Читать книгу Essays Upon Heredity and Kindred Biological Problems (August Weismann) онлайн бесплатно на Bookz (24-ая страница книги)
bannerbanner
Essays Upon Heredity and Kindred Biological Problems
Essays Upon Heredity and Kindred Biological ProblemsПолная версия
Оценить:
Essays Upon Heredity and Kindred Biological Problems

3

Полная версия:

Essays Upon Heredity and Kindred Biological Problems

We do not know the number of generations over which the specific hereditary tendencies of the first generation can make themselves felt. Many facts seem to indicate however that the number is large, and it is at all events greater than six. When we remember that, in the tenth generation, a single germ contains 1024 different germ-plasms, with their inherent hereditary tendencies, it is quite clear that continued sexual reproduction can never lead to the re-appearance of exactly the same combination, but that new ones must always arise.

New combinations are all the more probable because the different idioplasms composing the germ-plasm in the germ-cells of any individual are present in different degrees of intensity at different times of its life; in other words, the intensity of the component idioplasms is a function of time. This conclusion follows from the fact that children of the same parents are never exactly identical. In one child the characters of the father may predominate, in another those of the mother, in another again those of either grand-parent or great-grand-parent.

We are thus led to the conclusion that even in a few sexually produced generations a large number of well-marked individuals must arise: and this would even be true of generations springing from our hypothetical species, assumed to be without ancestors, and characterised by few individual differences. But of course organisms which reproduce themselves sexually are never without ancestors, and if these latter were also propagated by the sexual method, it follows that each generation of every sexual species is in the stage which we have previously assumed for the tenth or some much later generation of the hypothetical species. In other words, each individual contains a maximum of hereditary tendencies and an infinite variety of possible individual characters (see Appendix VI, p. 326).

In this manner we can explain the origin of hereditary individual variability as it is known in man and the higher animals, and as it is required for the theory which explains the transformation of species by means of natural selection.

Before proceeding further, I must attempt to answer a question which obviously suggests itself. For the sake of argument, I have assumed the existence of a first generation, of which the individuals were already characterised by individual differences. Can we find any explanation of these latter, or are we compelled to take them for granted, without any attempt to enquire into their origin? If we abandon this enquiry, we can never achieve a complete solution of the problems of heredity and variability. We have, it is true, shown that hereditary differences, when they have once appeared, would, through sexual reproduction, undergo development into the diverse forms which actually exist; but this conclusion affords us no explanation of the source whence such differences have been derived. If the external conditions acting directly upon an organism can only produce transient (viz. non-hereditary) differences in the latter, and if, on the other hand, the external influences which act upon the germ-cell can only produce a change in its molecular structure after operating over very long periods, it seems that we have exhausted all the possible sources of hereditary differences without reaching any satisfactory explanation.

I believe, however, that an explanation can be given. The origin of hereditary individual variability cannot indeed be found in the higher organisms—the Metazoa and Metaphyta; but it is to be sought for in the lowest—the unicellular organisms. In these latter the distinction between body-cell and germ-cell does not exist. Such organisms are reproduced by division, and if therefore any one of them becomes changed in the course of its life by some external influence, and thus receives an individual character, the method of reproduction ensures that the acquired peculiarity will be transmitted to its descendants. If, for instance, a Protozoon, by constantly struggling against the mechanical influence of currents in water, were to gain a somewhat denser and more resistent protoplasm, or were to acquire the power of adhering more strongly than the other individuals of its species, the peculiarity in question would be directly continued on into its two descendants, for the latter are at first nothing more than the two halves of the former. It therefore follows that every modification which appears in the course of its life, every individual character, however it may have arisen, must necessarily be directly transmitted to the two offspring of a unicellular organism.

The pianist, whom I have already used as an illustration, may by practice develope the muscles of his fingers so as to ensure the highest dexterity and power; but such an effect would be entirely transient, for it depends upon a modification in local nutrition which would be unable to cause any change in the molecular structure of the germ-cells, and could not therefore produce any effect upon the offspring. And even if we admit that some change might be caused in the germ-cells, the chances would be infinity to nothing against the production of the appropriate effect, viz. such a change as would lead to the development in the child of the acquired characters of the parent.

In the lowest unicellular organisms, however, the case is entirely different. Here parent and offspring are still, in a certain sense, one and the same thing: the child is a part, and usually half, of the parent. If therefore the individuals of a unicellular species are acted upon by any of the various external influences, it is inevitable that hereditary individual differences will arise in them; and as a matter of fact it is indisputable that changes are thus produced in these organisms, and that the resulting characters are transmitted. It has been directly observed that individual differences do occur in unicellular organisms,—differences in size, colour, form, and the number or arrangement of cilia. It must be admitted that we have not hitherto paid sufficient attention to this point, and moreover our best microscopes are only very rough means of observation when we come to deal with such minute organisms. Nevertheless we cannot doubt that the individuals of the same species are not absolutely identical.

