
Полная версия:
Myths and Marvels of Astronomy
'There is certainly no reason for laughing at M. Trissotin, triple idiot though he is (tout Trissotin qu'il est), when he says to Madame Philaminte (Molière's "Femmes Savantes," acte iv. scène 3),
'Nous l'avons en dormant, madame, échappé belle;Un monde près de nous a passé tout du long,Est chu tout au travers de notre tourbillon;Et, s'il eût en chemin rencontré notre terre,Elle eût été brisée en morceaux comme verre.'A comet coursing along its parabolic orbit may come full tilt against our earth. But then, what will happen? Either that comet will have a force equal to that of our earth, or greater, or less. If equal, we shall do the comet as much harm as it will do us, action and reaction being equal; if greater, the comet will bear us away with it; if less, we shall bear away the comet.
'This great event may occur in a thousand ways, and no one can affirm that our earth and the other planets have not experienced more than one revolution, through the mischance of encountering a comet on their path.
'The Parisians will not desert their city on the 20th inst.; they will sing songs, and the play of "The Comet and the World's End" will be performed at the Opéra Comique.'
The last touch is as fine in its way as Sydney Smith's remark that, if London were destroyed by an earthquake, the surviving citizens would celebrate the event by a public dinner among the ruins. Voltaire's prediction was not fulfilled exactly to the letter, but what actually happened was even funnier than what his lively imagination had suggested. It was stated by a Parisian Professor in 1832 (as a reason why the Academy of Sciences should refute an assertion then rife to the effect that Biela's comet would encounter the earth that year) that during the cometic panic of 1773 'there were not wanting people who knew too well the art of turning to their advantage the alarm inspired by the approaching comet, and places in Paradise were sold at a very high rate.44 The announcement of the comet of 1832 may produce similar effects,' he said, 'unless the authority of the Academy apply a prompt remedy; and this salutary intervention is at this moment implored by many benevolent persons.'
In recent years the effects produced on the minds of men by comets have been less marked than of yore, and appear to have depended a good deal on circumstances. The comet of the year 1858 (called Donati's), for example, occasioned no special fears, at least until Napoleon III. made his famous New-Year's day speech, after which many began to think the comet had meant mischief. But the comet of 1861, though less conspicuous, occasioned more serious fears. It was held by many in Italy to presage a very great misfortune indeed, viz. the restoration of Francis II. to the throne of the Two Sicilies. Others thought that the downfall of the temporal power of the Papacy and the death of Pope Pius IX. were signified. I have not heard that any very serious consequences were expected to follow the appearance of Coggia's comet in 1874. The great heat which prevailed during parts of the summer of 1876 was held by many to be connected in some way with a comet which some very unskilful telescopist constructed in his imagination out of the glare of Jupiter in the object-glass of his telescope. Another benighted person, seeing the Pleiades low down through a fog, turned them into a comet, about the same time. Possibly the idea was, that since comets are supposed to cause great heats, great heats may be supposed to indicate a comet somewhere; and with minds thus prepared, it was not wonderful, perhaps, that telescopic glare, or an imperfect view of our old friends the Pleiades, should have been mistaken for a vision of the heat-producing comet.
It should be a noteworthy circumstance to those who still continue to look on comets as signs of great catastrophes, that a war more remarkable in many respects than any which has ever yet been waged between two great nations—a war swift in its operations and decisive in its effects—a war in which three armies, each larger than all the forces commanded by Napoleon I. during the campaign of 1813, were captured bodily—should have been begun and carried on to its termination without the appearance of any great comet. The civil war in America, a still more terrible calamity to that great nation than the success of Moltke's operations to the French, may be regarded by believers as presignified by the great comet of 1861. But it so chances that the war between France and Germany occurred near the middle of one of the longest intervals recorded in astronomical annals as unmarked by a single conspicuous comet—the interval between the years 1862 and 1874.
