Читать книгу The Principles of Biology, Volume 1 (of 2) (Herbert Spencer) онлайн бесплатно на Bookz (37-ая страница книги)
bannerbanner
The Principles of Biology, Volume 1 (of 2)
The Principles of Biology, Volume 1 (of 2)Полная версия
Оценить:
The Principles of Biology, Volume 1 (of 2)

4

Полная версия:

The Principles of Biology, Volume 1 (of 2)

§ 144. The theory that plants and animals of all kinds were gradually evolved, seems to have been at first accompanied only by the vaguest conception of cause – or rather, by no conception of cause properly so called, but only by the blank form of a conception. One of the earliest who in modern times (1735) contended that organisms are indefinitely modifiable, and that through their modifications they have become adapted to various modes of existence, was De Maillet. But though De Maillet supposed all living beings to have arisen by a natural, continuous process, he does not appear to have had any definite idea of that which determines this process. In 1794, in his Zoonomia, Dr. Erasmus Darwin gave reasons (sundry of them valid ones) for believing that organized beings of every kind, have descended from one, or a few, primordial germs; and along with some observable causes of modification, which he points out as aiding the developmental process, he apparently ascribes it, in part, to a tendency given to such germ or germs when created. He suggests the possibility "that all warm-blooded animals have arisen from one living filament, which The Great First Cause endued with animality, with the power of acquiring new parts, attended with new propensities, directed by irritations, sensations, volitions, and associations; and thus possessing the faculty of continuing to improve by its own inherent activity." In this passage we see the idea to be, that evolution is pre-determined by some intrinsic proclivity. "It is curious," says Mr. Charles Darwin, "how largely my grandfather, Dr. Erasmus Darwin, anticipated the erroneous grounds of opinion, and the views of Lamarck." One of the anticipations was this ascription of development to some inherent tendency. To the "plan général de la nature, et sa marche uniforme dans ses opérations," Lamarck attributes "la progression évidente qui existe dans la composition de l'organisation des animaux;" and "la gradation régulière qu'ils devroient offrir dans la composition de leur organisation," he thinks is rendered irregular by secondary causes. Essentially the same in kind, though somewhat different in form, is the conception put forth in the Vestiges of Creation; the author of which contends "that the several series of animated beings, from the simplest and oldest up to the highest and most recent, are, under the providence of God, the results, first, of an impulse which has been imparted to the forms of life, advancing them, in definite times, by generation, through grades of organization terminating in the highest dicotyledons and vertebrata;" and that the progression resulting from these impulses, is modified by certain other causes. The broad contrasts between lower and higher forms of life, are regarded by him as implying an innate aptitude to give birth to forms of more perfect structures. The last to re-enunciate this doctrine has been Prof. Owen; who asserts "the axiom of the continuous operation of creative power, or of the ordained becoming of living things." Though these words do not suggest a very definite idea, yet they indicate the belief that organic progress is a result of some in-dwelling tendency to develop, supernaturally impressed on living matter at the outset – some ever-acting constructive force which, independently of other forces, moulds organisms into higher and higher forms.

In whatever way it is formulated, or by whatever language it is obscured, this ascription of organic evolution to some aptitude naturally possessed by organisms, or miraculously imposed on them, is unphilosophical. It is one of those explanations which explain nothing – a shaping of ignorance into the semblance of knowledge. The cause assigned is not a true cause – not a cause assimilable to known causes – not a cause that can be anywhere shown to produce analogous effects. It is a cause unrepresentable in thought: one of those illegitimate symbolic conceptions which cannot by any mental process be elaborated into a real conception. In brief, this assumption of a persistent formative power inherent in organisms, and making them unfold into higher types, is an assumption no more tenable than the assumption of special creations: of which, indeed, it is but a modification; differing only by the fusion of separate unknown processes into a continuous unknown process.

