
Полная версия:
Физика неоднородности
Математически давление равняется пределу отношения нормальной силы ∆Fn, действующей на участок поверхности тела площадью ∆S, к величине ∆S при ∆S, стремящейся к нулю:

где ∆Fn – сила, с которой атомы или молекулы ударяются о стенку сосуда;
∆S – площадь поверхности.
Следует отдельно отметить очень важный момент, что человеческий глаз воспринимает только незначительную долю излучений – видимого света. Мозг (человек видит не глазом, а мозгом, что уже давно доказано, глаз является лишь приемником оптического спектра излучений) большинства современных людей не способен видеть гибридные формы материй, составленных из первичных форм материй – A, B, C, D, E, F, G, и не следует путать уровни Земли, составленных из этих первичных материй (таблица 3), с физически плотными атомами, составляющими соответствующий слой атмосферы.
Изопроцессы. А. Изохорный процесс V = const. Если молекулы, находясь в замкнутом пространстве, получают энергию в виде тепла, то переходя в возбужденное состояние, они интенсивнее давят на стенки сосуда, в который они заключены, соответственно давление повышается. Так же, чем выше плотность вещества в данной единице объема, тем выше давление.
Б. Изобарный p = const. Этот процесс имеет место, например, при постоянном подводе теплоты извне.
В. Изотермический T = const. Как и в предыдущем случае, этот процесс проходит при постоянном источнике энергии (тепла).
Адиабатный процесс – возможен, если атомы (молекулы) вещества сохраняют обособленность от внешней среды (от других атомов и молекул); замкнутость системы, у которой иной уровень мерности (сосуд из метала выступает в качестве качественного барьера).
Фазовые, агрегатные состояния вещества. Пар, находящийся примерно на уровне мерности на границе между жидкой и газообразной формой называется насыщенным. При дальнейшем понижении уровня мерности пар будет переходить в жидкость (фазовый переход).
Сублимация – резкое изменение уровня мерности вещества, при котором оно способно перейти из твердого состояния в парообразное (или газообразное). Как указывал Н. В. Левашов, если у какого-то вещества перепад уровня собственной мерности между твёрдым и газообразным состояниями меньше, чем амплитуда скачка собственной мерности атома при поглощении теплового фотона, произойдёт сублимация.
Определимся с понятием точки росы, приведем цитату [1]: «Когда собственный уровень мерности освещённой территории опускается до уровня, так называемой, точки «росы», молекулы воды из газообразного состояния переходят в жидкое. Выпадает роса. Если это происходит на уровне облачности, процесс каплеобразования приобретает цепной характер, и выпадает дождь».
Кипение – процесс, при котором атом (молекула) вещества дискретно (порционно) поглощает энергию (тепловые фотоны), изменяющую уровень собственной мерности этих атомов. В результате чего атомы вещества, уровень мерности которых выше определенной границы, переходит в другое агрегатное состояние.
Тройная точка – точка, в которой уровень мерность атомов (молекул) находится на границе трех фаз.
Критическая точка – граница двух агрегатных состояний атома (молекулы) между газовой и жидкой фазами, т. е. границы двух уровней мерности. Выше этой границы атом находится в газообразном состоянии, ниже – в жидком. При этом чем ближе «совокупный» уровень мерности атомов к этой границе, тем больше равенство между количеством атомов (молекул) в жидком и газообразном состоянии.
Для сжижения газов необходимо изменить собственный уровень мерности атомов (молекул) до границы фазового перехода жидкость – газ, что достигается с помощью давления, при дальнейшем охлаждении возникает конденсация (переход вещества из парообразного в жидкое).
Вязкость – возникает из-за общих свойств (одинаковых или очень близких уровнях собственной мерности веществ). При различии в собственных уровнях мерности, вязкость имеет малое значение. При одинаковых уровнях мерности возникает явление вязкости, т. е. сопротивление слоев вещества при их взаимном движении.
А как быть с «силой» поверхностного натяжения (сила, приходящаяся на единицу длины поверхности раздела двух сред)? Вспомним, что газообразная и жидкая среды Земли возникли в результате перепада (колебания) уровней мерности в пределах ΔL = 0,020203236, и так газообразная среда имеет более высокий уровень мерности по сравнению с жидкой. Например, если на поверхность воды положить небольшую монету лицевой стороной, то она может оставаться на плаву некоторое время, если ребром, то монета начнет тонуть, что объясняется малой площадью контакта. При этом в общем случае чем выше плотность жидкости, тем больше сила поверхностного натяжения.
