is most difficult to discover, the reduction of the phenomena to formulæ such as are here presented to us. When we have any set of complex facts offered to us; for instance, those which were offered in the cases of discovery which I have mentioned,—the facts of the planetary paths, of falling bodies, of refracted rays, of cosmical motions, of chemical analysis; and when, in any of these cases, we would discover the law of nature which governs them, or, if any one chooses so to term it, the feature in which all the cases agree, where are we to look for our A, B, C and a, b, c? Nature does not present to us the cases in this form; and how are we to reduce them to this form? You say, when we find the combination of ABC with abc and ABD with abd, then we may draw our inference. Granted: but when and where are we to find such combinations? Even now that the discoveries are made, who will point out to us what are the A, B, C and a, b, c elements of the cases which have just been enumerated? Who will tell us which of the methods of inquiry those historically real and successful inquiries exemplify? Who will carry these formulæ through the history of the sciences, as they have really grown up; and show us that these four methods have been operative in their formation; or that any light is thrown upon the steps of their progress by reference to these formulæ?

40. Mr. Mill's four methods have a great resemblance to Bacon's "Prerogatives of Instances;" for example, the Method of Agreement to the Instantiæ Ostensivæ; the Method of Differences to the Instantiæ Absentiæ in Proximo, and the Instantiæ Crucis; the Method of Concomitant Variations to the Instantiæ Migrantes. And with regard to the value of such methods, I believe all study of science will convince us more and more of the wisdom of the remarks which Sir John Herschel has made upon them272.

"It has always appeared to us, we must confess, that the help which the classification of instances under their different titles of prerogative, affords to inductions, however just such classification may be in itself, is yet more apparent than real. The force of the instance must be felt in the mind before it can be referred to its place in the system; and before it can be either referred or appreciated it must be known; and when it is appreciated, we are ready enough to weave our web of induction, without greatly troubling ourselves whence it derives the weight we acknowledge it to have in our decisions.... No doubt such instances as these are highly instructive; but the difficulty in physics is to find such, not to perceive their force when found."

V. His Examples.—41. If Mr. Mill's four methods had been applied by him in his book to a large body of conspicuous and undoubted examples of discovery, well selected and well analysed, extending along the whole history of science, we should have been better able to estimate the value of these methods. Mr. Mill has certainly offered a number of examples of his methods; but I hope I may say, without offence, that they appear to me to be wanting in the conditions which I have mentioned. As I have to justify myself for rejecting Mr. Mill's criticism of doctrines which I have put forward, and examples which I have adduced, I may, I trust, be allowed to offer some critical remarks in return, bearing upon the examples which he has given, in order to illustrate his doctrines and precepts.

42. The first remark which I have to make is, that a large proportion of his examples (i. 480, &c.) is taken from one favourite author; who, however great his merit may be, is too recent a writer to have had his discoveries confirmed by the corresponding investigations and searching criticisms of other labourers in the same field, and placed in their proper and permanent relation to established truths; these alleged discoveries being, at the same time, principally such as deal with the most complex and slippery portions of science, the laws of vital action. Thus Mr. Mill has adduced, as examples of discoveries, Prof. Liebig's doctrine—that death is produced by certain metallic poisons through their forming indecomposable compounds; that the effect of respiration upon the blood consists in the conversion of peroxide of iron into protoxide—that the antiseptic power of salt arises from its attraction for moisture—that chemical action is contagious; and others. Now supposing that we have no doubt of the truth of these discoveries, we must still observe that they cannot wisely be cited, in order to exemplify the nature of the progress of knowledge, till they have been verified by other chemists, and worked into their places in the general scheme of chemistry; especially, since it is tolerably certain that in the process of verification, they will be modified and more precisely defined. Nor can I think it judicious to take so large a proportion of our examples from a region of science in which, of all parts of our material knowledge, the conceptions both of ordinary persons, and even of men of science themselves, are most loose and obscure, and the genuine principles most contested; which is the case in physiology. It would be easy, I think, to point out the vague and indeterminate character of many of the expressions in which the above examples are propounded, as well as their doubtful position in the scale of chemical generalization; but I have said enough to show why I cannot give much weight to these, as cardinal examples of the method of discovery; and therefore I shall not examine in detail how far they support Mr. Mill's methods of inquiry.

43. Mr. Liebig supplies the first and the majority of Mr. Mill's examples in chapter IX. of his Book on Induction. The second is an example for which Mr. Mill states himself to be indebted to Mr. Alexander Bain; the law established being this, that (i. 487) electricity cannot exist in one body without the simultaneous excitement of the opposite electricity in some neighbouring body, which Mr. Mill also confirms by reference to Mr. Faraday's experiments on voltaic wires.

I confess I am quite at a loss to understand what there is in the doctrine here ascribed to Mr. Bain which was not known to the electricians who, from the time of Franklin, explained the phenomena of the Leyden vial. I may observe also that the mention of an "electrified atmosphere" implies a hypothesis long obsolete. The essential point in all those explanations was, that each electricity produced by induction the opposite electricity in neighbouring bodies, as I have tried to make apparent in the History273. Faraday has, more recently, illustrated this universal co-existence of opposite electricities with his usual felicity.

