
Полная версия:
Биология добра и зла. Как наука объясняет наши поступки
191
C. Eisenegger et al., “Prejudice and Truth About the Effect of Testosterone on Human Bargaining Behaviour,” Nat 463 (2010): 356.
192
M. Wibral et al., “Testosterone Administration Reduces Lying in Men,” PLoS ONE 7 (2012): e46774.Также см.: J. Van Honk et al., “New Evidence on Testosterone and Cooperation,” Nat 485 (2012): E4.
193
Некоторые обзоры: O. Bosch and I. Neumann, “Both Oxytocin and Vasopressin Are Mediators of Maternal Care and Aggression in Rodents: From Central Release to Sites of Action,” Horm Behav 61 (2012): 293; R. Feldman, “Oxytocin and Social Affiliation in Humans,” Horm Behav 61 (2012): 380; A. Marsh et al., “The Influence of Oxytocin Administration on Responses to Infant Faces and Potential Moderation by OXTR Genotype,” Psychopharmacology (Berlin) 24 (2012): 469; M. J. Bakermans-Kranenburg and M. H. van Ijzendoorn, “Oxytocin Receptor (OXTR) and Serotonin Transporter (5-HTT) Genes Associated with Observed Parenting,” SCAN 3 (2008): 128. Гипоталамический путь, который зависит от пола: N. Scott et al., “A Sexually Dimorphic Hypothalamic Circuit Controls Maternal Care and Oxytocin Secretion,” Nat 525 (2016): 519.
194
К сноске: D. Huber et al., “Vasopressin and Oxytocin Excite Distinct Neuronal Populations in the Central Amygdala,” Sci 308 (2005): 245; D. Viviani and R. Stoop, “Opposite Effects of Oxytocin and Vasopressin on the Emotional Expression of the Fear Response,” Prog Brain Res 170 (2008): 207.
195
Y. Kozorovitskiy et al., “Fatherhood Affects Dendritic Spines and Vasopressin V1a Receptors in the Primate Prefrontal Cortex,” Nat Nsci 9 (2006): 1094; Z. Wang et al., “Role of Septal Vasopressin Innervation in Paternal Behavior in Prairie Voles,” PNAS 91 (1994): 400.
196
A. Smith et al., “Manipulation of the Oxytocin System Alters Social Behavior and Attraction in Pair-Bonding Primates, Callithrix penicillata,” Horm Behav 57 (2010): 255; M. Jarcho et al., “Intransal VP Affects Pair Bonding and Peripheral Gene Expression in Male Callicebus cupreus,” Genes, Brain and Behav 10 (2011): 375; C. Snowdon, “Variation in Oxytocin Is Related to Variation in Affiliative Behavior in Monogamous, Pairbonded Tamarins,” Horm Behav 58 (2010); 614.
197
Z. Donaldson and L. Young, “Oxytocin, Vasopressin, and the Neurogenetics of Sociality,” Sci 322 (2008): 900; E. Hammock and L. Young, “Microsatellite Instability Generates Diversity in Brain and Sociobehavioral Traits,” Sci 308 (2005): 1630; L. Young et al., “Increased Affiliative Response to Vasopressin in Mice Expressing the V1a Receptor from a Monogamous Vole,” Nat 400 (1999): 766; M. Lim et al., “Enhanced Partner Preference in a Promiscuous Species by Manipulating the Expression of a Single Gene,” Nat 429 (2004): 754.
198
E. Hammock and L. Young, “Microsatellite Instability Generates Diversity in Brain and Sociobehavioral Traits,” Sci 308 (2005): 1630.
199
I. Schneiderman et al., “Oxytocin at the First Stages of Romantic Attachment: Relations to Couples’ Interactive Reciprocity,” PNE 37 (2012): 1277.
200
B. Ditzen et al., “Intranasal Oxytocin Increases Positive Communication and Reduces Cortisol Levels During Couple Conflict,” BP 65 (2009): 728; D. Scheele et al., “Oxytocin Modulates Social Distance Between Males and Females,” J Nsci 32 (2012): 16074; H. Walum et al., “Genetic Variation in the Vasopressin Receptor 1a Gene Associates with Pair-Bonding Behavior in Humans,” PNAS 105 (2008): 14153; H. Walum et al., “Variation in the Oxytocin Receptor Gene Is Associated with Pair-Bonding and Social Behavior,” BP 71 (2012): 419.
