Читать книгу Бесконечная сила. Как математический анализ раскрывает тайны вселенной (Стивен Строгац) онлайн бесплатно на Bookz (2-ая страница книги)
bannerbanner
Бесконечная сила. Как математический анализ раскрывает тайны вселенной
Бесконечная сила. Как математический анализ раскрывает тайны вселенной
Оценить:
Бесконечная сила. Как математический анализ раскрывает тайны вселенной

5

Полная версия:

Бесконечная сила. Как математический анализ раскрывает тайны вселенной

Так начинался анализ. Он рос из любопытства геометров и разочарования в округлости. Круги, сферы и прочие изогнутые формы были Гималаями той эпохи. И не потому, что они ставили важные практические задачи, по крайней мере поначалу. Дело было в жажде приключений, характерной для человеческого духа. Подобно покорителям Эвереста, геометры хотели разобраться с кривыми просто потому, потому что они есть[23].

Прорыв произошел благодаря идее, что кривые на самом деле состоят из прямых частей. Хотя это неправда, но можно сделать вид, что это так. Загвоздка была в том, что тогда эти части должны быть бесконечно малы и бесконечно многочисленны. Благодаря такой фантастической концепции родилось интегральное исчисление. Это самое раннее применение «принципа бесконечности». История его развития растянется у нас на несколько глав, но его суть в зародышевой форме мы можем изложить уже сейчас: если очень сильно увеличить окружность (или другую гладкую кривую), то часть, которую мы увидим под микроскопом, будет выглядеть как прямая линия. Так что в принципе можно вычислить длину кривой, сложив длины всех маленьких прямых кусочков. Чтобы выяснить, как именно это делать – нелегкая задача, – понадобились многовековые усилия величайших математиков человечества. В итоге коллективно (а иногда и в результате ожесточенного соперничества) они продвинулись по пути к решению загадки кривых. Побочными результатами, как мы увидим в главе 2, стала математика, используемая для рисования реалистично выглядящих волос, одежды и лиц персонажей в компьютерной анимации и вычисления, необходимые пластическим хирургам для выполнения операций на лице виртуальных пациентов, прежде чем оперировать реальных.

Поиски решения загадки кривых достигли апогея, когда стало ясно, что кривые – это нечто большее, чем просто геометрические отклонения. Они были ключом к разгадке тайн природы. Они естественным образом возникали в параболической дуге летящего мяча, в эллиптической орбите Марса, движущегося вокруг Солнца, и в выпуклой форме линзы, которая могла преломлять и фокусировать свет в нужном месте, без чего было бы невозможно бурное развитие микроскопов и телескопов в Европе позднего Возрождения.

Так началась вторая великая одержимость: увлечение тайнами движения на Земле и в Солнечной системе. С помощью наблюдений и замысловатых экспериментов ученые обнаружили интересные численные закономерности для простейших двигающихся объектов. Они измеряли колебания маятника, определяли ускорение шара, катящегося по наклонной плоскости, и наносили на карту движение небесных тел. Обнаруженные закономерности восхищали их: действительно, Иоганн Кеплер впал в состояние описанного им «священного помешательства», обнаружив законы движения планет, поскольку эти закономерности показались ему признаком работы Бога. С более светской точки зрения такие законы подкрепляли утверждение, что природа глубоко «математична», как и говорили пифагорейцы. Единственная загвоздка – никто не мог объяснить эти новые чудесные закономерности, по крайней мере с помощью существовавших в то время форм математики. Арифметика и геометрия не справлялись с этой задачей даже в руках великих математиков.

Проблема заключалась в том, что движение не было равномерным. Шар, катившийся по наклонной плоскости, непрерывно менял скорость, а планета, вращающаяся вокруг Солнца, все время меняла направление движения. Что еще хуже, планеты двигались быстрее, когда находились ближе к Солнцу, и медленнее, когда находились от него вдалеке. Не было никакого известного способа разобраться с непрерывно изменяющимся движением. У математиков имелась теория для самого тривиального вида движения – перемещения с постоянной скоростью, когда расстояние вычисляется путем произведения скорости на время. Но когда скорость меняется, причем непрерывно, дела обстоят совершенно иначе. Движение оказалось таким же Эверестом, как и кривые.