But the conjunction of this fact with voltaic phenomena, implies a non-recognition of some of the simplest doctrines of the subject. "Since," it is said (i. 488), "common or machine electricity, and voltaic electricity may be considered for the present purpose to be identical, Faraday wished to know, &c." I think Mr. Faraday would be much astonished to learn that he considered electricity in equilibrium, and electricity in the form of a voltaic current, to be, for any purpose, identical. Nor do I conceive that he would assent to the expression in the next page, that "from the nature of a voltaic charge, the two opposite currents necessary to the existence of each other are both accommodated in one wire." Mr. Faraday has, as it appears to me, studiously avoided assenting to this hypothesis.

44. The next example is the one already so copiously dwelt upon by Sir John Herschel, Dr. Wells's researches on the production of Dew. I have already said274 that "this investigation, although it has sometimes been praised as an original discovery, was in fact only resolving the phenomenon into principles already discovered namely, the doctrine of a constituent temperature of vapour, the different conducting power of different bodies, and the like. And this agrees in substance with what Mr. Mill says (i. 497); that the discovery, when made, was corroborated by deduction from the known laws of aqueous vapour, of conduction, and the like. Dr. Wells's researches on Dew tended much in this country to draw attention to the general principles of Atmology; and we may see, in this and in other examples which Mr. Mill adduces, that the explanation of special phenomena by means of general principles, already established, has, for common minds, a greater charm, and is more complacently dwelt on, than the discovery of the general principles themselves.

45. The next example, (i. 502) is given in order to illustrate the Method of Residues, and is the discovery by M. Arago that a disk of copper affects the vibrations of the magnetic needle. But this apparently detached fact affords little instruction compared with the singularly sagacious researches by which Mr. Faraday discovered the cause of this effect to reside in the voltaic currents which the motion of the magnetic needle developed in the copper. I have spoken of this discovery in the History275. Mr. Mill however is quoting Sir John Herschel in thus illustrating the Method of Residues. He rightly gives the Perturbations of the Planets and Satellites as better examples of the method276.

46. In the next chapter (c. x.) Mr. Mill speaks of Plurality of causes and of the Intermixture of effects, and gives examples of such cases. He here teaches (i. 517) that chemical synthesis and analysis, (as when oxygen and hydrogen compose water, and when water is resolved into oxygen and hydrogen,) is properly transformation, but that because we find that the weight of the compound is equal to the sum of the weights of the elements, we take up the notion of chemical composition. I have endeavoured to show277 that the maxim, that the sum of the weights of the elements is equal to the weight of the compound, was, historically, not proved from experiment, but assumed in the reasonings upon experiments.

47. I have now made my remarks upon nearly all the examples which Mr. Mill gives of scientific inquiry, so far as they consist of knowledge which has really been obtained. I may mention, as points which appear to me to interfere with the value of Mr. Mill's references to examples, expressions which I cannot reconcile with just conceptions of scientific truth; as when he says (i. 523), "some other force which impinges on the first force;" and very frequently indeed, of the "tangential force," as co-ordinate with the centripetal force.

When he speaks (ii. 20, Note) of "the doctrine now universally received that the earth is a great natural magnet with two poles," he does not recognize the recent theory of Gauss, so remarkably coincident with a vast body of facts278. Indeed in his statement, he rejects no less the earlier views proposed by Halley, theorized by Euler, and confirmed by Hansteen, which show that we are compelled to assume at least four poles of terrestrial magnetism; which I had given an account of in the first edition of the History.

There are several other cases which he puts, in which, the knowledge spoken of not having been yet acquired, he tells us how he would set about acquiring it; for instance, if the question were (i. 526) whether mercury be a cure for a given disease; or whether the brain be a voltaic pile (ii. 21); or whether the moon be inhabited (ii. 100); or whether all crows are black (ii. 124); I confess that I have no expectation of any advantage to philosophy from discussions of this kind.

48. I will add also, that I do not think any light can be thrown upon scientific methods, at present, by grouping along with such physical inquiries as I have been speaking of, speculations concerning the human mind, its qualities and operations. Thus he speaks (i. 508) of human characters, as exemplifying the effect of plurality of causes; of (i. 518) the phenomena of our mental nature, which are analogous to chemical rather than to dynamical phenomena; of (i. 518) the reason why susceptible persons are imaginative; to which I may add, the passage where he says (i. 444), "let us take as an example of a phenomenon which we have no means of fabricating artificially, a human mind." These, and other like examples, occur in the part of his work in which he is speaking of scientific inquiry in general, not in the Book on the Logic of the Moral Sciences; and are, I think, examples more likely to lead us astray than to help our progress, in discovering the laws of Scientific Inquiry, in the ordinary sense of the term.

bannerbanner