201
M. Nagasawa et al., “Oxytocin-Gaze Positive Loop and the Coevolution of Human-Dog Bonds,” Sci 348 (2015): 333.
202
M. Yoshida, et al., “Evidence That Oxytocin Exerts Anxiolytic Effects via Oxytocin Receptor Expressed in Serotonergic Neurons in Mice,” J Nsci 29 (2009): 2259. Работа окситоцина в миндалине: D. Viviani et al., “Oxytocin Selectively Gates Fear Responses Through Distinct Outputs from the Central Nucleus,” Sci 333 (2011): 104; H. Knobloch et al., “Evoked Axonal Oxytocin Release in the Central Amygdala Attenuates Fear Response,” Neuron 73 (2012): 553; S. Rodrigues et al., “Oxytocin Receptor Genetic Variation Relates to Empathy and Stress Reactivity in Humans,” PNAS 106 (2009): 21437; M. Bakermans-Kranenburg and M. van Ijzendoorn, “Oxytocin Receptor (OXTR) and Serotonin Transporter (5-HTT) Genes Associated with Observed Parenting,” SCAN 3 (2008): 128; G. Domes et al., “Oxytocin Attenuates Amygdala Responses to Emotional Faces Regardless of Valence,” BP 62 (2007):1187; P. Kirsch, “Oxytocin Modulates Neural Circuitry for Social Cognition and Fear in Humans,” J Nsci 25 (2005): 11489; I. Labuschagne et al., “Oxytocin Attenuates Amygdala Reactivity to Fear in Generalized Social Anxiety Disorder,” Neuropsychopharmacology 35 (2010): 2403; M. Heinrichs et al., “Social Support and Oxytocin Interact to Suppress Cortisol and Subjective Responses to Psychosocial Stress,” BP 54 (2003): 1389; K. Uvnas-Moberg, “Oxytocin May Mediate the Benefits of Positive Social Interaction and Emotions,” PNE 23 (1998): 819. Цитата Сью Картер приведена по: P. S. Churchland and P. Winkielman, “Modulating Social Behavior with Oxytocin: How Does It Work? What Does It Mean?” Horm Behav 61 (2012): 392.
Влияние окситоцина на агрессию: M. Dhakar et al., “Heightened Aggressive Behavior in Mice with Lifelong Versus Postweaning Knockout of the Oxytocin Receptor,” Horm Behav 62 (2012): 86; J. Winslow et al., “Infant Vocalization, Adult Aggression, and Fear Behavior of an Oxytocin Null Mutant Mouse,” Horm Behav 37 (2005): 145.
203
M. Kosfeld et al., “Oxytocin Increases Trust in Humans,” Nat 435 (2005): 673; A. Damasio, “Brain Trust,” Nat 435 (2005): 571; S. Israel et al., “The Oxytocin Receptor (OXTR) Contributes to Prosocial Fund Allocations in the Dictator Game and the Social Value Orientations Task,” PLoS ONE 4 (2009): e5535; P. Zak et al., “Oxytocin Is Associated with Human Trustworthiness,” Horm Behav 48 (2005): 522; T. Baumgartner et al., “Oxytocin Shapes the Neural Circuitry of Trust and Trust Adaptation in Humans,” Neuron 58 (2008): 639; A. Theodoridou et al., “Oxytocin and Social Perception: Oxytocin Increases Perceived Facial Trustworthiness and Attractiveness,” Horm Behav 56 (2009): 128. Недостаточность контрольных исследований: C. Apicella et al., “No Association Between Oxytocin Receptor (OXTR) Gene Polymorphisms and Experimentally Elicited Social Preferences,” 9781594205071_Behave_TX.indd 732 3/16/17 PLoS ONE 5 (2010): e11153. Подставление другой щеки: J. Filling et al., “Effects of Intranasal Oxytocin and Vasopressin on Cooperative Behavior and Associated Brain Activity in Men,” PNE 37 (2012): 447.
204
A. Marsh et al., “Oxytocin Improves Specific Recognition of Positive Facial Expressions,” Psychopharmacology (Berlin) 209 (2010): 225; C. Unkelbach et al., “Oxytocin Selectively Facilitates Recognition of Positive Sex and Relationship Words,” Psych Sci 19 (2008): 102; J. Barraza et al., “Oxytocin Infusion Increases Charitable Donations Regardless of Monetary Resources,” Horm Behav 60 (2011): 148; A. Kogan et al., “Thin-Slice Study of the Oxytocin Receptor Gene and the Evaluation and Expression of the Prosocial Disposition,” PNAS 108 (2011): 19189; H. Tost et al., “A Common Allele in the Oxytocin Receptor Gene (OXTR) Impacts Prosocial Temperament and Human Hypothalamic-Limbic Structure and Function,” PNAS 107 (2010): 13936; R. Hurlemann et al., “Oxytocin Enhances Amygdala-Dependent, Socially Reinforced Learning and Emotional Empathy in Humans,” J Nsci 30 (2010): 4999.