We are thus driven to the conclusion that the ultimate origin of hereditary individual differences lies in the direct action of external influences upon the organism. Hereditary variability cannot however arise in this way at every stage of organic development, as biologists have hitherto been inclined to believe. It can only arise in the lowest unicellular organisms; and when once individual difference had been attained by these, it necessarily passed over into the higher organisms when they first appeared. Sexual reproduction coming into existence at the same time, the hereditary differences were increased and multiplied, and arranged in ever-changing combinations.

Sexual reproduction can also increase the differences between individuals, because constant cross-breeding must necessarily and repeatedly lead to a combination of forces which tend in the same direction, and which may determine the constitution of any part of the body. If, for instance, the same part of the body is strongly developed in both parents, the experience of breeders tells us that the part in question is likely to be even more strongly developed in the offspring; and that weakly developed parts will in the same manner tend to become still weaker. Amphigonic reproduction therefore ensures that every character which is subject to individual fluctuation must appear in many individuals with a strengthened degree of development, in many others with a development which is less than normal, while in a still larger number of individuals the average development will be reached. Such differences afford the material by means of which natural selection is able to increase or weaken each character according to the needs of the species. By the removal of the less well-adapted individuals, natural selection increases the chance of beneficial cross-breeding in the subsequent generations.

Every one must admit that, if a species came into existence having only a small number of individual differences which appeared in the different parts of different individuals, the number of differences would increase with each sexually produced generation, until all the parts in which the variations occurred had received a peculiar character in all individuals.

Moreover sexual reproduction not only adds to the number of existing differences, but it also brings them into new combinations, and this latter consequence is as important as the former.

The former consequence can hardly make itself felt in any existing species, because in them every part already possesses its peculiar character in all individuals. The second consequence is, however, more important, viz. the production of new combinations of individual characters by sexual reproduction; for, as Darwin has already pointed out, we must imagine that not only are single characters changed in the process of breeding, but that probably several, and perhaps very many characters, are simultaneously modified. No two species, however nearly allied, differ from each other in but a single character. Even our eyesight, which has by no means reached the highest pitch of development, can always detect several, and often very many points of difference; and if we possessed the powers necessary for making an absolutely accurate comparison, we should probably find that everything is different in two nearly allied species.

It is true that a great number of these differences depend upon correlation, but others must depend upon simultaneous primary changes.

A large butterfly (Kallima paralecta), found in the East Indian forests, has often been described in its position of rest as almost exactly resembling a withered leaf; the resemblance in colour being aided by the markings which imitate the venation of a leaf. These markings are composed of two parts, the upper of which is on the fore-wings, while the lower one is on the hind wings. The butterfly when at rest must therefore keep the wings in such a position that the two parts of each marking exactly correspond, for otherwise the character would be valueless; and as a matter of fact the wings are held in the appropriate position, although the butterfly is of course unconscious of what it is doing. Hence a mechanism must exist in the insect’s brain which compels it to assume this attitude, and it is clear that the mechanism cannot have been developed before the peculiar manner of holding the wings became advantageous to the butterfly, viz. before the similarity to a leaf had made its first appearance. Conversely, this latter resemblance could not develope before the butterfly had gained the habit of holding its wings in the appropriate position. Both characters must therefore have come into existence simultaneously, and must have undergone increase side by side: the marking progressing from an imperfect to a very close similarity, while the position of the wings gradually approached the attitude which was exactly appropriate. The development of certain minute structural elements of the central nervous system, and the appropriate distribution of colouring matter on the wings, must have taken place simultaneously, and only those individuals have been selected to continue the species which possessed the favourable variations in both these directions.

It is, however, obvious that sexual reproduction will readily afford such combinations of required characters, for by its means the most diverse features are continually united in the same individual, and this seems to me to be one of its most important results.

I do not know what meaning can be attributed to sexual reproduction other than the creation of hereditary individual characters to form the material upon which natural selection may work. Sexual reproduction is so universal in all classes of multicellular organisms, and nature deviates so rarely from it, that it must necessarily be of pre-eminent importance. If it be true that new species are produced by processes of selection, it follows that the development of the whole organic world depends on these processes, and the part that amphigony has to play in nature, by rendering selection possible among multicellular organisms, is not only important, but of the very highest imaginable importance.