Как мы увидим в середине книги, очередные крупные достижения анализа выросли из стремления разгадать тайну движения. Как и в случае кривых, на помощь пришел принцип бесконечности. На этот раз пришлось притвориться, что движение с переменной скоростью состоит из бесконечно большого числа бесконечно коротких движений с постоянной скоростью. Чтобы представить, что это значит, вообразите, что вы едете в машине с нервным водителем, заставляющим автомобиль двигаться рывками. Вы с беспокойством смотрите на спидометр, стрелка которого дергается вверх и вниз при каждом рывке машины. Но даже самый резкий водитель не сможет сильно сдвинуть стрелку за миллисекунду, а уж за более короткий, то есть бесконечно малый интервал, – и подавно. Стрелка просто замрет на месте. Никто не способен так быстро нажать на педаль газа.

Эти идеи объединились в более молодой части анализа – дифференциальном исчислении. Это было именно то, что требовалось для работы с бесконечно малыми изменениями времени и расстояния, которые возникали при изучении постоянно меняющегося движения, равно как и для работы с бесконечно малыми прямыми кусочками кривых, появлявшимися в аналитической геометрии – новомодном исследовании кривых, определенных с помощью алгебраических уравнений, – популярной в первой половине 1600-х годов. Как мы увидим позже, одно время алгебра была настоящим поветрием. Ее популярность была благом для всех областей математики, включая геометрию, но она же создала буйные джунгли новых кривых, которые следовало изучить. Таким образом пересеклись загадки кривых и движения. В середине 1600-х они оказались в центре анализа, сталкиваясь друг с другом и создавая математический хаос и неразбериху. Расцвет анализа в этих суматошных условиях не обходился без бурных дискуссий. Некоторые математики критиковали анализ за чересчур свободное обращение с бесконечностью. Другие высмеивали алгебру как простой набор символов. Сопровождаемый всеми этими препирательствами прогресс анализа был медленным и нестабильным.

А потом в одно прекрасное Рождество родился ребенок[24]. Этот юный мессия анализа был невероятным героем. Рожденный недоношенным, без отца и брошенный матерью в возрасте трех лет, этот одинокий мальчик с темными мыслями превратился в скрытного подозрительного юношу. И тем не менее он (а это, как вы уже, наверное, догадались, был Исаак Ньютон) оставил в мире такой заметный след, как никто ни до, ни после него.

Сначала он нашел «святой Грааль» анализа, открыв, как снова сложить кусочки кривой, причем легко, быстро и систематически. Объединив символы алгебры с мощью бесконечности, он нашел способ представить любую кривую в виде суммы бесконечного множества более простых кривых, которые описываются различными степенями x, например x2, x3, x4 и так далее. Имея такие ингредиенты, он мог приготовить любую желаемую кривую – положив щепотку x, чуточку x2 и полную столовую ложку x3. Это было похоже на рецепт и набор специй, мясную лавку и огород – и все в одном флаконе. С его помощью Ньютон мог решить любую задачу о формах и движениях.

Затем он взломал код Вселенной, обнаружив, что любое движение всегда происходит бесконечно малыми шагами и в любой момент описывается законами, изложенными на языке анализа. С помощью всего лишь горстки дифференциальных уравнений (законы движения и всемирного тяготения) Ньютон смог объяснить все, от траектории пушечного снаряда до орбит планет. Его потрясающая «система мира» объединила небеса и землю, положив начало просвещению и изменив западную культуру. Его влияние на философов и поэтов Европы было колоссальным. Как мы увидим, оно распространилось даже на Томаса Джефферсона и Декларацию независимости. В наше время идеи Ньютона положены в основу космических программ, предоставляя математику, необходимую для расчета траекторий, – работы, проделанной в NASA афроамериканским математиком Кэтрин Джонсон и ее коллегами (героини книги и фильма «Скрытые фигуры»).