If the progress of just ideas respecting comets has been slow, it must nevertheless be regarded as on the whole satisfactory. When we remember that it was not a mere idle fancy which had to be opposed, not mere terrors which had to be calmed, but that the idea of the significance of changes in the heavens had come to be regarded by mankind as a part of their religion, it cannot but be thought a hopeful sign that all reasoning men in our time have abandoned the idea that comets are sent to warn the inhabitants of this small earth. Obeying in their movements the same law of gravitation which guides the planets in their courses, the comets are tracked by the skilful mathematician along those remote parts of their course where even the telescope fails to keep them in view. Not only are they no longer regarded as presaging the fortunes of men on this earth, but men on this earth are able to predict the fortunes of comets. Not only is it seen that they cannot influence the fates of the earth or other planets, but we perceive that the earth and planets by their attractive energies influence, and in no unimportant degree, the fates of these visitants from outer space. Encouraging, truly, is the lesson taught us by the success of earnest study and careful inquiry in determining some at least among the laws which govern bodies once thought the wildest and most erratic creatures in the whole of God's universe.
IX.
THE LUNAR HOAX
Then he gave them an account of the famous moon hoax, which came out in 1835. It was full of the most barefaced absurdities, yet people swallowed it all; and even Arago is said to have treated it seriously as a thing that could not well be true, for Mr. Herschel would have certainly notified him of these marvellous discoveries. The writer of it had not troubled himself to invent probabilities, but had borrowed his scenery from the 'Arabian Nights' and his lunar inhabitants from 'Peter Wilkins.'
—Oliver Wendell Holmes (in The Poet at the Breakfast-Table).In one of the earliest numbers of 'Macmillan's Magazine, the late Professor De Morgan, in an article on Scientific Hoaxing, gave a brief account of the so-called 'lunar hoax'—an instance of scientific trickery frequently mentioned, though probably few are familiar with the real facts. De Morgan himself possessed a copy of the second English edition of the pamphlet, published in London in 1836. But the original pamphlet edition, published in America in September 1835, is not easily to be obtained. The proprietors of the New York 'Sun,' in which the fictitious narrative first appeared, published an edition of 60,000 copies, and every copy was sold in less than a month. Lately a single copy of that edition was sold for three dollars seventy-five cents.45
The pamphlet is interesting in many respects, and I propose to give here a brief account of it. But first it may be well to describe briefly the origin of the hoax.
It is said that after the French revolution of 1830 Nicollet, a French astronomer of some repute, especially for certain lunar observations of a very delicate and difficult kind, left France in debt and also in bad odour with the republican party. According to this story, Arago the astronomer was especially obnoxious to Nicollet, and it was as much with the view of revenging himself on his foe as from a wish to raise a little money that Nicollet wrote the moon-fable. It is said further that Arago was entrapped, as Nicollet desired, and circulated all over Paris the wonders related in the pamphlet, until Nicollet wrote to his friend Bouvard explaining the trick. So runs the story, but the story cannot be altogether true. Nicollet may have prepared the narrative and partly written it, but there are passages in the pamphlet as published in America which no astronomer could have written. Possibly there is some truth in De Morgan's supposition that the original work was French. This may have been Nicollet's: and the American edition was probably enlarged by the translator, who, according to this account, was Richard Alton Locke,46 to whom in America the whole credit, or discredit, of the hoax is commonly attributed. There can be no doubt that either the French version was much more carefully designed than the American, or there was no truth in the story that Arago was deceived by the narrative; for in its present form the story, though clever, could not for an instant have deceived any one acquainted with the most elementary laws of optics. The whole story turns on optical rather than on astronomical considerations; but every astronomer of the least skill is acquainted with the principles on which the construction of optical instruments depends. Though the success of the deception recently practised on M. Chasles by the forger of the Pascal papers has been regarded as showing how easily mathematicians may be entrapped, yet even M. Chasles would not have been deceived by bad mathematics; and Arago, a master of the science of optics, could not but have detected optical blunders which would be glaring to the average Cambridge undergraduate.
But let us turn to the story itself.
The account opens with a passage unmistakably from an American hand, though purporting, be it remembered, to be quoted from the 'Supplement to the Edinburgh Journal of Science.' 'In this unusual addition to our journal, we have the happiness of making known to the British public, and thence to the whole civilised world, recent discoveries in astronomy which will build an imperishable monument to the age in which we live, and confer upon the present generation of the human race a proud distinction through all future time. It has been poetically said' [where and by whom?] 'that the stars of heaven are the hereditary regalia of man, as the intellectual sovereign of the animal creation. He may now fold the zodiac around him with a loftier consciousness of his mental supremacy.' To the American mind enwrapment in the star-jewelled zodiac may appear as natural as their ordinary oratorical references to the star-spangled banner; but the idea is essentially transatlantic, and not even the most poetical European astronomer could have risen to such a height of imagery.
