
Полная версия:
Birds and All Nature, Vol. VI, No. 3, October 1899
"This evening, as I write, the sun is going down, and the shadows are settling in the cañon. The vermilion gleams and roseate hues, blending with the green and gray tints, are slowly changing to somber brown above, and black shadows are creeping over them below; and now it is a dark portal to a region of gloom – the gateway through which we are to enter on our voyage of exploration to-morrow."
The 9th of June brought disaster to a boat containing three of the men, who were carried down the rapids, but all were rescued.
They pass the mouths of the Uintah and the White Rivers, with constantly changing scenes, making a tortuous journey through many dangerous rapids, much of the time between high, perpendicular walls.
On the 15th they pass around a great bend, five miles in length, and come back to a point one-quarter of a mile from where they started. Then they sweep around another great bend to the left, making a circuit of nine miles, and come back to one-third of a mile from where the bend started. The figure 8 properly describes the fourteen miles' journey. July 17 they arrive at the junction of the Grand and Green rivers, having traversed about eight hundred and four miles.
On the morning of July 19, the Major and a companion start to climb the left wall below the junction of the Grand and Green Rivers. They reach the summit of the rocks. The view is thus described: "And what a world of grandeur is spread before us! Below, us is the cañon, through which the Colorado runs. We can trace its course for miles, as at points we catch glimpses of the river. From the northwest comes the Green, in a narrow, winding gorge. From the northeast comes the Grand, through a cañon that seems bottomless, from where we stand. Away to the west are lines of cliff and ledges of rock – not such ledges as you may have seen, where the quarry-man splits his blocks, but ledges from which the gods might quarry mountains, that, rolled on the plain below, would stand a lofty range; and not such cliffs as you may have seen, where the swallow builds his nest, but cliffs where the soaring eagle is lost to view ere he reaches the summit. Between us and the distant cliffs are the strangely carved and pinnacled rocks of the Toom pin wu-near Tu-weap. On the summit of the opposite wall of the cañon are rock forms that we do not understand. Away to the east a group of eruptive mountains are seen – the Sierra La Sal. Their slopes are covered with pines, and deep gulches are flanked with great crags, and snow fields are seen near the summits. So the mountains are in uniform – green, gray, and silver. Wherever we look there is but a wilderness of rocks; deep gorges, where the rivers are lost below cliffs and towers and pinnacles; and ten thousand strangely carved forms in every direction, and beyond them mountains blending with the clouds."
"Traveling as fast as I can run, I soon reach the foot of the stream, for the rain did not reach the lower end of the cañon, and the water is running down a bed of dry sand; and, although it comes in waves several feet high and fifteen or twenty feet in width, the sands soak it up, and it is lost. But wave follows wave, and rolls along, and is swallowed up; and still the floods come on from above. I find that I can travel faster than the stream; so I hasten to camp and tell the men there is a river coming down the cañon."
The exploring party next passes through Narrow Cañon, nine and a half miles long, Glen Cañon, one hundred and forty-nine miles in length; and Marble Cañon, sixty-five and one-half miles long. The depth of the last named is three thousand five hundred feet at the lower end. They emerge from Marble Cañon August 10, and find themselves separated from the Grand Cañon of the Colorado, the "Great Unknown," by the narrow valley of the Little Colorado.
The Grand Cañon is now entered and safely passed, a distance of two hundred and seventeen and one-half miles, terminating with the Grand Wash.
We are compelled to terminate this article abruptly for lack of space. It is proper to say that this journey has scarcely ever been equaled for daring and hardihood. Each time they descended a rapids, they were liable to come to a fall too great to shoot over, with walls so steep they could not be climbed, and rapids so swift as to prevent return.
The Grand Cañon, as one of the wonders of the world, is visited every summer by hundreds of tourists.