Вспомним также, что чем больше общих свойств между телами, тем выше вязкость при их взаимном перемещении; здесь следует дополнить явление вязкости: например, так же монетка перемещается в более плотной жидкости труднее, чем в менее плотной жидкости, это объясняется более близкими значениями уровней собственного уровня мерности монетки и более плотной жидкости.
Поверхностное натяжение жидкости зависит от температуры, плотности, давления и т. д. Причем давление в значительной мере определяет вязкость жидкости.
Растворимость несмешивающихся жидкостей или сред, находящихся в разных агрегатных состояниях, возможна при одинаковых (близких) уровнях мерности жидкостей, что достигается путем направленного физического воздействия, позволяющего «выровнять» уровни мерности разнородных жидкостей или сред, находящихся в разных агрегатных состояниях.
Адгезия – явление слияния тел за счет образования слабых электронных связей между веществами за счет выравнивания на границе раздела веществ (или сред) уровней мерности.
3. Электричество и магнетизм
Электрический ток. Электрический ток – направленное движение электрических зарядов… Каждый грамотный человек, обучавшийся в школе, техникуме, университете, помнит это определение из курса физики. Однако мало кто во времена обучения задавался вопросами и сомнениями по поводу правильности этого определения. Для начала давайте вспомним, что современной наукой принято следующее: постоянный ток – это направленное движение электрически заряженных частиц от плюса к минусу, переменный ток – движение заряженных частиц («свободных электронов») от источника с высоким потенциалом (энергии) к предмету с низким потенциалом. Переменный ток отличается тем, что он изменяется по направлению (например, частота тока 50 Гц означает, что он меняется по направлению 50 раз в секунду), постоянный – не изменяется.
Учитывая, что металлическая химическая связь образует связь между молекулами и атомами металлов за счёт перекрытия (обобществления) их валентных электронов, и изложенные выше данные, возникает несколько вопросов, на которые внятного ответа ученых или ортодоксальных чиновников от науки[1] не услышать: как могут электроны двигаться по проводнику? – т. е., по такой логике, отдав энергию, электрон возвращается в исходное положение – в то место, откуда убежал? Совершенно пустое определение, считавшееся полным и исчерпывающим («электрический ток – направленное движение электрических зарядов»), которое до сих пор многие читают на самом серьезном уровне в академических учебных заведениях.
Исчерпывающие объяснение этого физического понятия – электрического тока – было выполнено в работе Левашова Н. В. [4], поэтому ограничимся лишь цитатой: «У проводников общие электронные системы нестабильны, постоянно образуются и распадаются. Вся такая система постоянно находится в движении, правда это движение хаотично. Если тем или иным способом создать направленное воздействие на проводники (приложить напряжение), возникает электрический ток. Но, что самое интересное, электроны не двигаются в проводнике. Внешнее воздействие (поле) увеличивает степень неустойчивости электронов, они распадаются и материи, их образующие, перетекают на эфирный уровень, где продолжают подвергаться воздействию внешнего поля. Внешнее поле вынуждает перетекать эти материи в определённом направлении (внешнее воздействие [поле] влияет на мерность микрокосмоса атомов, что и приводит к перетеканию материй на эфирный план). При таком вынужденном перетекании эти материи теряют часть своей энергии, что приводит к новому слиянию материи в очередной зоне искривления микрокосмоса атомов. Электрон вновь синтезируется. Таким образом, движение электронов вдоль проводника есть периодическое перетекание материй, их образующих, с физического уровня на эфирный и обратно».
Последовательное и параллельное соединение конденсаторов. Если соединить их последовательно, то складываются их напряжения, если параллельно – заряды (сила тока). Почему складываются именно заряды? – Потому что проводник в состоянии пропустить через себя только определенное количество материи. Если через проводник (не конденсатор) пропустить слишком большое количество материи, то, не выдержав пропущенной энергии (ее теплового действия), проводник расплавится, вызвав тем самым короткое замыкание.
Самоиндукция возникает в проводнике при резком изменении тока, что вызвано инерцией движения материи по проводнику (контуру). Материя, двигаясь по проводнику, вынуждена резко останавливаться, вызывая тем самым ЭДС; если изменение тока было значительным, то может возникнуть искра.
Магнитные силовые линии. Магнитные полюса не совпадают с географическими. Вблизи северного географического находится южный магнитный полюс, а вблизи южного географического находится северный магнитный полюс.
