Читать книгу The Atlantic Monthly, Volume 10, No. 57, July, 1862 ( Various) онлайн бесплатно на Bookz (13-ая страница книги)
bannerbanner
The Atlantic Monthly, Volume 10, No. 57, July, 1862
The Atlantic Monthly, Volume 10, No. 57, July, 1862Полная версия
Оценить:
The Atlantic Monthly, Volume 10, No. 57, July, 1862

5

Полная версия:

The Atlantic Monthly, Volume 10, No. 57, July, 1862

And there is hurrying to and fro, and a clang of many voices, and the clatter of much crockery, and a lifting, and balancing, and battering against walls and curving around corners, and sundry contusions, and a great waste of expletives, and a loading of wagons, and a driving of patient oxen back and forth with me generally on the top of the load, steadying a basket of eggs with one foot, keeping a tin can of something from upsetting with the other, and both arms stretched around a very big and very square picture-frame that knocks against my nose or my chin every time the cart goes over a stone or drops into a rut, and the wind threatening to blow my hat off, and blowing it off, and my "back-hair" tumbling down,—and the old house is at last despoiled. The rooms stand bare and brown and desolate. The sun, a hand-breadth above the horizon, pours in through the unblinking windows. The last load is gone. The last man has departed. I am left alone to lock up the house and walk over the hill to the new home. Then, for the first time, I remember that I am leaving. As I pass through the door of my own room, not regretfully, I turn. I look up and down and through and through the place where I shall never rest again, and I rejoice that it is so. As I stand there, with the red, solid sunshine lying on the floor, lying on the walls, unfamiliar in its new profusion, the silence becomes audible. In the still October evening there is an effort in the air. The dumb house is striving to find a voice. I feel the struggle of its insensate frame. The old timbers quiver with the unusual strain. The strong, blind, vegetable energy agonizes to find expression, and, wrestling like a pinioned giant, the soul of matter throws off the weight of Its superincumbent inertia. Slowly, gently, most sorrowfully through the golden air cleaves a voice that is somewhat a wail, yet not untuned by love. Inarticulate at first, I catch only the low mournfulness; but it clears, it concentrates, it murmurs into cadence, it syllables into intelligence, and thus the old house speaks:—

"Child, my child, forward to depart, stay for one moment your eager feet. Put off from your brow the crown which the sunset has woven, and linger yet a little longer in the shadow which enshrouds me forever. I remember, in this parting hour, the day of days which the tremulous years bore in their bosom,—a day crimson with the woodbine's happy flush and glowing with the maple's gold. On that day a tender, tiny life came down, and stately Silence fled before the pelting of baby-laughter. Faint memories of far-off olden time were softly stirred. Blindly thrilled through all my frame a vague, dim sense of swelling buds, and singing-birds, and summer-gales,—of the purple beauty of violets, the smells of fragrant earth, and the sweetness of summer dews and darks. Many a harvest-moon since then has filled her yellow horn, and queenly Junes crowned with roses have paled before the sternness of Decembers. But Decembers and Junes alike bore royal gifts to you,—gifts to the busy brain and the awakening heart. In dell and copse and meadow and gay green-wood you drank great draughts of life. Yet, even as I watched, your eyes grew wistful. Your lips framed questions for which the Springs found no reply, and the sacred mystery of living brought its sweet, uncertain pain. Then you went away, and a shadow fell. A gleam passed out of the sunshine and a note from the robin's song. The knights that pranced on the household hearth grew faint and still, and died for want of young eyes to mark their splendor. But when your feet, ever and anon, turned homeward, they used a firmer step, and I knew, that, though the path might be rough, you trod it bravely. I saw that you had learned how doing is a nobler thing than dreaming, yet kept the holy fire burning in the holy place. But now you go, and there will be no return. The stars are faded from the sky. The leaves writhe on the greensward. The breezes wail a dirge. The summer rain is pallid like winter snow. And—O bitterest cup of all!—the golden memories of the past have vanished from your heart. I totter down to the grave, while you go on from strength to strength. The Junes that gave you life brought death to me, and you sorrow not. O child of my tender care, look not so coldly on my pain! Breathe one sigh of regret, drop one tear of pity, before we part!"