Passing over several pages of introductory matter, we come to the description of the method by which a telescope of sufficient magnifying power to show living creatures in the moon was constructed by Sir John Herschel. It had occurred, it would seem, to the elder Herschel to construct an improved series of parabolic and spherical reflectors 'uniting all the meritorious points in the Gregorian and Newtonian instruments, with the highly interesting achromatic discovery of Dolland'(sic). [This is much as though one should say that a clever engineer had conceived the idea of constructing an improved series of railway engines, combining all the meritorious points in stationary and locomotive engines, with Isaac Watts' highly ingenious discovery of screw propulsion. For the Gregorian and Newtonian instruments simply differ in sending the rays received from the great mirror in different directions, and Dolland's discovery relates to the ordinary forms of telescopes with large lens, not with large mirror.] However, accumulating infirmities and eventually death prevented Sir William Herschel from applying his plan, which 'evinced the most profound research in optical science, and the most dexterous ingenuity in mechanical contrivance. But his son, Sir John Herschel, nursed and cradled in the observatory, and a practical astronomer from his boyhood, determined upon testing it at whatever cost. Within two years of his father's death he completed his new apparatus, and adapted it to the old telescope with nearly perfect success.' A short account of the observations made with this instrument, now magnifying six thousand times, follows, in which most of the astronomical statements are very correctly and justly worded, being, in fact, borrowed from a paper by Sir W. Herschel on observation of the moon with precisely that power.
But this great improvement upon all former telescopes still left the observer at a distance of forty miles from the moon; and at that distance no object less than about twenty yards in diameter could be distinguished, and even objects of that size 'would appear only as feeble, shapeless points.' Sir John 'had the satisfaction to know that if he could leap astride a cannon-ball, and travel upon its wings of fury for the respectable period of several millions of years, he would not obtain a more enlarged view of the more distant stars than he could now possess in a few minutes of time; and that it would require an ultra-railroad speed of fifty miles an hour for nearly the livelong year, to secure him a more favourable inspection of the gentle luminary of the night;' but 'the exciting question whether this "observed" of all the sons of men, from the days of Eden to those of Edinburgh, be inhabited by beings, like ourselves, of consciousness and curiosity, was left to the benevolent index of natural analogy, or to the severe tradition that the moon is tenanted only by the hoary solitaire, whom the criminal code of the nursery had banished thither for collecting fuel on the Sabbath-day.'47 But the time had arrived when the great discovery was to be made, by which at length the moon could be brought near enough, by telescopic power, for living creatures on her surface to be seen if any exist.
The account of the sudden discovery of the new method, during a conversation between Sir John Herschel and Sir David Brewster, is one of the most cleverly conceived (though also one of the absurdest) passages in the pamphlet. 'About three years ago, in the course of a conversational discussion with Sir David Brewster upon the merits of some ingenious suggestions by the latter, in his article on Optics in the "Edinburgh Encyclopædia," p. 644, for improvements in Newtonian reflectors, Sir John Herschel adverted to the convenient simplicity of the old astronomical telescopes that were without tubes, and the object-glass of which, placed upon a high pole, threw the focal image to a distance of 150 and even 200 feet. Dr. Brewster readily admitted that a tube was not necessary, provided the focal image were conveyed into a dark apartment and there properly received by reflectors.... The conversation then became directed to that all-invincible enemy, the paucity of light in powerful magnifiers. After a few moments' silent thought, Sir John diffidently enquired whether it would not be possible to effect a transfusion of artificial light through the focal object of vision! Sir David, somewhat startled at the originality of the idea, paused awhile, and then hesitatingly referred to the refrangibility of rays, and the angle of incidence. Sir John, grown more confident, adduced the example of the Newtonian reflector, in which the refrangibility was corrected by the second speculum, and the angle of incidence restored by the third.'