Магниты подразделяются в зависимости от их свойств на:
– постоянные. Для производства постоянных магнитов используются, в основном: неодим-железо-бор, самарий-кобальт, альнико, керамические (ферриты);
– временные. Действуют как постоянные магниты при нахождении в сильном магнитном поле, теряют магнитные свойства при исчезновении магнитного поля. Материалы: «мягкое» железо;
– электромагниты. – Представляют собой витки провода (обычно намотанные на сердечник, который значительно усиливает магнитное поле). Действуют как магниты при протекании электрического тока. Сила и полярность магнитного поля, создаваемого электромагнитом, обусловлены изменением величины и направления электрического тока, текущего по проводнику.
Из-за чего возникает движение силовых линий вдоль стержня магнита? – Каждый материал имеет свой собственный уровень мерности в зависимости от своего состава и пространственного расположения атомов (диполей) в кристаллической решетке.
Следует помнить, что ядро Земли является жидким и состоит из железа.
Постоянные магниты имеют такой собственный уровень мерности, что даже при отсутствии направленного внешнего воздействия со стороны электрического тока образуется стоячая волна перепада мерности, вдоль стержня магнита; при этом диполи таких магнитов ориентированы, в основном, в одном направлении. Чем больше магнит, тем больше его влияние на пространство, тем большее количество силовых магнитных линий Земли входит в него и выходит, соответственно. Теперь «заменим» силовые линии Земли на поток первичных материй. Постоянные магниты являются своеобразным «концентратором» первичных материй, заставляя последние циркулировать по «замкнутой» траектории: вдоль стержня от южного полюса к северному, затем, огибая, возвращаться к южному. Таким образом, постоянный магнит – «частичка ядра Земли», имеет собственный уровень мерности, резко отличающийся от уровня мерности атмосферы, что «заставляет» в области пространственного расположения постоянного магнита входить в него достаточно большому потоку первичных материй, вызывая тем самым определенные силы и свойство притягивать предметы с близким, но отличающимся уровнем мерности. При правильном расположении полюсов магнита (против планетарного потока материй по перепаду мерности) при условии нехаотичного расположения диполей, возможно создавать эффект левитации, т. е. антигравитации.
Магнитные бури – это значительные изменения магнитного поля Земли в результате усиленного солнечного ветра, т. е. в результате вспышек на Солнце, т. е. в результате резкого изменения потоков первичных материй. У погодозависимых людей резкое изменение потоков первичных материй сопровождается головной болью или недомоганием.
Временные магниты «не могут» создать без внешнего воздействия (электрического, магнитного поля) достаточного перепада мерности для ярко выраженных магнитных свойств из-за хаотичного расположения диполей.
Электромагнит отличается от постоянного магнита. При пропускании через катушку электрического тока внутри катушки возникает электромагнитное поле; при этом катушка намотана на магнитный сердечник, то электромагнитные свойства значительно усиливаются.
Трансформация. Принцип действия трансформатора основан на явлении взаимоиндукции [11]. Трансформатор состоит из двух катушек, намотанных на общий сердечник. При прохождении переменного тока по первичной обмотке в железном сердечнике появляется переменный магнитный поток, который возбуждает ЭДС индукции в каждой обмотке. Это означает, что, повышая с помощью трансформатора напряжение в несколько раз, мы во столько же раз уменьшаем силу тока, и наоборот.
Попытаемся разобраться на конкретном примере с трансформацией переменного тока. На магнитный сердечник намотана первичная обмотка силой тока I1 и напряжением U1, с противоположной стороны на сердечник намотана вторичная обмотка, имеющая меньшее количество витков, в которой индуцируется ток I2 напряжением U2. Благодаря уменьшению количества витков на выходе изменяется сила тока I и напряжение U. Электрический ток в проводнике движется со вторичной обмотки с меньшим значением I2 или U2, при этом, если уменьшается I2, то увеличивается U2, и наоборот. Электрический ток I, протекающий через сопротивление R, вызывает падение напряжения U; падение напряжения на сопротивлении прямо пропорционально сопротивлению и прямо пропорционально силе тока, протекающего через него:

Принципа действия трансформатора, как и пояснение других физических понятий, можно продолжать и далее, однако на этом ограничимся, а интересующихся отправим к книге «Неоднородная вселенная» Н. В. Левашова.
4. Оптика
Люминисценция. Объясним механизмы люминесценции.