The mournful murmur ceased. I am not adamant. My savage crouched out of sight among the underbrush. I think something stirred in the back of my eyes. There was even a suspicion of dampness in front. I thrust my hand in my pocket to have my handkerchief ready in case of a catastrophe. It was an unfortunate proceeding. My pocket was crammed full. I had to push my fingers in between all manner of rubbish, to get at the required article, and when I got hold of it, I had to pull with all my might to get it out, and when it did come, out with it came a tin box of mustard seed, a round wooden box of tooth-powder, a ball of twine, a paper of picture-books, and a pair of gloves. Of course, the covers of both the boxes came off. The seed scattered over the floor. The tooth-powder puffed a white cloud into my face. The ball of twine unrolled and trundled to the other side of the room. I gathered up what I could, but, by the time order was restored and my handkerchief ready for use, I had no use for it. The stirring in the back of my eyes had stopped. The dewiness had disappeared. My savage sprang out from the underbrush and brandished his tomahawk. And to the old house I made answer as a Bushman of Caffraria might, or a Sioux of the Prae-Pilgrimic Age:—

"Old House, hush up! Why do you talk stuff? 'Golden memories' indeed! To hear you, one might suppose you were an ivied castle on the Rhine, and I a fair-haired princess, cradled in the depths of regal luxury, feeding on the blossoms of a thousand generations, and heroic from inborn royalty. 'Tender care'! Did you not wake me in the middle of the night, last summer, by trickling down water on my face from a passing shower? and did I not have to get up at that unearthly hour to move the bed, and step splash into a puddle, and come very near being floated away? Did not the water drip, drip, drip upon my writing-desk, and soak the leather and swell the wood, and stain the ribbon and spoil the paper inside, and all because you were treacherous at the roof and let it? Have you not made a perfect rattery of yourself, yawning at every possible chink and crumbling at the underpinning, and keeping me awake night after night by the tramp of a whole brigade of the Grand Army that slaughtered Bishop Hatto? Whenever a breeze comes along stout enough to make an aspen-leaf tremble, don't you immediately go into hysterics, and rock, and creak, and groan, as if you were the shell of an earthquake? Don't you shrivel at every window to let in the northeasters and all the snow-storms that walk abroad? Whenever a needle, or a pencil, or a penny drops, don't you open somewhere and take it in? 'Golden memories'! Leaden memories! Wooden memories! Madden memories!"

My savage gave a war-whoop. I turned scornfully. I swept down the staircase. I banged the front-door. I locked it with an accent, and marched up the hill. A soft sighing breathed past me. I knew it was the old house mourning for her departing child. The sun had disappeared, but the western sky was jubilant in purple and gold. The cool evening calmed me. The echoes of the war-whoop vibrated almost tenderly along the hushed hillside. I paused on the summit of the hill and looked back. Down in the valley stood the sorrowful house, tasting the first bitterness of perpetual desolation. The maples and the oaks and the beech-trees hung out their flaming banners. The pond lay dark in the shadow of the circling hills. The years called to me,—the happy, sun-ripe years that I had left tangled in the apple-blossoms, and moaning among the pines, and tinkling in the brook, and floating in the cups of the water-lilies. They looked up at me from the orchard, dark and cool. They thrilled across from the hill-tops, glowing still with the glowing sky. I heard their voice by the lilac-bush. They smiled at me under the peach-trees, and where the blackberries had ripened against the southern wall. I felt them once more in the clover-smells and the new-mown hay. They swayed again in the silken tassels of the crisp, rustling corn. They hummed with the bees in the garden-borders. They sang with the robins in the cherry-trees, and their tone was tender and passing sweet. They besought me not to cast away their memory for despite of the black-browed troop whose vile and sombre robes had mingled in with their silver garments. They prayed me to forget, but not all. They minded me of the sweet counsel we had taken together, when summer came over the hills and walked by the watercourses. They bade me remember the good tidings of great joy which they had brought me when my eyes were dim with unavailing tears. My lips trembled to their call. The war-whoop chanted itself into a vesper. A happy calm lifted from my heart and quivered out over the valley, and a comfort settled on the sad old house as I stretched forth my hands and from my inmost soul breathed down a Benedicite!