205
P. Zak et al., “Oxytocin Is Associated with Human Trustworthiness,” Horm Behav 48 (2005): 522; J. Holt-Lunstad et al., “Influence of a ‘Warm Touch’ Support Enhancement Intervention Among Married Couples on Ambulatory Blood Pressure, Oxytocin, Alpha Amylase, and Cortisol,” Psychosomatic Med 70 (2008): 976; V. Morhenn et al., “Monetary Sacrifice Among Strangers Is Mediated by Endogenous Oxytocin Release After Physical Contact,” EHB 29 (2008): 375; C. Crockford et al., “Urinary Oxytocin and Social Bonding in Related and Unrelated Wild Chimpanzees,” Proc Royal Soc B 280 (2013): 20122765.
206
Z. Donaldson and L. Young, “Oxytocin, Vasopressin, and the Neurogenetics of Sociality,” Sci 322 (2008): 900; A. Guastella et al., “Oxytocin Increases Gaze to the Eye Region of Human Faces,” BP 63 (2008): 3; M. Gamer et al., “Different Amygdala Subregions Mediate Valence-Related and Attentional Effects of Oxytocin in Humans,” PNAS 107 (2010): 9400; C. Zink et al., “Vasopressin Modulates Social Recognition – Related Activity in the Left Temporoparietal Junction in Humans,” Translational Psychiatry 1 (2011): e3; G. Domes et al., “Oxytocin Improves ‘ Mind-Reading’ in Humans,” BP 61 (2007): 731–33; U. Rimmele et al., “Oxytocin Makes a Face in Memory More Familiar,” J Nsci 29 (2009): 38; M. Fischer-Shofty et al., “Oxytocin Facilitates Accurate Perception of Competition in Men and Kinship in Women,” SCAN (2012).
207
C. Sauer et al., “Effects of a Common Variant in the CD38 Gene on Social Processing in an Oxytocin Challenge Study: Possible linkes to Autism,” Neuropsychopharmacology 37 (2012): 1474.
208
E. Hammock and L. Young, “Oxytocin, Vasopressin and Pair Bonding: Implications for Autism,” Philosophical Transactions of the Royal Soc of London B 361 (2006): 2187; A. Meyer-Lindenberg et al., “Oxytocin and Vasopressin in the Human Brain: Social Neuropeptides for Translational Medicine,” Nat Rev Nsci 12 (2011): 524; H. Yamasue et al., “Integrative Approaches Utilizing Oxytocin to Enhance Prosocial Behavior: From Animal and Human Social Behavior to Autistic Social Dysfunction,” J Nsci 32 (2012): 14109.
209
Обзор дан в: A. Graustella and C. MacLeod, “A Critical Review of the Influence of Oxytocin Nasal Spray on Social Cognition in Humans: Evidence and Future Directions,” Horm Behav 61 (2012): 410.
210
J. Bartz et al., “Social Effects of Oxytocin in Humans: Context and Person Matter,” TICS 15 (2011): 301.
211
G. Domes et al., “Effects of Intranasal Oxytocin on Emotional Face Processing in Women,” PNE 35 (2010): 83; G. De Vries, “Sex Differences in Vasopressin and Oxytocin Innervation in the Brain,” Prog Brain Res 170 (2008): 17; J. Bartz et al., “Effects of Oxytocin on Recollections of Maternal Care and Closeness,” PNAS 14 (2010): 107.
212
M. Mikolajczak et al., “Oxytocin Not Only Increases Trust When Money Is at Stake, but Also When Confidential Information Is in the Balance,” BP 85 (2010): 182.
213
H. Kim et al., “Culture, Distress, and Oxytocin Receptor Polymorphism (OXTR) Interact to Influence Emotional Support Seeking,” PNAS 107 (2010): 15717.
214
O. Bosch and I. Neumann, “Both Oxytocin and Vasopressin Are Mediators of Maternal Care and Aggression in Rodents: From Central Release to Sites of Action,” Horm Behav 61 (2012): 293.