All this part of the narrative is simply splendid in absurdity. Hesitating references to refrangibility and the angle of incidence would have been sheerly idiotic under the supposed circumstances; and in the Newtonian reflector (which has only two specula or mirrors) there is no refrangibility to be corrected; apart from which, 'correcting refrangibility' has no more meaning than 'restoring the angle of incidence.'
'"And," continued Sir John, "why cannot the illuminating microscope, say the hydro-oxygen, be applied to render distinct, and, if necessary, even to magnify, the focal object?" Sir David sprung from his chair' [and well he might, though not] 'in an ecstasy of conviction, and, leaping half-way to the ceiling, exclaimed, "Thou art the man!" Each philosopher anticipated the other in presenting the prompt illustration that if the rays of the hydro-oxygen microscope, passed through a drop of water containing the larvæ of a gnat and other objects invisible to the naked eye, rendered them not only keenly but firmly magnified to dimensions of many feet; so could the same artificial light, passed through the faintest focal object of a telescope, both distinctify (to coin a new word for an extraordinary occasion) and magnify its feeblest component members. The only apparent desideratum was a recipient for the focal image which should transfer it, without refranging it, to the surface on which it was to be viewed under the revivifying light of the microscopic reflectors.'
Singularly enough, the idea here mentioned does not appear to many so absurd as it is in reality. It is known that the image formed by the large lens of an ordinary telescope or the large mirror of a reflecting telescope is a real image; not a merely virtual image like that which is seen in a looking-glass. It can be received on a sheet of paper or other white surface just as the image of surrounding objects can be thrown upon the white table of the camera obscura. It is this real image, in fact, which we look at in using a telescope of any sort, the portion of such a telescope nearest to the eye being in reality a microscope for viewing the image formed by the great lens or mirror, as the case may be. And it does not seem to some altogether absurd to speak of illuminating this image by transfused light, or of casting by means of an illuminating microscope a vastly enlarged picture of this image upon a screen. But of course the image being simply formed by the passage of rays (which originally came from the object whose image they form) through a certain small space, to send other rays (coming from some other luminous object) through the same small space, is not to improve, but, so far as any effect is produced at all, to impair, the distinctness of the image. In fact, if these illuminating rays reached the eye, they would seriously impair the distinctness of the image. Their effect may be compared exactly with the effect of rays of light cast upon the image in a camera obscura; and, to see what the effect of such rays would be, we need only consider why it is that the camera is made 'obscura,' or dark. The effect of the transfusion of light through a telescopic image may be easily tried by any one who cares to make the experiment. He has only to do away with the tube of his telescope (substituting two or three straight rods to hold the glass in its place), and then in the blaze of a strong sun to direct the telescope on some object lying nearly towards the sun. Or if he prefer artificial light for the experiment, then at night let him direct the telescope so prepared upon the moon, while a strong electric light is directed upon the place where the focal image is formed (close in front of the eye). The experiment will not suggest very sanguine hopes of good result from the transfusion of artificial light. Yet, to my own knowledge, not a few who were perfectly well aware that the lunar hoax was not based on facts, have gravely reasoned that the principle suggested might be sound, and, in fact, that they could see no reason why astronomers should not try it, even though it had been first suggested as a joke.
To return, however, to the narrative. 'The co-operative philosophers, having hit upon their method, determined to test it practically. They decided that a medium of the purest plate-glass (which it is said they obtained, by consent, be it observed, from the shop-window of M. Desanges, the jeweller to his ex-majesty Charles X., in High Street) was the most eligible they could discover. It answered perfectly with a telescope which magnified a hundred times, and a microscope of about thrice that power.' Thus fortified by experiment, and 'fully sanctioned by the high optical authority of Sir David Brewster, Sir John laid his plan before the Royal Society, and particularly directed to it the attention of his Royal Highness the Duke of Sussex, the ever munificent patron of science and the arts. It was immediately and enthusiastically approved by the committee chosen to investigate it, and the chairman, who was the Royal President' (this continual reference to royalty is manifestly intended to give a British tone to the narrative), 'subscribed his name for a contribution of £10,000, with a promise that he would zealously submit the proposed instrument as a fit object for the patronage of the privy purse. He did so without delay; and his Majesty, on being informed that the estimated expense was £70,000, naïvely enquired if the costly instrument would conduce to any improvement in navigation. On being informed that it undoubtly would, the sailor king promised a carte blanche for any amount which might be required.'