OPTIMUS
BY REV. CHARLES COKE WOODSA glow-worm in the grass at night shed forthIts feeble light, but darkness deepened fast;The wee thing did its uttermost to banish night,And that, forsooth, was truest toil, indeed,Success in God's clear sight, though in man's view,Obscured by things of sense, 'twas but defeat.A fire-fly flashed its fitful light, while softThe evening shadows fell, and clouds hid stars,And veiled in black the gentle moon's bright face;As if the night, like one afraid, would hasteTo flee when lightning flashed from those small wings,With courage high the insect gave its light,Though all alone with none to proffer aid —Nor sun, nor moon, nor star a single beam.At last the dawn shot crimson up the sky;The tiny toilers crawled away to rest,And sweet, methinks, was their well-earned repose,For each its place had filled, its task had doneIn keeping with the great Creator's thought.HOW THE EARTH WAS FORMED
T. C. CHAMBERLIN,Head Professor of Geology, University of ChicagoJUST how the earth was formed at the outset is not certainly known. The most common view of men of science is that it was once in the form of a fiery gas. It is supposed that all the planets and satellites that now revolve around the sun were once a part of a common mass of gas in the form of a vast sphere which was very large and very hot. This gradually lost its heat and shrank as most bodies do when they cool. If it was not already whirling round at the outset it must have come to do so as it shrank, and as more and more of its heat was lost it rotated more and more rapidly. At length it came to whirl so fast that the outer part, which was moving fastest, could no longer be held down to the surface, and so it separated in the form of a ring around the equator of the great sphere.
The main mass kept on cooling and shrinking and whirling faster and faster and hence other rings separated. Each of these rings also kept on cooling and shrinking and is supposed to have parted at some point and gradually gathered together into a globe, but still in the form of fiery gas, even though it had lost much of its heat. But at last this globe of gas cooled so much that the main part of it became liquid. This was that part which afterwards became the solid part of the earth. It then had the form of lava. It was still too hot for the water to condense and hence it remained in the form of steam or vapor, forming a vast envelope all about the earth. There are supposed to have been many other vapors in the air at that stage, and it must have been very dense. But at length the globe of lava cooled so that the outer part crusted over, and this crust grew thicker and thicker as time went on. After a while it became cool enough to permit the water to condense on the surface and so the ocean began to be formed. The water grew in depth until nearly all the steam was condensed and many of the other vapors that had been in the air while it was so hot were condensed also. And this left the gases which cannot easily be condensed behind, and they formed the air much as it is to-day. And that is the way the atmosphere is commonly supposed to have come about.
But all this is theory. It cannot now be proved. But there are several great facts that fit in with it and make it seem as though it might be true. As wells and mines are sunk deep in the ground it is found that the earth grows warmer and warmer. Volcanoes pour out molten rock and this shows that it is very hot somewhere beneath them. Many of the mountains on the earth are really wrinkles in its crust, and it has been thought that these are caused by the cooling and shrinking of the globe. It is because these and other things fit in so well with the theory that most scientific men have come to accept it as probably true. It is known as the Nebular theory. But there are other ways of explaining all these things, and perhaps it may be proven that there are better ways.
Some scientists have supposed that the earth was formed by small masses or particles of matter gathered in from the heavens. On a clear night shooting stars may be seen quite often. These are little bits of stone or metallic matter shooting through space at high rates of speed, which strike the atmosphere and become hot. The earth also is moving at great speed – nearly nineteen miles per second. It is not strange then that when the little stranger collides with the earth it should "make the fire fly." Usually the outside is melted and carried away so fast that the little mass is entirely used up in a few seconds. It merely makes a little streak of light. But sometimes the mass is large enough to stand the waste and still reach the ground. In such cases it is found to be mainly stony matter and iron. No substance has ever been found in any of them which is not found in the earth. Only a few of these shooting stars or meteorites will be seen in looking at any one point in the heavens. But the earth is very large and there are many such points, and when these are taken all together it is found that the number of these little bodies which fall in a day is very large. It is estimated at twenty millions. But still they are small and do not add very much to the size of the earth. But as they are being constantly swept up from space and are growing fewer and fewer, and as this has been going on for a very long time, it is reasonable to suppose they may once have been much more abundant and that the earth then grew much faster by reason of them. It is thought by some that the earth may have grown up entirely by gathering them in, the idea being that it was itself once only a little meteorite that succeeded in gathering the others in. It is commonly supposed, however, by those who hold to this view, that the earth was formed from some special cluster of these meteorites that gathered together. It has been thought that perhaps the gas of the rings mentioned before may have cooled down into little solid particles before they were collected together and that they built up the earth. This brings the two theories together in a measure. The planet Saturn, you know, has rings of this kind and they are made up of small solid bodies, and not of gas or liquid, as was once supposed.