После того как загадки кривых и движения были решены, анализ перешел к третьей великой одержимости: загадке изменений. Пусть это и клише, но от этого оно не менее истинно: нет ничего постоянного, все меняется. Сегодня дождливо, а завтра солнечно. Рынок акций растет и падает. Воодушевленные ньютоновскими взглядами, последующие поколения специалистов по анализу задались вопросом: есть ли законы изменений, аналогичные ньютоновским законам движения? Существуют ли законы роста населения, распространения эпидемий и кровотока в артериях? Можно ли использовать анализ для описания того, как электрические сигналы распространяются по нервам, или для предсказания транспортного потока на автостраде?

Следуя этой амбициозной программе, в постоянном сотрудничестве с другими областями науки и технологии, анализ помог создать современный мир. С помощью наблюдений и экспериментов ученые установили законы изменений, а затем использовали анализ для решений задач и составления прогнозов. Например, в 1917 году Альберт Эйнштейн применил анализ к простой модели атомных переходов и предсказал замечательный эффект под названием вынужденное излучение[25] (этот термин обозначают буквы s и e в слове laser, которое представляет собой аббревиатуру, образованную от слов light amplification by stimulated emission of radiation[26]). Эйнштейн предположил, что при определенных обстоятельствах фотоны, проходящие через вещество, могут индуцировать появление других фотонов с той же длиной волны, движущихся в том же направлении. Получается своего рода цепная реакция, которая может дать мощный когерентный луч. Спустя несколько десятилетий предсказание сбылось. Первые действующие лазеры были созданы в начале 1960-х. С тех пор они используются везде – от проигрывателей компакт-дисков и оружия с лазерным наведением до сканеров штрих-кодов в супермаркетах и медицинских лазеров.

Законы изменений в медицине не так понятны, как в физике. Тем не менее даже в случае элементарных моделей анализ может внести свой вклад в спасение жизней. Например, в главе 8 мы увидим, как модель, использующая дифференциальное уравнение, разработанная иммунологом и исследователем СПИДа, сыграла свою роль в создании комбинированной терапии из трех препаратов для лечения пациентов с ВИЧ. Идеи, подсказанные моделью, опровергли распространенную точку зрения, что вирус в организме бездействует; на самом деле он ожесточенно сражается с иммунной системой каждую минуту каждого дня. Благодаря новому пониманию, предоставленному анализом, ВИЧ-инфекция превратилась из почти неизбежного смертного приговора в управляемое хроническое заболевание – по крайней мере для тех, кто имеет доступ к комбинированной лекарственной терапии.

Общепризнанно, что некоторые аспекты нашего вечно меняющегося мира лежат за пределами приближений и моделирования, характерных для принципа бесконечности. Например, в мире субатомных частиц физики не могут представлять электрон как классическую частицу, которая движется по какой-то линии подобно планете или пушечному ядру. Согласно квантовой механике, на таком микроскопическом уровне траектории становятся размытыми и плохо определяемыми, поэтому поведение электронов приходится описывать в терминах волн вероятности, а не ньютоновских траекторий. Но как только мы это сделаем, анализ с триумфом возвращается. Он управляет эволюцией волн вероятности с помощью так называемого уравнения Шрёдингера.

Удивительно, но факт: даже на субатомном уровне, где ньютоновская физика уже не действует, созданный им анализ по-прежнему работает. И работает очень хорошо. Как мы увидим далее в книге, он объединил усилия с квантовой механикой и предсказал замечательные эффекты, лежащие в основе методов медицинской визуализации – от магнитно-резонансной (МРТ) и компьютерной (КТ) томографии до более экзотической позитронно-эмиссионной томографии (ПЭТ).

Пришло время ближе познакомиться с языком Вселенной. И начнем, разумеется, с бесконечности.