But when I maintain that the meaning of sexual reproduction is to render possible the transformation of the higher organisms by means of natural selection, such a statement is not equivalent to the assertion that sexual reproduction originally came into existence in order to achieve this end. The effects which are now produced by sexual reproduction did not constitute the causes which led to its first appearance. Sexual reproduction came into existence before it could lead to hereditary individual variability. Its first appearance must therefore have had some other cause; but the nature of this cause can hardly be determined with any degree of certainty or precision from the facts with which we are at present acquainted. The general solution of the problem will, however, be found to lie in the conjugation of unicellular organisms, which forms the precursor of true sexual reproduction. The coalescence of two unicellular individuals which represents the simplest and therefore probably the most primitive form of conjugation, must have some directly beneficial effect upon the species in which it occurs.

Various assumptions may be made as to the nature of these beneficial effects, and it will be useful to consider in detail some of those suggestions which have been brought forward. Eminent biologists, such as Victor Hensen185 and Edouard van Beneden186, believe that conjugation, and indeed sexual reproduction generally, must be considered as ‘a rejuvenescence of life.’ Bütschli also accepts this view, at any rate as regards conjugation. These authorities imagine that the wonderful phenomena of life, of which the underlying cause is still an unsolved problem, cannot be continued indefinitely by the action of forces arising from within itself, that the clock-work would be stopped after a longer or shorter time, that the reproduction of purely asexual organisms would cease, just as the life of the individual finally comes to an end, or as a spinning wheel comes to rest in consequence of friction, and requires a renewed impetus if its motion is to continue. In order that reproduction may continue without interruption, these writers believe that a rejuvenescence of the living substance is necessary, that the clock-work of reproduction must be wound up afresh; and they recognize such a rejuvenescence in sexual reproduction and in conjugation, or in other words in the fusion of two cells, whether in the form of germ-cells or of two unicellular organisms.

Edouard van Beneden expresses this idea in the following words:—‘Il semble que la faculté que possèdent les cellules, de se multiplier par division soit limitée: il arrive un moment où elles ne sont plus capables de se diviser ultérieurement, à moins qu’elles ne subissent le phénomène du rajeunissement par le fait de la fécondation. Chez les animaux et les plantes les seules cellules capables d’être rajeunies sont les œufs; les seules capables de rajeunir sont les spermatocytes. Toutes les autres parties de l’individu sont vouées à la mort. La fécondation est la condition de la continuité de la vie. Par elle le générateur échappe à la mort’ (l. c., p. 405). Victor Hensen thinks it possible that the germ and its products are prevented from dying by means of normal fertilization: he says that the law which states that every egg must be fertilized, was formulated before the discovery of parthenogenesis and cannot now be maintained, but that we are nevertheless compelled to assume that even the most completely parthenogenetic species requires fertilization after many generations (l. c., p. 236).

If the theory of rejuvenescence be thoroughly examined, it will be found to be nothing more than the expression of the fact that sexual reproduction persists without any ascertainable limit. From the fact of its general occurrence, the conclusion is, however, drawn that asexual reproduction could not persist indefinitely as the only mode of reproduction in any species of animal. But proofs in support of this opinion are wanting, and it is very probable that it would never have been advanced if it had been possible to explain the general occurrence of sexual reproduction in any other way,—if we had been able to ascribe any other significance to this pre-eminently important process.

But quite apart from the fact that it is impossible to bring forward any proofs, the theory of rejuvenescence seems to me to be unsatisfactory in other ways. The whole conception of rejuvenescence, although very ingenious, has something uncertain about it, and can hardly be brought into accordance with the usual conception of life as based upon physical and mechanical forces. How can any one imagine that an Infusorian, which by continued division had lost its power of reproduction, could regain this power by forming a new individual, after fusion with another Infusorian, which had similarly become incapable of division? Twice nothing cannot make one. If indeed we could assume that each animal contained half the power necessary for reproduction, then both together would certainly form an efficient whole; but it is hardly possible to apply the term rejuvenescence to a process which is simply an addition, such as would be attained under other circumstances by mere growth; neglecting, for the present, that factor which, in my opinion, is of the utmost importance in conjugation,—the fusion of two hereditary tendencies. If rejuvenescence possesses any significance at all, it must be this,—that by its means a force, which did not previously exist in the conjugating individuals, is called into activity. Such a force would, however, owe its existence to latent energy stored up in each single animal during the period of asexual reproduction, and such latent forces would necessarily be of different natures, and of such a constitution that their union at the moment of conjugation would give rise to the active force of reproduction.