1. Получая энергию, электроны, находящиеся на внешних орбитах, переходят в возбужденное состояние, в результате чего в зависимости от длины волны, излучаемого веществом, получается свечение соответствующей части спектра. При тепловом (энергетическом) балансе между средой (пространством, окружающее люминесцирующее вещество) и веществом, последнее будет издавать свечение.
2. Существуют вещества, которые способны люминесцировать при относительно низких температурах, т. е. поглощать тепло из окружающей среды и издавать свечение. У каждого люминесцирующего вещества свой диапазон температур, в пределах которых оно может издавать свечение, минимальное количество атомов (молекул), совокупное действие которых способно производить свечение в течении определенного промежутка времени.
Между люминесценцией и эффектом фототока (фотоэффектом) есть связь. Аналогично фотоэффекту, если есть внешний источник энергии (то, что создает постоянный перепад мерности), то, переходя в возбужденное состояние, вещество будет светиться; издаваемое веществом свечение имеет определенную длину волны и интенсивность. Необходимым условием свечения является постоянный контакт с областью пространства, имеющим несколько отличный от оной уровень мерности, т. е. свечение обусловлено постоянным перепадом мерности между веществом и средой.
Аналогично фотоэффекту, для люминесценции существует диапазон, в пределах которого вещество способно люминесцировать, другими словами, есть верхняя граница, за которой вещество начинает распадаться в результате выхода за границу устойчивости собственного уровня мерности атомов вещества и перетекания первичной материи G на эфирный уровень, и нижняя граница, за которой вещество не может люминесцировать. Так же есть поддиапазон в пределах этого диапазона, в пределах которого вещество достигает состояние насыщения и выдает свечение при максимальной устойчивости атомов (молекул) вещества.
Видимый спектр – электромагнитные волны, воспринимаемые человеческим глазом. То, что мы видим глазами, составляет лишь малую долю всего спектра излучений.
В таблицу 5 сведены показатели основных характеристик видимого спектра [12].
Таблица 5 – Показатели основных характеристик видимого спектра

Из этого следует простой вывод, что электромагнитные излучения, находящиеся за пределом видимого спектра, несут большую часть информации о физических законах нашего пространства-вселенной, т. е. то, что мы можем непосредственно видеть глазами, связано только с физически плотной материей, образованной семью первичными материями – A, B, C, D, E, F, G. Так называемая эфирная материя, образованная шестью первичными материями – A, B, C, D, E, F – имеет свой диапазон излучений, лежащий за пределом видимого спектра в сторону меньшей длины волны. Астральная материя, образованная пятью первичными материями – A, B, C, D, E – имеет свой диапазон излучений, лежащий за пределом видимого спектра в сторону еще меньшей длины волны, чем эфирная. Первая ментальная – образованная четырьмя первичными материями – A, B, C, D – имеет свой диапазон излучений, лежащий за пределом видимого спектра в сторону еще меньшей длины волны, чем астральная, и т. д.
Вспомним также, что, при эволюционном развитии, человек, нарабатывая последовательно полное астральное, первое, второе, третье и четвертое ментальные тела, заканчивает нулевой (земной) эволюционный цикл развития, способен преодолеть все качественные барьеры (рисунок 1) и начать новый этап своей эволюции в космосе [1]. С каждым новым нарабатываемым телом, необходимо на каждом слое планетарного уровня наработать копию физического тела, т. е. для эфирного слоя – наработать недостающую материю G, т. к. на эфирный слой создан синтезом первичных материй A, B, C, D, E, F, для астрального слоя – недостающие материи F и G, т. к. астральный слой создан синтезом первичных материй A, B, C, D, E, первого ментального – E, F и G, т. к. т. к. первый ментальный слой создан синтезом первичных материй A, B, C, D, и т. д. [1, 4].
5. Квантовая механика
Материя. Мир материален; все существующее представляет собой различные виды движущейся материи, которая всегда находится в состоянии непрерывного движения, изменения, развития [8]. Исчерпывающее определение понятиям, на которые наука не могла долгие годы дать вразумительного ответа, изложены в трудах Н. В. Левашова [1, 3–4]. Что первично – материя или энергия – вопрос несуразный, т. к. одно без другого существовать не может. Так вот, изучая и давая объяснения физическим явлениям, необходимо исходить из одного единственного постулата (положение, принимаемое без доказательств): материя – объективная реальность, существующая вне и независимо от человеческого сознания.
Радиоактивное излучение. Известно, что радиоактивное излучение неоднородно: под действием магнитного поля оно разделяется на три пучка, один из которых не изменяет своего начального направления (γ-лучи), а два других отклоняются в противоположные стороны (α- и β-лучи).