Глава 1. Бесконечность

Начало математике[27] положили обычные повседневные задачи. Пастухам нужно было следить за стадами. Фермерам – взвешивать собранное зерно. Сборщикам налогов – решать, сколько коров или кур крестьянин должен отдать правителю. Из таких практических требований и возникли числа. Сначала их определяли по пальцам рук и ног. Затем стали выцарапывать на костях животных. По мере того как представление чисел эволюционировало от черточек к символам, они облегчили все задачи – от налогообложения и торговли до бухгалтерского учета и переписи населения. Доказательства тому мы находим на глиняных табличках Месопотамии, созданных более пяти тысяч лет назад, – сделанная на них клиновидными значками запись называется клинописью.

Наряду с числами значение имели и формы. В Древнем Египте измерениям линий и углов придавали первостепенное значение. Каждый год землемерам приходилось заново проводить границы крестьянских хозяйств, поскольку разлив Нила стирал их. Эта деятельность позже дала название всей области математики, изучающей формы, – геометрия, от древнегреческого слова γεωμετρία, которое означало «землемерие»: γη – «земля» и μετρέω – «измеряю».

Поначалу геометрия работала с прямыми линиями и углами, что отражало ее утилитарное происхождение: треугольники были наклонными плоскостями, пирамиды – монументами и гробницами, а прямоугольники – столами, алтарями и земельными участками. Строители и плотники использовали прямые углы для построения вертикальных линий. Для моряков, архитекторов и священников знание геометрии прямых линий было необходимо для землемерных работ, навигации, ведения календаря, предсказания затмений и возведения храмов и святилищ.

Но всегда – даже когда геометрия была зациклена на прямых линиях – выделялась одна кривая, самая совершенная из всех: окружность. Мы видим ее в годичных кольцах деревьев, в волнах на пруду, в форме солнца и луны. В природе круги повсюду. Когда мы смотрим на них, они смотрят на нас – в буквальном смысле, ведь они в глазах наших близких, в зрачках и радужках. Круги и практичны, и эмоциональны, как колеса и обручальные кольца; в них есть нечто мистическое. Вечное возвращение предполагает цикл времен года, возрождения, вечной жизни и нескончаемой любви. Неудивительно, что круги привлекали внимание с тех пор, как люди стали изучать формы.

С математической точки зрения окружности воплощают изменения без изменений. Точка, двигающаяся по окружности, меняет направление движения, не меняя при этом своего расстояния от центра. Это минимальная форма изменений – самый простой способ двигаться по кривой. И, конечно же, окружность симметрична. Если вы повернете ее вокруг центра, она будет выглядеть точно так же. Такая поворотная симметрия может быть причиной распространенности этих фигур. Везде, где природу не беспокоит направление, обязательно появляются окружности. Посмотрите, что происходит, когда дождевая капля попадает в лужу: от точки удара расходятся мелкие волны. Они обязаны иметь круговую форму, потому что двигаются с одинаковой скоростью во всех направлениях и начинаются в одной точке. Этого требует симметрия.

Окружности могут также порождать другие искривленные формы. Если представить, что окружность проткнули по диаметру и стали вращать вокруг этой оси в трехмерном пространстве, то получится сфера – форма мяча или планеты. Если окружность двигать по прямой перпендикулярно ее плоскости, появляется цилиндр – форма банки или коробки для шляп. Если окружность одновременно с поступательным движением сжимается, образуется конус, если расширяется – то усеченный конус (форма абажура).



Окружности, сферы, цилиндры и конусы очаровывали первых геометров, но при этом они считали, что работать с ними гораздо труднее, чем с треугольниками, прямоугольниками, квадратами, кубами и прочими прямолинейными формами, составленными из кусков прямых линий и плоскостей. Ученых интересовали площади криволинейных поверхностей и объемы криволинейных тел, но они понятия не имели, как решать такие задачи. Криволинейность была сильнее.