§ 145. Besides this intrinsic tendency to progress which Dr. Darwin ascribes to animals, he says they have a capacity for being modified by processes which their own desires initiate. He speaks of powers as "excited into action by the necessities of the creatures which possess them, and on which their existence depends;" and more specifically he says that "from their first rudiment or primordium, to the termination of their lives, all animals undergo perpetual transformations; which are in part produced by their own exertions, in consequence of their desires and aversions, of their pleasures and their pains, or of irritations, or of associations; and many of these acquired forms or properties are transmitted to their posterity." While it embodies a belief for which much may be said, this passage involves the assumption that desires and aversions, existing before experiences of the actions to which they are related, were the originators of the actions, and therefore of the structural modifications caused by them. In his Philosophie Zoologique, Lamarck much more specifically asserts "le sentiment intérieur," to be in all creatures that have developed nervous systems, an independent cause of those changes of form which are due to the exercise of organs: distinguishing it from that simple irritability possessed by inferior animals, which cannot produce what we call a desire or emotion; and holding that these last, along with all "qui manquent de système nerveux, ne vivent qu'à l'aide des excitations qu'ils reçoivent de l'extérieur." Afterwards he says – "je reconnus que la nature, obligée d'abord d'emprunter des milieux environnants la puissance excitatrice des mouvements vitaux et des actions des animaux imparfaits, sut, en composant de plus en plus l'organisation animale, transporter cette puissance dans l'intérieur même de ces êtres, et qu'à la fin, elle parvint à mettre cette même puissance à la disposition de l'individu." And still more definitely he contends that if one considers "la progression qui se montre dans la composition de l'organisation," … "alors on eût pu apercevoir comment les besoins, d'abord réduits à nullité, et dont le nombre ensuite s'est accru graduellement, ont amené le penchant aux actions propres à y satisfaire: comment les actions devenues habituelles et énergiques, ont occasionné le développement des organes qui les exécutent."

Now though this conception of Lamarck is more precisely stated, and worked out with much greater elaboration and wider knowledge of the facts, it is essentially the same as that of Dr. Darwin; and along with the truth it contains, contains also the same error more distinctly pronounced. Merely noting that desires or wants, acting directly only on the nervo-muscular system, can have no immediate influence on very many organs, as the viscera, or such external appendages as hair and feathers; and observing, further, that even some parts which belong to the apparatus of external action, such as the bones of the skull, cannot be made to grow by increase of function called forth by desire; it will suffice to point out that the difficulty is not solved, but simply slurred over, when needs or wants are introduced as independent causes of evolution. True though it is, as Dr. Darwin and Lamarck contend, that desires, by leading to increased actions of motor organs, may induce further developments of such organs; and true, as it probably is, that the modifications hence arising are transmissible to offspring; yet there remains the unanswered question – Whence do these desires originate? The transference of the exciting power from the exterior to the interior, as described by Lamarck, begs the question. How comes there a wish to perform an action not before performed? Until some beneficial result has been felt from going through certain movements, what can suggest the execution of such movements? Every desire consists primarily of a mental representation of that which is desired, and secondarily excites a mental representation of the actions by which it is attained; and any such mental representations of the end and the means, imply antecedent experience of the end and antecedent use of the means. To assume that in the course of evolution there from time to time arise new kinds of actions dictated by new desires, is simply to remove the difficulty a step back.