* * * * *

METHODS OF STUDY IN NATURAL HISTORY

It may seem to some of my readers that I have wandered from my subject and forgotten the title of these articles, which purport to be a series of papers on "Methods of Study in Natural History." But some idea of the progress of Natural History, of its growth as a science, of the gradual evolving of general principles out of a chaotic mass of facts, is a better aid to the student than direct instruction upon special modes of investigation; and it is with the intention of presenting the study of Natural History from this point of view that I have chosen my title.

I have endeavored thus far to show how scientific facts have been systematized so as to form a classification that daily grows more true to Nature, in proportion as its errors are corrected by a more intimate acquaintance with the facts; but I will now attempt a more difficult task, and try to give some idea of the mental process by which facts are transformed into scientific truth. I fear that the subject may seem very dry to my readers, and I would again ask their indulgence for details absolutely essential to my purpose, but which would indeed be very wearisome, did they not lead us up to an intelligent and most significant interpretation of their meaning.

I should be glad to remove the idea that science is the mere amassing of facts. It is true that scientific results grow out of facts, but not till they have been fertilized by thought The facts must be collected, but their mere accumulation will never advance the sum of human knowledge by one step;—it is the comparison of facts and their transformation into ideas that lead to a deeper insight into the significance of Nature. Stringing words together in incoherent succession does not make an intelligible sentence; facts are the words of God, and we may heap them together endlessly, but they will teach us little or nothing till we place them in their true relations and recognize the thought that binds them together as a consistent whole.

I have spoken of the plans that lie at the foundation of all the variety of the Animal Kingdom as so many structural ideas which must have had an intellectual existence in the Creative Conception independently of any special material expression of them. Difficult though it be to present these plans as pure abstract formulae, distinct from the animals that represent them, I would nevertheless attempt to do it, in order to show how the countless forms of animal life have been generalized into the few grand, but simple intellectual conceptions on which all the past populations of the earth as well as the present creation are founded. In such attempts to divest the thought of its material expression, especially when that expression is multiplied in such thousand-fold variety of form and color, our familiarity with living animals is almost an obstacle to our success. For I shall hardly be able to allude to the formula of the Radiates, for instance,—the abstract idea that includes all the structural possibilities of that division of the Animal Kingdom,—without recalling to my readers a Polyp or a Jelly-Fish, a Sea-Urchin or a Star-Fish. Neither can I present the structural elements of the Mollusk plan, without reminding them of an Oyster or a Clam, a Snail or a Cuttle-Fish,—or of the Articulate plan, without calling up at once the form of a Worm, a Lobster, or an Insect,—or of the Vertebrate plan, without giving it the special character of Fish, Reptile, Bird, or Mammal. Yet I insist that all living beings are but the different modes of expressing these formulae, and that all animals have, within the limits of their own branch of the Animal Kingdom, the same structural elements, though each branch is entirely distinct. If this be true, and if these organic formulae have the precision of mathematical formulae, with which I have compared them, they should be susceptible of the same tests.

The mathematician proves the identity of propositions that have the same mathematical value and significance by their convertibility. If they have the same mathematical quantities, it must be possible to transform them, one into another, without changing anything that is essential in either. The problem before us is of the same character. If, for instance, all Radiates, be they Sea-Anemones, Jelly-Fishes, Star-Fishes, or Sea-Urchins, are only various modes of expressing the same organic formula, each having the sum of all its structural elements, it should be possible to demonstrate that they are reciprocally convertible. This is actually the case, and I hope to be able to convince my readers that it is no fanciful theory, but may be demonstrated as clearly as the problems of the geometer. The naturalist has his mathematics, as well as the geometer and the astronomer; and if the mathematics of the Animal Kingdom have a greater flexibility than those of the positive sciences, and are therefore not so easily resolved into their invariable elements, it is because they have the freedom and pliability of life, and evade our efforts to bring all their external variety within the limits of the same structural law which nevertheless controls and includes them all.