215
C. Ferris and M. Potegal, “Vasopressin Receptor Blockade in the Anterior Hypothalamus Suppresses Aggression in Hamsters,” Physiology & Behav 44 (1988): 235; H. Albers, “The Regulation of Social Recognition, Social Communication and Aggression: Vasopressin in the Social Behavior Neural Network,” Horm Behav 61 (2012): 283; A. Johansson et al., “Alcohol and Aggressive Behavior in Men: Moderating Effects of Oxytocin Receptor Gene (OXTR) Polymorphisms,” Genes, Brain and Behav 11 (2012): 214; J. Winslow and T. Insel, “Social Status in Pairs of Male Squirrel Monkeys Determines the Behavioral Response to Central Oxytocin Administration,” J Nsci 11 (1991): 2032; J. Winslow et al., “A Role for Central Vasopressin in Pair Bonding in Monogamous Prairie Voles,” Nat 365 (1993): 545.
216
T. Baumgartner et al., “Oxytocin Shapes the Neural Circuitry of Trust and Trust Adaptation in Humans,” Neuron 58 (2008): 639; C. Declerk et al., “Oxytocin and Cooperation Under Conditions of Uncertainty: The Modulating Role of Incentives and Social Information,” Horm Behav 57 (2010): 368; S. Shamay-Tsoory et al., “Intranasal Administration of Oxytocin Increases Envy and Schadenfreude (Gloating),” BP 66 (2009): 864.
217
C. de Dreu, “Oxytocin Modulates Cooperation Within and Competition Between Groups: An Integrative Review and Research Agenda,” Horm Behav 61 (2012): 419; C. de Dreu et al., “The Neuropeptide Oxytocin Regulates Parochial Altruism in Intergroup Conflict Among Humans,” Sci 328 (2011): 1408.
218
C. de Dreu et al., “Oxytocin Promotes Human Ethnocentrism,” PNAS 108 (2011): 1262.
219
К сноске: S. Motta et al., “Ventral Premammillary Nucleus as a Critical Sensory Relay to the Maternal Aggression Network,” PNAS 110 (2013): 14438.
220
J. Lonstein and S. Gammie, “Sensory, Hormonal, and Neural Control of Maternal Aggression in Laboratory Rodents,” Nsci Biobehav Rev 26 (2002): 869; S. Parmigiani et al., “Selection, Evolution of Behavior and Animal Models in Behavioral Neuroscience,” Nsci Biobehav Rev 23 (1999): 957.
221
R. Gandelman and N. Simon, “Postpartum Fighting in the Rat: Nipple Development and the Presence of Young,” Behav and Neural Biol 29 (1980): 350; M. Erskine et al., “Intraspecific Fighting During Late Pregnancy and Lactation in Rats and Effects of Litter Removal,” Behav Biol 23 (1978): 206; K. Flannelly and E. Kemble, “The Effect of Pup Presence and Intruder Behavior on Maternal Aggression in Rats,” Bull of the Psychonomic Soc 25 (1988): 133.
222
B. Derntl et al., “Association of Menstrual Cycle Phase with the Core Components of Empathy,” Horm Behav 63 (2013): 97. Пример прекрасного обзора: C. Bodo and E. Rissman, “New Roles for Estrogen Receptor Beta in Behavior and Neuroendocrinology,” Front Neuroendocrinology 27 (2006): 217.
223
D. Reddy, “Neurosteroids: Endogenous Role in the Human Brain and Therapeutic Potentials,” Prog Brain Res 186 (2010): 113; F. De Sousa et al., “Progesterone and Maternal Aggressive Behavior in Rats,” Behavioural Brain Res 212 (2010): 84; G. Pinna et al., “Neurosteroid Biosynthesis Regulates Sexually Dimorphic Fear and Aggressive Behavior in Mice,” Neurochemical Res 33 (2008): 1990; K. Miczek et al., “Neurosteroids, GABAA Receptors, and Escalated Aggressive Behavior,” Horm Behav 44 (2003): 242.
224
S. Hrdy, “The ‘One Animal in All Creation About Which Man Knows the Least,’” Philosophical Transactions of the Royal Soc B 368 (2013): 20130072.
225
Идея такого выброса освещена в: E. Ketterson et al., “Testosterone in Females: Mediator of Adaptive Traits, Constraint on Sexual Dimorphism, or Both?” Am Naturalist 166 (2005): 585.