If the earth was built up this way we must account for the heat in the interior, but this would come naturally enough. As the little bodies fell upon the surface they would strike hot. But unless they came fast they would cool off before others struck the same spot and the earth would not get very hot. But as they gradually built up the surface the matter below would be pressed together harder and harder because of the growing weight upon it, and this pressing together would make it hot. It is figured out that it would become very, very hot indeed, though this might not seem so at first thought, and that the volcanoes and mountains may all be explained in this way quite as well, and perhaps better, than in the other way. This is called the Accretion theory.
It may be that neither of these theories is right, and we will do well to hold them only as possible ways in which the earth may have been formed at the beginning. But, at any rate, the earth has been shaped over on the surface. In a certain sense its outer part has been remade. And this concerns us more than the question of its far-off origin, because our soils, ores, marbles, and precious stones, as well as our lands and seas, are all due to this reshaping. In the deepest parts of the earth which we can get at for study, we find that it is made up of rocks of the granite class; not always granite proper, but rocks like it. What is below this in the great heart of the earth we do not know, except that it is very dense and heavy. Rocks of the granite class are formed under great heat and pressure, or by the cooling of molten rock material. They may be called the basement rock or great floor, on which all the other rocks near the surface are laid. They underlie all the surface, but at different depths. In some places they have been crowded up by the pressure that came from the shrinking of the earth, of which we spoke before, and so have come to be actually at the surface, except that soil, clay, sand, or gravel may cover them. Under about one-fifth of the land these rocks lie just below the clays, gravels, sands, and soils that occupy the immediate surface. Sometimes they come out to the actual surface, and may be seen in ledges or bluffs. But usually the soils, sands, gravels, and clays cover them up more or less deeply, but even then they are often struck in sinking wells.
Under the other four-fifths of the land they lie much deeper, often several thousands of feet, and there are spread over them sandstones, shales, and limestones. These are the rocks we usually see in the quarries and cliffs of the interior states. The materials to form these were taken from the older rocks of the granite class by a process which is now going on – so we know how it is done. This is the way in which it takes place: The air and the rains and the water in the ground act upon the rocks, and cause them to soften and fall to pieces, forming soils, or sand, or little rock fragments. This material is gradually washed away by rains and floods. This does not usually quite keep pace with the softening; so the surface is covered with soil and other loose material. But it is little by little washed away, and carried down to sea, where it settles on the bottom, and forms layers of mud or of sand. The mud afterwards hardens, and becomes a kind of rock known as shale. The sands become cemented by lime or iron, or some other substance, and form a sandstone. The lime in the rocks that softened and decayed is chiefly dissolved out by the carbonic acid in the waters of the ground, and is carried away to the sea in solution. This lime is then taken up by sea animals to form their shells, skeletons, teeth, and other hard parts. Afterwards the animals die, and these hard, limy parts usually crumble more or less and form a bed of lime material, and later this hardens into limestone.