γ-лучи не отклоняются в магнитном поле, не имеют электрического заряда, представляют собой электромагнитное излучение, схожее с рентгеновскими лучами, обладают очень большой проникающей способностью.
α-лучи и β-лучи несут электрический заряд, т. е. проявляют корпускулярно-волновые свойства (т. е. обладают свойствами частиц и электромагнитных волн). Принято считать, что β-лучи имеют отрицательный заряд и представляют собой свободные электроны. α-лучи считаются положительно заряженными частицами (атомов гелия), принято считать, что их масса равна массе атома гелия, а величина заряда равна двукратному значению заряда электрона.
Зададимся вопросом, почему же γ-лучи, в отличии от α- и β-лучей, не отклоняются от направления в магнитном поле, и не несут электрического заряда, и почему α- и β-лучи отклоняются в разных направлениях. γ-лучи обладают большим значением энергии, имеют более короткую длину волны, в то время как α- и β-лучи обладают большей длиной волны, меньшей энергией и меньшей проникающей способностью.
Чем сильнее заряд ядра атома, тем сильнее отталкивается от него α-частица, тем чаще случаи отклонения движения α-частицы при столкновении с металлом от первоначального направления движения. α-частица имеет положительный заряд, именно этим объясняется ее отталкивание от положительно заряженного ядра атома.
Считается, что развитая Резерфордом ядерная модель атома, основные черты которой – наличие в атоме положительно заряженного тяжелого ядра, окруженного электронами, – выдержала испытание временем. Однако модель Резерфорда противоречила следующим фактам [8]:
1) теория Резерфорда не могла объяснить устойчивости атома. Электрон, вращающийся вокруг положительно заряженного ядра, должен подобно колеблющемуся электрическому заряду, испускать электромагнитную энергию в виде световых волн. Но, излучая свет, электрон теряет часть своей энергии, что приводит к нарушению равновесия между центробежной силой, связанной с вращением электрона, и силой электростатического притяжения электрона к ядру. Для восстановления равновесия электрон должен переместиться ближе к ядру. Таким образом, электрон, непрерывно излучая электромагнитную энергию и двигаясь по спирали, будет приближаться к ядру. Исчерпав всю энергию, он должен «упасть» на ядро, – и атом прекратит свое существование. Этот вывод противоречит реальным свойствам атомов, которые представляют собой устойчивые образования и могут существовать, не разрушаясь, чрезвычайно долго;
2) модель Резерфорда приводила к неправильным выводам о характере атомных спектров. Напомним, что при пропускании через стеклянную или кварцевую призму света, испускаемого раскаленным твердым или жидким телом, на экране, поставленном за призмой, наблюдается так называемый сплошной спектр, видимая часть которого представляет собой цветную полосу, содержащую все цвета радуги. Это явление объясняется тем, что излучение раскаленного твердого или жидкого тела состоит из электромагнитных волн всевозможных частот. Волны различной частоты неодинаково преломляются призмой и попадают на разные места экрана.
Таким образом, теория Резерфорда не могла объяснить ни существования устойчивых атомов, ни наличия у них линейчатых спектров.
Излучение, испускаемое твердыми телами или жидкостями, всегда дает сплошной спектр. Излучение, испускаемое раскаленными газами или парами, в отличие от излучения твердых тел или жидкостей, содержит только определенные длины волн. Проанализируем указанный факт с позиции теории неоднородности. Твердые тела образованы благодаря слиянию гибридных форм материй, образованных, в свою очередь из первичных материй нашего пространства-вселенной (всего их семь) – A, B, C, D, E, F, G. Известно, что физически плотная материя – это уплотнившаяся энергия (энергия – тоже материя, но меньшей плотности). Атомы (молекулы) вещества, при получении запредельной для твердого (жидкого) агрегатного состояния порции энергии, выводятся за пределы поддиапазона устойчивости твердого агрегатного состояния в пределах диапазона устойчивости физически плотной материи 2,87890 ˂ LФПВ ˂ 2,89915, и атомы (молекулы) вещества переходят из твердого (жидкого) агрегатного состояния в газообразное (парообразное), оставаясь в пределах диапазона существования физически плотной материи 2,87890 ˂ LФПВ ˂ 2,89915. Однако в газообразном состоянии вещество имеет больший уровень собственной мерности в пределах 2,87890 ˂ LФПВ ˂ 2,89915, энергии, меньшую плотность. Благодаря этому газы, в отличие от твердых тел, имеют только определенные длины волн.