Бесконечность как строитель моста

Анализ начинался как отрасль геометрии[28]. Примерно в 250 году до нашей эры в Древней Греции вплотную занялись разгадкой кривых. Амбициозный план состоял в использовании бесконечности для построения моста между кривыми и прямыми. Приверженцы плана надеялись, что как только такая связь будет установлена, методы и техники прямолинейной геометрии можно будет перетащить через этот мост и применить для решения загадки кривых. Бесконечность поможет решить все старые задачи. По крайней мере, таков был настрой.

Должно быть, в то время такой план выглядел довольно надуманным. У бесконечности была сомнительная репутация – будто бы это нечто пугающее, а не полезное. Что еще хуже, само понятие бесконечности было весьма туманно и сбивало с толку. Что это вообще такое? Число? Место? Идея?

Тем не менее, как мы вскоре увидим, бесконечность оказалась манной небесной. Если учесть все открытия и технологии, которые в итоге выросли из анализа, то идея использовать бесконечность для решения трудных геометрических задач была одной из лучших в истории.

Конечно, в 250 году до нашей эры предвидеть это было невозможно. Тем не менее бесконечность тут же дала несколько впечатляющих результатов. Одним из первых и лучших стало решение давней загадки: как найти площадь круга[29].


Доказательство с помощью пиццы

Перед тем как вдаваться в подробности, давайте набросаем ход рассуждений. Наша стратегия – представить круг в виде пиццы, а затем нарезать ее на бесконечное множество кусочков и волшебным образом переложить их так, чтобы получился прямоугольник. Это даст нам ответ, который мы ищем, поскольку перекладывание кусочков, очевидно, не меняет их площадь, а находить площадь прямоугольника мы умеем: нужно умножить его длину на ширину. Результатом будет формула для площади круга.

Для такого рассуждения пицца должна быть идеализированной математической пиццей – идеально плоской и круглой, с бесконечно тонкой корочкой. Обозначим буквой С ее периметр (или длину окружности) – расстояние вдоль границы. Длина окружности – вовсе не то, что обычно интересует любителей пиццы, однако при желании мы могли бы измерить величину C с помощью рулетки.



Еще одна необходимая величина – радиус пиццы r, который определяется как расстояние от ее центра до любой точки корочки. В частности, если мы нарежем пиццу на ломтики, проводя разрезы от центра к краям, то длина прямого отрезка в таких ломтиках будет равна r.



Предположим, что мы разделили пиццу на четыре части. Их можно переложить следующим способом, но он не выглядит слишком многообещающим.



Получившаяся фигура с выступами вверху и внизу смотрится несколько странно. Это явно не прямоугольник, и определить ее площадь непросто. Похоже, нам придется отступить. Но, как и в любой драме, герою перед триумфом предстоит преодолеть трудности. Драматическое напряжение нарастает.

Однако раз уж мы тут застряли, то отметим две вещи, потому что они будут справедливы в ходе всего доказательства и в итоге дадут нам размеры искомого прямоугольника. Первая – одна половина корочки стала искривленной верхней границей новой фигуры, а вторая – нижней частью. Поэтому длина верхней границы равна C/2 и нижней границы – тоже C/2, как изображено на рисунке. Как мы увидим, в итоге эти границы превратятся в длинные стороны прямоугольника. Вторая – длина всех наклонных боковых сторон получившейся фигуры равна r, потому что это просто стороны исходных ломтиков пиццы. Эти боковые отрезки в итоге превратятся в короткие стороны прямоугольника.

Причина, по которой мы пока не видим никаких признаков искомого прямоугольника, – у нас еще недостаточно ломтиков. Если разрезать пиццу на восемь частей и переложить их таким же образом, то фигура окажется более прямоугольной.



По сути, пицца начинает походить на параллелограмм. Неплохо – по крайней мере это почти прямоугольник. Выступы вверху и внизу уже не так выпирают, как на предыдущем рисунке, – из-за большего количества ломтиков. Как и ранее, длина верхней границы фигуры равна C/2, а боковой границы – r.

Чтобы картинка выглядела еще лучше, разрежем пополам один из боковых ломтиков и перенесем его на другую сторону.



Теперь фигура очень похожа на прямоугольник. Да, вверху и внизу еще есть выступы из-за кривизны исходной корочки, но все же мы добились прогресса.