Some of the lime is also separated from the waters by evaporation or by other changes. You have noticed that on the inside of a tea kettle there gathers a stony crust. This is made of the same material as limestone – indeed, it is limestone. It was dissolved in the water put in the tea kettle, but as the water was heated and partly changed into steam it could no longer hold all the lime, and some or all of it had to be deposited. So, in a similar way, sea-water is dried up by the sun and air, and deposits lime, and so beds of limestone are formed. You will readily see from what has been said why shales, sandstones, and limestones take the form of beds lying upon each other.
Now, away back towards the beginning, when the ocean was first formed, and some part of the earth was pushed up so as to form land, this process began, and has been at work ever since. The surface of the land has been moistened by the air and moisture, and then has been washed away to the ocean and laid down in beds. When these grew thick, and were pressed by the weight of the newer beds that were laid down on them, they hardened into rock again. And this has gone on for a very, very long time, and the beds of sandstone, shale, and limestone so formed have come to be many thousand feet thick in some places. The land would all have been worn away down to the level of the sea if the earth had not kept shrinking and wrinkling, or pushing up in places.
At different times portions of what was once the ocean bottom have been lifted and have become land. If these beds are examined they will be found to contain shells and corals and other sea animals which were buried in them when they were forming, and thus it is known that they were laid down under the sea. It is found also that the lower beds contain kinds of life different from those above, and the lower beds were, of course, formed first. So, by studying the sea-shells and other relics in the beds, from the lowest ones up to the highest ones in the order in which they were formed, the various kinds of life that have lived in the sea from the beginning are found out. The life at the beginning was simpler than it is now, and quite different in many respects. There were gradual changes from time to time, and many strange creatures appeared that do not live at present.
RETURNING HOME
GUY STEALEYI HAVE often wondered whether birds, like persons, do not grow to love some one locality better than all others, and if they do not return there year after year to make it their home. My belief is that they do. I have observed many cases that tend to confirm my views, and give a couple of them below.
One spring, six years ago, while my grandmother and I were out milking in the corral one evening, a pair of killdeer flew over our heads and, after circling around a few times, settled near us. We noticed then that the male had only one leg, the other being broken off near the knee. They skipped around in the way they have, stopping now and then to pick up a worm. All that summer they came nearly every night to catch the bugs and worms, which they often carried to the little fledglings in their nest by the lake.
Well, time passed on. Autumn came and went, and with it the killdeer and their young. The long winter wore away; then, on a bright spring morning, in precisely the same manner as before, our two friends, the killdeer, darted down in the corral again and went to feeding. The old fellow hopped about on his one leg as of yore, and seemed glad to see us again.
The next year it was the same way. They arrived at about the same time as on the two previous seasons, and hatched out their young as usual, down by the lake. They were quite tame by this time, and we began to regard them as pets.
The next spring, however, they failed to come, and you may be sure that we missed their clear, cheerful cries. We could not, of course, tell the cause of their non-appearance. One or both of them may have been killed or they may have died, as birds are liable to the same fate as we are; but one thing is certain, this pair came back here for three seasons.
Another summer, while passing near the river, a humming bird flew out of the bushes almost under my feet, and from its actions I felt certain it had a nest there. And sure enough, on stooping down and parting the leaves I found her nest, built on a single rose stem, projecting over the water. Two tiny birds reposed on their soft bed. Below this nest, on the same stem, and but a few inches apart, were two old ones. They were somewhat ragged, as was natural, from the war of the elements that had raged during one and two years. So, these humming birds must have made this their home for several summers.