All this is very clever. The 'sailor king' comes in as effectively to give vraisemblance to the narrative as 'Crabtree's little bronze Shakspeare that stood over the fireplace,' and the 'postman just come to the door with a double letter from Northamptonshire.'
Then comes a description of the construction of the object-glass, twenty-four feet in diameter, 'just six times the size of the elder Herschel's;' who, by the way, never made a telescope with an object-glass. The account of Sir John Herschel's journey from England, and even some details of the construction of the observatory, were based on facts, indeed, so many persons in America as well as in England were acquainted with some of these circumstances, that it was essential to follow the facts as closely as possible. Of course, also, some explanation had to be given of the circumstance that nothing had before been heard respecting the gigantic instrument taken out by Sir John Herschel. 'Whether,' says the story, 'the British Government were sceptical concerning the promised splendour of the discoveries, or wished them to be scrupulously veiled until they had accumulated a full-orbed glory for the nation and reign in which they originated, is a question which we can only conjecturally solve. But certain it is that the astronomer's royal patrons enjoined a masonic taciturnity upon him and his friends until he should have officially communicated the results of his great experiment.'
It was not till the night of January 10, 1835, that the mighty telescope was at length directed towards our satellite. The part of the moon selected was on the eastern part of her disc. 'The whole immense power of the telescope was applied, and to its focal image about one half of the power of the microscope. On removing the screen of the latter, the field of view was covered throughout its entire area with a beautifully distinct and even vivid representation of basaltic rock. Its colour was a greenish brown; and the width of the columns, as defined by their interstices on the canvas, was invariably twenty-eight inches. No fracture whatever appeared in the mass first presented; but in a few seconds a shelving pile appeared, of five or six columns' width, which showed their figure to be hexagonal, and their articulations similar to those of the basaltic formation at Staffa. This precipitous cliff was profusely covered with a dark red flower, precisely similar, says Dr. Grant, to the Papaver Rhœus, or Rose Poppy, of our sublunary cornfields; and this was the first organic production of nature in a foreign world ever revealed to the eyes of men.'
It would be wearisome to go through the whole series of observations thus fabled, and only a few of the more striking features need be indicated. The discoveries are carefully graduated in interest. Thus we have seen how, after recognising basaltic formations, the observers discovered flowers: they next see a lunar forest, whose 'trees were of one unvaried kind, and unlike any on earth except the largest kind of yews in the English churchyards.' (There is an American ring in this sentence, by the way, as there is in one, a few lines farther on, where the narrator having stated that by mistake the observers had the Sea of Clouds instead of a more easterly spot in the field of view, proceeds to say: 'However, the moon was a free country, and we not as yet attached to any particular province.') Next a lunar ocean is described, 'the water nearly as blue as that of the deep sea, and breaking in large white billows upon the strand, while the action of very high tides was quite manifest upon the face of the cliffs for more than a hundred miles.' After a description of several valleys, hills, mountains and forests, we come to the discovery of animal life. An oval valley surrounded by hills, red as the purest vermilion, is selected as the scene. 'Small collections of trees, of every imaginable kind, were scattered about the whole of this luxuriant area; and here our magnifiers blessed our panting hopes with specimens of conscious existence. In the shade of the woods we beheld brown quadrupeds having all the external characteristics of the bison, but more diminutive than any species of the bos genus in our natural history.' Then herds of agile creatures like antelopes are described, 'abounding on the acclivitous glades of the woods.' In the contemplation of these sprightly animals the narrator becomes quite lively. 'This beautiful creature,' says he, 'afforded us the most exquisite amusement. The mimicry of its movements upon our white painted canvas was as faithful and luminous as that of animals within a few yards of the camera obscura. Frequently, when attempting to put our fingers upon its beard, it would suddenly bound away as if conscious of our earthly impertinence; but then others would appear, whom we could not prevent nibbling the herbage, say or do to them what we would.'