The process might perhaps be compared to the flight of two rockets, which by the combustion of some explosive substance (such as nitro-glycerine) stored up within themselves are impelled in such a direction that they would meet at the end of their course, when all the nitro-glycerine had been completely exhausted. The movement would then come to an end, unless the explosive material could have been meanwhile renewed. Now suppose that such a renewal were achieved by the formation of nitric acid in one of the rockets and glycerine in the other, so that when they came into contact nitro-glycerine would be formed afresh equal in quantity and in distribution on both the rockets to that which was originally present. In this way the movement would be renewed again and again with the same velocity, and might continue for ever.

Rejuvenescence can be rendered intelligible in theory by some such metaphor, but considerable difficulties are encountered in the rigid application of the metaphor to the facts of the case. In the first place, how is it possible that the motive force can be exhausted by continual division, while one of its components is being formed afresh in the same body and during the same time? When thoroughly examined the loss of the power of division is seen to follow from the loss of the powers of assimilation, nutrition, and growth. How is it possible that such a power can be weakened and finally entirely lost while one of its components is accumulated?

I believe that, instead of accepting such daring assumptions, it is better to be satisfied with the simple conception of living matter possessing as attributes the powers of unlimited assimilation and capacity for reproduction. With such a theory the mere form of reproduction, whether sexual or asexual, will have no influence upon the duration of the capacity: for force and matter undergo simultaneous increase, and are inseparably connected in this as in all other instances. This theory does not, however, exclude the possible occurrence of circumstances under which such an association is no longer necessary.

I could only consent to adopt the hypothesis of rejuvenescence, if it were rendered absolutely certain that reproduction by division could never under any circumstances persist indefinitely. But this cannot be proved with any greater certainty than the converse proposition, and hence, as far as direct proof is concerned, the facts are equally uncertain on both sides. The hypothesis of rejuvenescence is, however, opposed by the fact of parthenogenesis; for if fertilization possesses in any way the meaning of rejuvenescence, and depends upon the union of two different forms of force and of matter, which thus produce the power of reproduction, it follows that we cannot understand how it happens that the same power of reproduction may be sometimes produced from one form of matter, alone and unaided. Logically speaking, parthenogenesis should be as impossible as that either nitric acid or glycerine should separately produce the effect of nitro-glycerine. The supposition has indeed been made that in the case of parthenogenesis, one fertilization is sufficient for a whole series of generations, but this supposition is not only incapable of proof, but it is contradicted by the fact that certain eggs which may develope parthenogenetically are also capable of fertilization. If, in this case, the power of reproduction were sufficient for development, how is it that the egg is also capable of fertilization; and if the power were insufficient, how is it that the egg can develope parthenogenetically? And yet one and the same egg (in the bee) can develope into a new individual, with or without fertilization. We cannot escape this dilemma by making the further assumption, which is also incapable of proof, that a smaller amount of reproductive force is required for the development of a male individual than for the development of a female. It is true that the unfertilized eggs of the bee produce male individuals, while the fertilized ones develope into females, but in certain other species the converse association holds good, while in others, again, fertilization bears no relation to the sex of the offspring.

Although the mere fact that parthenogenesis occurs at all is, in my opinion, sufficient to disprove the theory of rejuvenescence, it is well to remember that parthenogenesis is now the only method of reproduction in many species (although we do not know the period of time over which these conditions have extended), and is nevertheless unattended by any perceptible decrease in fertility.

From all these considerations we may draw the conclusion that the process of rejuvenescence, as described above, cannot be accepted either as the existing or the original meaning of conjugation, and the question naturally arises as to what other significance this latter process can have possessed at its first beginning.

Rolph187 has expressed the opinion that conjugation is a form of nutrition, so that the two conjugating individuals, as it were, devour each other. Cienkowsky188 also regards conjugation as merely ‘accelerated’ assimilation. There is, however, not only an essential difference but a direct contrast between the processes of conjugation and nutrition. With regard to Cienkowsky’s view, Hensen189 has well said that ‘coalescence in itself cannot be an accelerated nutrition, because even if we admit that both individuals are in want of nourishment, it is impossible that the need can be supplied by this process, unless one of them perishes and is really devoured.’ In order that an animal may serve as the food of another, it must perish and must be brought into a fluid form, and finally it must be assimilated. In the case before us, however, two protoplasmic bodies are placed side by side and coalesce, without either of them passing into the liquid state. Two idioplasms unite, together with all the hereditary tendencies contained in them; but although it is certain that nutrition in the proper sense of the word cannot take place, because neither of the animals receives an addition of liquid food by the coalescence, yet the consequence of this process must be in one respect similar to that of nutrition and growth:—the mass of the body and the quantity of the forces contained in it undergo simultaneous increase. It is not inconceivable that effects are by this means rendered possible, which under the peculiar circumstances leading to conjugation, could not have been otherwise produced.

bannerbanner