Похоже, увеличение числа кусков помогает, поэтому продолжим их нарезать. При шестнадцати ломтиках и таком же косметическом переносе половинки крайнего куска, как мы сделали только что, получается следующая фигура:



Чем больше кусков мы берем, тем сильнее сглаживаем выступы в верхней и нижней частях получающейся фигуры. Наши операции создают последовательность фигур, которые волшебным образом приближаются к определенному прямоугольнику. Поскольку фигуры к нему все ближе и ближе, назовем его предельным прямоугольником.



Смысл всей процедуры в том, что найти площадь предельного прямоугольника очень просто – достаточно перемножить его ширину и высоту. Все, что нам осталось, – выразить эти ширину и высоту через параметры исходного круга. Поскольку ломтики располагались вертикально, высота – это просто радиус r исходного круга, а ширина – половина длины его окружности, ведь его граница пошла на создание верхней и нижней границы прямоугольника – как это было для всех промежуточных фигур с выступающими краями. Следовательно, ширина равна C/2. Таким образом, площадь прямоугольника A = r × C / 2 = rC / 2. Но учитывая, что перекладывание ломтиков не меняло площади исходного круга, то и его площадь должна быть точно такой же!

Этот результат для площади круга, A = rC / 2, впервые получил (используя аналогичные, но более строгие рассуждения) древнегреческий математик Архимед (287–212 до нашей эры) в трактате «Измерение круга».

Самым новаторским аспектом доказательства было привлечение на помощь бесконечности. Имея всего четыре, восемь или шестнадцать ломтиков, мы могли сложить только фигуру с выступами. После малообещающего старта мы продвинулись к успеху, начав брать больше ломтиков; при этом получающаяся фигура все сильнее приближалась к прямоугольнику. Однако только при бесконечном множестве кусков она становилась по-настоящему прямоугольной. Эта идея и легла в основу анализа. С бесконечностью все упрощается.

Пределы и загадка стены

Предел подобен недостижимой цели. Вы можете подбираться к нему все ближе и ближе, но никогда не пройдете весь путь до конца.

Например, в доказательстве, использующем пиццу, мы могли приближаться к прямоугольнику, нарезая все большее количество ломтиков и переставляя их. Но истинной «прямоугольности» нам никогда не добиться. Мы можем лишь приблизиться к этому идеалу. К счастью, в анализе недостижимость предела обычно не имеет значения. Нередко мы можем решить задачу, представив, что способны достичь предела, а затем посмотрев, что следует из такого представления. Фактически многие из пионеров в этой области сделали свои великие открытия именно таким образом. Логически – нет. С воображением – да. Успешно – весьма.

Предел – это тонкое понятие, и в анализе оно занимает центральное место. Его не просто уловить, потому что в повседневной жизни эта идея не встречается. Пожалуй, ближайшей аналогией будет загадка стены. Если вы проходите половину расстояния до стены, затем половину оставшегося расстояния, потом половину оставшегося и так далее, то достигнете ли в конце концов этапа, на котором доберетесь до стены?

Очевидно, что ответ отрицателен, потому что в загадке стены на каждом этапе вы проходите только половину пути, а не весь путь. Сделаете ли вы десять шагов, миллион или любое другое число, между вами и стеной всегда останется какой-то промежуток. Однако столь же очевидно, что вы можете подойти к стене сколь угодно близко. Это означает, что на каком-то этапе вы окажетесь от нее в сантиметре, миллиметре, нанометре или на любом ином ненулевом расстоянии, но никогда не закончите свой путь. Здесь стена играет роль предела. На то, чтобы строго определить это понятие, понадобилось две тысячи лет. До тех пор пионеры анализа прекрасно обходились интуицией. Так что не волнуйтесь, если пределы кажутся вам сейчас туманными. Мы познакомимся с ними лучше, наблюдая на практике. С современной точки зрения пределы – это фундамент, на котором построен весь анализ.

bannerbanner