226
C. Voigt and W. Goymann, “Sex-Role Reversal Is Reflected in the Brain of African Black Coucals (Centropus grillii),” Developmental Neurobiol 67 (2007): 1560; M. Peterson et al., “Testosterone Affects Neural Gene Expression Differently in Male and Female Juncos: A Role for Hormones in Mediating Sexual Dimorphism and Conflict,” PLoS ONE 8 (2013): e61784.
227
A. Pusey and K. Schroepfer-Walker, “Female Competition in Chimpanzees,” Philosophical Transactions of the Royal Soc B 368 (2013): 20130077.
228
J. French et al., “The Influence of Androgenic Steroid Hormones on Female Aggression in ‘Atypical’ Mammals,” Philosophical Transactions of the Royal Soc B 368 (2013): 20130084; L. Frank et al., “Fatal Sibling Aggression, Precocial Development, and Androgens in Neonatal Spotted Hyenas,” Sci 252 (1991): 702; S. Glickman et al., “Androstenedione May Organize or Activate Sex-Reversed Traits in Female Spotted Hyenas,” PNAS 84 (1987): 3444.
229
W. Goymann et al., “Androgens and the Role of Female ‘Hyperaggressiveness’ in Spotted Hyenas,” Horm Behav 39 (2001): 83; S. Fenstemaker et al., “A Sex Difference in the Hypothalamus of the Spotted Hyena,” Nat Nsci 2 (1999): 943; G. Rosen et al., “Distribution of Vasopressin in the Forebrain of Spotted Hyenas,” J Comp Neurol 498 (2006): 80.
230
P. Chambers and J. Hearn, “Peripheral Plasma Levels of Progesterone, Oestradiol-17β, Oestrone, Testosterone, Androstenedione and Chorionic Gonadotrophin During Pregnancy in the Marmoset Monkey, Callithrix jacchus,” J Reproduction Fertility 56 (1979): 23; C. Drea, “Endocrine Correlates of Pregnancy in the Ring-Tailed Lemur (Lemur catta): Implications for the Masculinization of Daughters,” Horm Behav 59 (2011): 417; M. Holmes et al., “Social Status and Sex Independently Influence Androgen Receptor Expression in the Eusocial Naked Mole-Rat Brain,” Horm Behav 54 (2008): 278; L. Koren et al., “Elevated Testosterone Levels and Social Ranks in Female Rock Hyrax,” Horm Behav 49 (2006): 470; C. Kraus et al., “High Maternal Androstenedione Levels During Pregnancy in a Small Precocial Mammal with Female Genital Masculinisation” (Max Planck Institute for Demographic Research Working Paper WP 2008-017, April 2008); C. Kraus et al., “Spacing Behaviour and Its Implications for the Mating System of a Precocial Small Mammal: An Almost Asocial Cavy Cavia magna,” Animal Behav 66 (2003): 225; L. Koren and E. Geffen, “Androgens and Social Status in Female Rock Hyraxes,” Animal Behav 77 (2009): 233.
231
К сноске: ДГЭА и местный синтез стероидов в нейронах: K. Soma et al., “Novel Mechanisms for Neuroendocrine Regulation of Aggression,” Front Neuroendocrinology 29 (2008): 476; K. Schmidt et al., “Neurosteroids, Immunosteroids, and the Balkanization of Endo,” General and Comp Endo 157 (2008): 266; D. Pradhan et al., “Aggressive Interactions Rapidly Increase Androgen Synthesis in the Brain During the Non-breeding Season,” Horm Behav 57 (2010): 381.
232
T. Johnson, “Premenstrual Syndrome as a Western Culture-Specific Disorder,” Culture, Med and Psychiatry 11 (1987): 337; L. Cosgrove and B. Riddle, “Constructions of Femininity and Experiences of Menstrual Distress,” Women & Health 38 (2003): 37.
233
Цитата в тексте см.: M. Rodin, “The Social Construction of Premenstrual Syndrome,” Soc Sci & Med 35 (1992); 49. Цитата в сноске взята из: A. Kleinman, “Depression, Somaticization, and the New ‘Cross-Cultural Psychiatry,’” Social Science Med 11 (1977): 3.
234
H. Rupp et al., “Neural Activation in the Orbitofrontal Cortex in Response to Male Faces Increases During Follicular Phase,” Horm Behav 56 (2009): 66. Mareckova K. et al. “Hormonal Contraceptives, Menstrual Cycle and Brain Response to Faces. SCAN 9 (2012): 191.