§ 146. Changes of external conditions are named, by Dr. Darwin, as causes of modifications in organisms. Assigning as evidence of original kinship, that marked similarity of type which exists among animals, he regards their deviations from one another, as caused by differences in their modes of life: such deviations being directly adaptive. After enumerating various appliances for procuring food, he says they all "seem to have been gradually produced during many generations by the perpetual endeavour of the creatures to supply the want of food, and to have been delivered to their posterity with constant improvement of them for the purposes required." And the creatures possessing these various appliances are considered as having been rendered unlike by seeking for food in unlike ways. As illustrating the alterations wrought by changed circumstances, he names the acquired characters of domestic animals. Lamarck has elaborated the same view in detail: using for the purpose, with great ingenuity, his extensive knowledge of the animal kingdom. From a passage in the Avertissement it would at first sight seem that he looks upon direct adaptation to new conditions as the chief cause of evolution. He says – "Je regardai comme certain que le mouvement des fluides dans l'intérieur des animaux, mouvement qui c'est progressivement accéléré avec la composition plus grande de l'organisation; et que l'influence des circonstances nouvelles, à mesure que les animaux s'y exposèrent en se répandant dans tous les lieux habitables, furent les deux causes générales qui ont amené les différents animaux à l'état où nous les voyons actuellement." But elsewhere the view he expresses appears decidedly different from this. He asserts that "dans sa marche, la nature a commencé, et recommence encore tous les jours, par former les corps organisés les plus simples;" and that "les premières ébauches de l'animal et du végétal étant formées dans les lieux et les circonstances convenables, les facultés d'une vie commençante et d'un mouvement organique établi, ont nécessairement développé peu à peu les organes, et qu'avec le temps elles les ont diversifies ainsi que les parties." And then, further on, he puts in italics this proposition: – "La progression dans la composition de l'organisation subit, çà et là, dans la série générale des animaux, des anomalies opérées par l'influence des circonstances d'habitation, et par celle des habitudes contractées." These, and sundry other passages, joined with his general scheme of classification, make it clear that Lamarck conceived adaptive modification to be, not the cause of progression, but the cause of irregularities in progression. The inherent tendency which organisms have to develop into more perfect forms, would, according to him, result in a uniform series of forms; but varieties in their conditions work divergences of structure, which break up the series into groups: groups which he nevertheless places in uni-serial order, and regards as still substantially composing an ascending succession.

§ 147. These speculations, crude as they may be considered, show much sagacity in their respective authors, and have done good service. Without embodying the truth in definite shapes, they contain adumbrations of it. Not directly, but by successive approximations, do mankind reach correct conclusions; and those who first think in the right direction, loose as may be their reasonings, and wide of the mark as their inferences may be, yield indispensable aid by framing provisional conceptions and giving a bent to inquiry.

Contrasted with the dogmas of his age, the idea of De Maillet was a great advance. Before it can be ascertained how organized beings have been gradually evolved, there must be reached the conviction that they have been gradually evolved; and this conviction he reached. His wild notions about the way in which natural causes acted in the production of plants and animals, must not make us forget the merit of his intuition that animals and plants were produced by natural causes. In Dr. Darwin's brief exposition, the belief in a progressive genesis of organisms is joined with an interpretation having considerable definiteness and coherence. In the space of ten pages he not only indicates several of the leading classes of facts which support the hypothesis of development, but he does something towards suggesting the process of development. His reasonings show an unconscious mingling of the belief in a supernaturally-impressed tendency to develop, with the belief in a development arising from the changing incidence of conditions. Probably had he pursued the inquiry further, this last belief would have grown at the expense of the first. Lamarck, in elaborating this general conception, has given greater precision both to its truth and to its error. Asserting the same imaginary factors and the same real factors, he has traced out their supposed actions in detail; and has, in consequence, committed himself to a greater number of untenable positions. But while, in trying to reconcile the facts with a theory which is only an adumbration of the truth, he laid himself open to the criticisms of his contemporaries; he proved himself profounder than his contemporaries by seeing that natural genesis, however caused, has been going on. If they were wise in not indorsing a theory which fails to account for a great part of the facts; they were unwise in ignoring that degree of congruity with the facts, which shows the theory to contain some fundamental verity.