I wish that I could take as the illustration of this statement animals with whose structure the least scientific of my readers might be presumed to be familiar; but such a comparison of the Vertebrates, showing the identity and relation of structural elements throughout the Branch, or even in any one of its Classes, would be too extensive and complicated, and I must resort to the Radiates,—that branch of the Animal Kingdom which, though less generally known, has the simplest structural elements.

I will take, then, for the further illustration of my subject, the Radiates, and especially the class of Echinoderms, Star-Fishes, Sea-Urchins, and the like, both in the fossil and the living types; and though some special description of these animals is absolutely essential, I will beg my readers to remember that the general idea, and not its special manifestations, is the thing I am aiming at, and that, if we analyze the special parts characteristic of these different groups, it is only that we may resolve them back again into the structural plan that includes them all.

I have already in a previous article named the different Orders of this Class in their relative rank, and have compared the standing of the living ones, according to the greater or less complication of their structure, with the succession of the fossil ones. Of the five Orders, Beches-de-Mer, Sea-Urchins, Star-Fishes, Ophiurans, and Crinoids,—or, to name them all according to their scientific nomenclature, Holothurians, Echinoids, Asteroids, Ophiurans, and Crinoids,—the last-named are lowest in structure and earliest in time. Cuvier was the first naturalist who detected the true nature of the Crinoids, and placed them where they belong in the classification of the Animal Kingdom. They had been observed before, and long and laborious investigations had been undertaken upon them, but they were especially baffling to the student, because they were known only in the fossil condition from incomplete specimens; and though they still have their representatives among the type of Echinoderms as it exists at present, yet, partly owing to the rarity of the living specimens and partly to the imperfect condition of the fossil ones, the relation between them was not recognized. The errors about them certainly did not arise from any want of interest in the subject among naturalists, for no less than three hundred and eighty different authors have published their investigations upon the Crinoids, and the books that have been printed about these animals, many of which were written long before their animal nature was suspected, would furnish a library in themselves. The ancients knew little about them. The only one to be found in the European seas resembles the Star-Fish closely, and they called it Asterias; but even Aristotle was ignorant of its true structural relations, and alludes only to its motion and general appearance. Some account of the gradual steps by which naturalists have deciphered the true nature of these lowest Echinoderms and their history in past times may not be without interest, and is very instructive as showing bow such problems may be solved.

In the sixteenth century some stones were found bearing the impression of a star on their surface. They received the name of Trochites, and gave rise to much discussion. Naturalists puzzled their brains about them, called them star-shaped crystals, aquatic plants, corals; and to these last Linnaeus himself, the great authority of the time on all such questions, referred them. Beside these stony stars, which were found in great quantities when attention was once called to them, impressions of a peculiar kind had been observed in the rocks, resembling flowers on long stems, and called "stone lilies" naturally enough, for their long, graceful stems, terminating either in a branching crown or a closer cup, recall the lily tribe among flowers. The long stems of these seeming lilies are divided transversely at regular intervals;—the stem is easily broken at any of these natural divisions, and on each such fragment is stamped a star-like impression resembling those found upon the loose stones or Trochites.

About a century ago, Guettard the naturalist described a curious specimen from Porto Rico, so similar to these fossil lilies of the rocks that he believed they must have some relation to each other. He did not detect its animal nature, but from its long stem and branching crown he called it a marine palm. Thus far neither the true nature of the living specimen, nor of the Trochites, nor of the fossil lilies was understood, but it was nevertheless an important step to have found that there was a relation between them. A century passed away, and Guettard's specimen, preserved at the Jardin des Plantes, waited with Sphinx-like patience for the man who should solve its riddle.