235
A. Rapkin et al., “Menstrual Cycle and Social Behavior in Vervet Monkeys,” PNE 20 (1995): 289; E. García-Castells et al., “Changes in Social Dynamics Associated to the Menstrual Cycle in the Vervet Monkey (Cercopithecus aethiops),” Boletín de Estudios Médicos y Biológicos 37 (1989): 11; G. Mallow, “The Relationship Between Aggressive Behavior and Menstrual Cycle Stage in Female Rhesus Monkeys (Macaca mulatta),” Horm Behav 15 (1981): 259; G. Hausfater and B. Skoblic, “Perimenstrual Behavior Changes Among Female Yellow Baboons: Some Similarities to Premenstrual Syndrome (PMS) in Women,” Animal Behav 9 (1985): 165.
236
K. Dalton, “School Girls’ Behavior and Menstruation,” Brit Med J 2 (1960): 1647; K. Dalton, “Menstruation and Crime,” Brit Med J 2 (1961): 1752; K. Dalton, “Cyclical Criminal Acts in Premenstrual Syndrome,” Lancet 2 (1980): 1070.
237
P. Easteal, “Women and Crime: Premenstrual Issues,” Trends and Issues in Crime and Criminal Justice 31 (1991): 1–8; J. Chrisler and P. Caplan, “The Strange Case of Dr. Jekyll and Ms. Hyde: How PMS Became a Cultural Phenomenon and a Psychiatric Disorder,” Ann Rev of Sex Res 13 (2002): 274.
238
Обзорный анализ см. в: R. Sapolsky, Why Zebras Don’t Get Ulcers: A Guide to Stress, Stress-Related Diseases and Coping, 3rd ed. (New York: Henry Holt, 2004).
239
R. Sapolsky “Stress and the Brain: Individual Variability and the Inverted-U,” Nat Nsci 25 (2015): 1344.
240
K. Roelofs et al., “The Effects of Social Stress and Cortisol Responses on the Preconscious Selective Attention to Social Threat,” BP 75 (2007): 1; K. Tully et al., “Norepinephrine Enables the Induction of Associative Long-Term Potentiation at Thalamo-Amygdala Synapses,” PNAS 104 (2007): 14146; P. Putman et al., “Cortisol Administration Acutely Reduces Threat-Selective Spatial Attention in Healthy Young Men,” Physiology & Behav 99 (2010): 294; K. Bertsch et al., “Exogenous Cortisol Facilitates Responses to Social Threat Under High Provocation,” Horm Behav 59 (2011): 428.
241
J. Rosenkranz et al., “Chronic Stress Causes Amygdala Hyperexcitability in Rodents,” BP 67 (2010): 1128; S. Duvarci and D. Pare, “Glucocorticoids Enhance the Excitability of Principle Basolateral Amygdala Neurons,” J Nsci 27 (2007): 4482; A. Kavushansky and G. Richter-Levin, “Effects of Stress and Corticosterone on Activity and Plasticity in the Amygdala,” J Nsci Res 84 (2006): 1580; A. Kavushansky et al., “Activity and Plasticity in the CA1, the Dentate Gyrus, and the Amygdala Following Controllable Versus Uncontrollable Water Stress,” Hippocampus 16 (2006): 35; P. Rodríguez Manzanares et al., “Previous Stress Facilitates Fear Memory, Attenuates GABAergic Inhibition, and Increases Synaptic Plasticity in the Rat Basolateral Amygdala,” J Nsci 25 (2005): 8725; H. Lakshminarasimhan and S. Chattarji, “Stress Leads to Contrasting Effects on the Levels of Brain Derived Neurotrophic Factor in the Hippocampus and Amygdala,” PLoS ONE 7 (2012): e30481; S. Ghosh et al., “Functional Connectivity from the Amygdala to the Hippocampus Grows Stronger After Stress,” J Nsci 33 (2013): 7234.
242
B. Kolber et al., “Central Amygdala Glucocorticoid Receptor Action Promotes Fear-Associated CRH Activation and Conditioning,” PNAS 105 (2008): 12004; S. Rodrigues et al., “The Influence of Stress Hormones on Fear Circuitry,” Ann Rev Nsci 32 (2009): 289; L. Shin and I. Liberzon, “The Neurocircuitry of Fear, Stress, and Anxiety Disorders,” Neuropsychopharmacology 35, no. 1 (January 2010): 169.