Leaving out, however, the imaginary factors of evolution which these speculations allege, and looking only at the one actual factor which Dr. Darwin and Lamarck assign as accounting for some of the phenomena; it is manifest, from our present stand-point, that this, so far as it is a cause of evolution, is a proximate cause and not an ultimate cause. To say that functionally-produced adaptation to conditions originates either evolution in general, or the irregularities of evolution, is to raise the further question – why is there a functionally-produced adaptation to conditions? – why do use and disuse generate appropriate changes of structure? Neither this nor any other interpretation of biologic evolution which rests simply on the basis of biologic induction, is an ultimate interpretation. The biologic induction must itself be interpreted. Only when the process of evolution of organisms is affiliated on the process of evolution in general, can it be truly said to be explained. The thing required is to show that its various results are corollaries from first principles. We have to reconcile the facts with the universal laws of the re-distribution of matter and motion.

CHAPTER IX.

EXTERNAL FACTORS

§ 148. When illustrating the rhythm of motion (First Principles, § 83) it was pointed out that besides the daily and annual alternations in the quantities of light and heat which any portion of the Earth's surface receives from the Sun, there are alternations which require immensely-greater periods to complete. Reference was made to the fact that "every planet, during a certain long period, presents more of its northern than of its southern hemisphere to the Sun at the time of its nearest approach to him; and then again, during a like period, presents more of its southern hemisphere than of its northern – a recurring coincidence which, though it causes in some planets no sensible alterations of climate, involves, in the case of the Earth, an epoch of 21,000 years during which each hemisphere goes through a cycle of temperate seasons, and seasons that are extreme in their heat and cold." Further, we saw that there is a variation of this variation. The slow rhythm of temperate and intemperate climates, which takes 21,000 years to complete itself, undergoes exaggeration and mitigation during epochs that are far longer. The Earth's orbit slowly alters in form: now approximating to a circle, and now becoming more eccentric. During the period in which the Earth's orbit has least eccentricity, the temperate and intemperate climates which repeat their cycle in 21,000 years, are severally less temperate and less intemperate, than when, some one or two millions of years later, the Earth's orbit has reached its extreme of eccentricity.

Thus, besides those daily variations in the quantities of light and heat received by organisms, and responded to by variations in their functions; and besides the annual variations in the quantities of light and heat which organisms receive, and similarly respond to by variations in their functions; there are variations that severally complete themselves in 21,000 years and in some millions of years – variations to which there must also be responses in the changed functions of organisms. The whole vegetal and animal kingdoms, are subject to quadruply-compounded rhythms in the incidence of the forces on which life primarily depends – rhythms so involved in their slow working round that at no time during one of these vast epochs, can the incidence of these various forces be exactly the same as at any other time. To the direct effects so produced on organisms, have to be added much more important indirect effects. Changes of distribution must result. Certain redistributions are occasioned even by the annual variations in the quantities of the solar rays received by each part of the Earth's surface. The migrations of birds thus caused are familiar. So, too, are the migrations of certain fishes: in some cases from one part of the sea to another; in some cases from salt water to fresh water; and in some cases from fresh water to salt water. Now just as the yearly changes in the amounts of light and heat falling on each locality, yearly extend and restrict the habitats of many organisms which are able to move about with some rapidity; so must the alterations of temperate and intemperate climates produce extensions and restrictions of habitats. These, though slow, must be universal – must affect the habitats of stationary organisms as well as those of locomotive ones. For if, during an astronomic era, there is going on at any limit to a plant's habitat, a diminution of the winter's cold or summer's heat, which had before stopped its spread at that limit; then, though the individual plants are fixed, yet the species will move: the seeds of plants living at the limit, will produce individuals which survive beyond the limit. The gradual spread so effected, having gone on for some ten thousand years, the opposite change of climate will begin to cause retreat. The tide of each species will, during one half of a long epoch, slowly flow into new regions, and then will slowly ebb away from them. Further, this rise and fall in the tide of each species will, during far longer intervals, undergo increasing rises and falls and then decreasing rises and falls. There will be an alteration of spring tides and neap tides, answering to the changing eccentricity of the Earth's orbit.