Cuvier, who held the key to so many of the secrets of Nature, detected at last its true structure; he pronounced it to be a Star-Fish with a stem, and at once the three series of facts respecting the Trochites, the fossil lilies, and Guettard's marine palm assumed their true relation to each other. The Troehites were recognized as simply the broken portions of the stem of some of these old fossil Crinoids, and the Crinoids themselves were seen to be the ancient representatives of the present Comatulae and Star-Fishes with stems. So is it often with the study of Nature; many scattered links are collected before the man comes who sees the connection between them and speaks the word that reconstructs the broken chain.

I will begin my comparison of all Echinoderms with an analysis of the Star-Fishes and Sea-Urchins, because I think I can best show the identity of parts between them, notwithstanding the difference in their external form; the Sea-Urchins having always a spherical body, while the Star-Fishes are always star-shaped, though in some the star is only hinted at, sketched out, as it were, in a simply pentagonal outline, while in others the indentations between the rays are very deep, and the rays themselves so intricate in their ramifications as to be broken up into a complete net-work of branches. But under all this variety of outline, our problem remains always the same: to build with the same number of pieces a star and a sphere, having the liberty, however, of cutting the pieces differently and changing their relative proportions. Let us take first the Sea-Urchin and examine in detail all parts of its external structure. I shall say nothing of the internal structure of any of these animals, because it does not affect the comparison of their different forms and the external arrangement of parts, which is the subject of the present article.

On the lower side is the mouth, and we may call that side and all the parts that radiate from it the oral region. On the upper side is a small area to which the parts converge, and which, from its position just opposite the so-called mouth or oral opening, we may call the ab-oral region. I prefer these more general terms, because, if we speak of the mouth, we are at once reminded of the mouth in the higher animals, and in this sense the word, as applied to the aperture through which the Sea-Urchins receive their food, is a misnomer. Very naturally the habit has become prevalent of naming the different parts of animals from their function, and not from their structure; and in all animals the aperture through which food enters the body is called the mouth, though there is not the least structural relation between the organs so designated, except within the limits of each different branch or division. To speak of these opposite regions in the Sea-Urchin as the upper and lower sides would equally mislead us, since, as we have seen, there is, properly speaking, no above and below, no right and left sides, no front and hind extremities in these animals, all parts being evenly distributed around a vertical axis. I will, therefore, although it has been my wish to avoid technicalities as much as possible in these papers, make use of the unfamiliar terms oral and ab-oral regions, to indicate the mouth with the parts diverging from it and the opposite area towards which all these parts converge.28

[Illustration: Sea-Urchin seen from the oral side, showing the zones with the spines and suckers; for the ab-oral side, on the summit of which the zones unite, see February Number, p. 216.]

The whole surface of the animal is divided by zones,—ten in number, five broader ones alternating with five narrower ones. The five broad zones are composed of large plates on which are the most prominent spines, attached to tubercles that remain on the surface even when the spines drop off after death, and mark the places where the spines have been. The five small zones are perforated with regular rows of holes, and through these perforations pass the suckers or water-tubes which are their locomotive appendages. For this reason these narrower zones are called the ambulacra, while the broader zones intervening between them and supporting the spines are called the interambulacra. Motion, however, is not the only function of these suckers; they are subservient also to respiration and circulation, taking in water, which is conveyed through them into various parts of the body.

[Illustration: Portion of Sea-Urchin representing one narrow zone with a part of the broad zones on either side and the ab-oral area on the summit.]

The oral aperture is occupied by five plates, which may be called jaws, remembering always that here again this word signifies the function, and not the structure usually associated with the presence of jaws in the higher animals; and each of these jaws or plates terminates in a tooth. Even the mode of eating in these animals is controlled by their radiate structure; for these jaws, evenly distributed about the circular oral aperture, open to receive the prey and then are brought together to crush it, the points meeting in the centre, thus working concentrically, instead of moving up and down or from right to left, as in other animals. From the oral opening the ten zones diverge, spreading over the whole surface, like the ribs on a melon, and converging in the opposite direction till they meet in the small space which we have called the ab-oral region opposite the starting-point.

bannerbanner