THE PLANT PRODUCTS OF THE PHILIPPINE ISLANDS
THE Department of Agriculture has recently issued a report on the plant products of the Philippine Islands, which is particularly interesting at the present time. The report deals with the agricultural resources of the islands as they now exist, and shows that although an agricultural country, the islands do not produce enough food for the consumption of the inhabitants. In order to supply the deficiency, it is the custom to draw upon rice-producing countries, such as Cochin China. About one-ninth of the area of the Philippine Islands, or 8,000,000 acres, is devoted to agriculture. When the natural fertility of the soil is considered and the large amount of rich land not yet cultivated, it can be assumed that with better agricultural methods the products of the islands could be increased tenfold. Rice forms one of the most important food products of the islands; more than a hundred varieties are grown; the annual production is about 36,000,000 bushels. This is, of course, far below the actual requirements of the population, even when supplemented by other vegetables and fruits. Maize, next to rice, is one of the most important of the grain products of the Philippines, and the sweet potato follows maize in turn. Fruits grow in great abundance, bananas heading the list. Large quantities of sugar cane are grown, but owing to crude methods of manufacture, the sugar is inferior in quality and is sold for a low price. Cotton is not as valuable a product for the islands as it once was, owing to the successful competition of British fabrics. Formerly indigo also was one of the important products of the islands. Coffee plantations thrive well, but the coffee is not of the best quality and the plantations are not well managed. In most of the islands of the archipelago tobacco is grown and over one hundred million cigars are annually exported from Manila. The shipment of leaf tobacco averages about 20,400,000 pounds. The islands also furnish spices and medicinal plants are abundant, but most of them are little known.
HONEY BIRDS
THERE are in Africa, Australia, and in South America certain birds, evidently not related ornithologically, that, because of their peculiar habits, are known as "honey birds," the special traits of which afford an interesting study in animal reasoning or instinct, as one may choose.
One of these, the species common to a large area in Central and South Africa, mentioned by many travelers, has been briefly described by that prince of realists, Dr. James Johnston of Brownstown, Jamaica, in his superb work, "Reality vs. Romance in South Central Africa," on page 106. He says: "Our daily meeting with the honey birds served to remove any skepticism I may have had in reference to this cunning little creature. It is not much larger than a canary, and as soon as man makes his appearance hops from branch to branch, making repeated flights toward the traveler and then flying off in the direction in which it appears to wish attention attracted, with a sustained chic-en, chic-en, chic-chur, chur, returning again and again, until its opportunity is awarded by someone accepting its invitation to follow to the spot where is stored the – to it – inaccessible treasure. It makes a great fuss, flying round and round and round, leaving no doubt as to the whereabouts of its find. Sometimes there is no opening to be seen; when the native proceeds to tap upon the trunk with the head of his hatchet until he locates the hive. He then obtains the honey by making a fire at the root of the tree, and, under cover of the smoke, with his hatchet secures the prize. Then is revealed the reason for the excitement of our tiny guide, who now comes in for its share of the pickings."
Several explorers whose good fortunes have taken them well into the interior of the Australian bush have described the somewhat similar actions of a species of bird spoken of as being "nearly as large as a crow" and evidently quite distinct from the African species. In Haiti I have had opportunities of observing the like performances of a bird, shy and elusive for the most part and only at all approachable when the presence of honey renders it bold, which appeared to be closely related to our northern cedar bird. And, if an eye not specially trained in ornithology be not at fault, the same species is to be observed on the mainland, along the middle reaches of the Orinoco, in Venezuela.
October turned my maple's leaves to gold;The most are gone now; here and there one lingers;Soon these will slip from out the twig's weak hold,Like coins between a dying miser's fingers.– T. B. Aldrich.FARM-YARD FOWLS
Silver-Spangled Hamburg. – These fowls are among the most highly developed of all the spangled varieties. They are valued as egg producers and rank among the best. They are very impatient of confinement and are said to succeed best when they can have the run of a clean pasture or common. A large grass walk is recommended by the most successful breeders. Six-foot fences, where they are intended to be restricted to certain limits, will not be more than sufficient for the safe custody of these chickens. The hens, if young, lay nearly throughout the year, but the eggs, which are white, are small, weighing about 1½ ounces each. As they are such abundant layers they seldom want to sit. The chickens are healthy and strong requiring no unusual care. When first hatched they are cream-colored. They feather early and the barred character of the penciled birds quickly appears. In the rapidity of their movements they are said to rival even the active little Bantams.