These astronomical rhythms, therefore, entail on organisms unceasing changes in the incidence of forces in two ways. They directly subject them to variations of solar influences, in such a manner that each generation is somewhat differently affected in its functions; and they indirectly bring about complicated alterations in the environing agencies, by carrying each species into the presence of new physical conditions, new soil and surface.

§ 149. The power of geological actions to modify everywhere the circumstances in which plants and animals are placed, is conspicuous. In each locality denudation slowly uncovers different deposits, and slowly changes the exposed areas of deposits already uncovered. Simultaneously, the alluvial beds in course of formation, are qualitatively affected by these progressive changes in the natures and proportions of the strata denuded. The inclinations of surfaces and their directions with respect to the Sun, are at the same time modified; and the organisms existing on them are thus having their thermal conditions continually altered, as well as their drainage. Igneous action, too, complicates these gradual modifications. A flat region cannot be step by step thrust up into a protuberance without unlike climatic changes being produced in its several parts, by their exposures to different aspects. Extrusions of trap, wherever they take place, revolutionize the localities; both over the areas covered and over the areas on to which their detritus is carried. And where volcanoes are formed, the ashes they occasionally send out modify the character of the soil throughout large surrounding tracts.

In like manner alterations in the Earth's crust cause the ocean to be ever subjecting the organisms it contains to new combinations of conditions. Here the water is being deepened by subsidence, and there shallowed by upheaval. While the falling upon it of sediment brought down by neighbouring large rivers, is raising the sea-bottom in one place, in another the habitual rush of the tide is carrying away the sediment deposited in past times. The mineral character of the submerged surface on which sea-weeds grow and molluscs crawl, is everywhere occasionally changed; now by the bringing away from an adjacent shore some previously untouched strata; and now by the accumulation of organic remains, such as the shells of pteropods or of foraminifera. A further series of alterations in the circumstances of marine organisms, is entailed by changes in the movements of the water. Each modification in the outlines of neighbouring shores makes the tidal streams vary their directions or velocities or both. And the local temperature is from time to time raised or lowered, because some far-distant change of form in the Earth's crust has wrought a divergence in those circulating currents of warm and cold water which pervade the ocean.

These geologically-caused changes in the physical characters of each environment, occur in ever-new combinations, and with ever-increasing complexity. As already shown (First Principles, § 158), it follows from the law of the multiplication of effects, that during long periods each tract of the Earth's surface increases in heterogeneity of both form and substance. So that plants and animals of all kinds are, in the course of generations, subjected by alterations in the crust of the Earth, to sets of incident forces differing from previous sets, both by changes in the proportions of the factors and, occasionally, by the addition of new factors.

§ 150. Variations in the astronomical conditions joined with variations in the geological conditions, bring about variations in the meteorological conditions. Those slow alternations of elevation and subsidence which take place over immense areas, here producing a continent where once there was a fathomless ocean, and there causing wide seas to spread where in a long past epoch there stood snow-capped mountains, gradually work great atmospheric changes. While the highest parts of an emerging surface of the Earth's crust exist as a cluster of islands, the plants and animals which in course of time migrate to them have climates that are peculiar to small tracts of land surrounded by large tracts of water. As, by successive upheavals, greater areas are exposed, there begin to arise sensible contrasts between the states of their peripheral parts and their central parts. The breezes which daily moderate the extremes of temperature near the shores, cease to affect the interiors; and the interiors, less qualified too in their heat and cold by such ocean-currents as approach the coast, acquire more decidedly the characters due to their latitudes. Along with the further elevations which unite the members of the archipelago into a continent, there come new meteorologic changes, as well as exacerbations of the old. The winds, which were comparatively uniform in their directions and periods when only islands existed, grow involved in their distribution, and widely-different in different parts of the continent. The quantities of rain which they discharge and of moisture which they absorb, vary everywhere according to the proximity to the sea and to surfaces of land having special characters.

bannerbanner