Читать книгу Научное мировоззрение изменит вашу жизнь. Почему мы изучаем Вселенную и как это помогает нам понять самих себя? (Евгений Плисов) онлайн бесплатно на Bookz (2-ая страница книги)
bannerbanner
Научное мировоззрение изменит вашу жизнь. Почему мы изучаем Вселенную и как это помогает нам понять самих себя?
Научное мировоззрение изменит вашу жизнь. Почему мы изучаем Вселенную и как это помогает нам понять самих себя?
Оценить:
Научное мировоззрение изменит вашу жизнь. Почему мы изучаем Вселенную и как это помогает нам понять самих себя?

4

Полная версия:

Научное мировоззрение изменит вашу жизнь. Почему мы изучаем Вселенную и как это помогает нам понять самих себя?

Точка начала расширяться. Быстро. Мы не знаем, откуда она взялась, это за гранью современного развития науки, но как она развивалась, мы уже можем представить. Период от начала ее появления до времени в 10–43 секунды мы назвали планковской эрой в честь немецкого физика Макса Планка, считающегося отцом квантовой механики. В ту пору известные нам законы природы не работали. Это неудивительно, если мы еще раз вспомним, что говорим о Вселенной размером до 10–35 метра. Бесконечно малый и бесконечно горячий котел жил какой-то своей, неизвестной нам жизнью, но все же как-то жил. Когда Вселенная преодолела эту эру вследствие своего дальнейшего расширения, начали появляться фундаментальные законы мироздания, которые мы можем изучать. Эти законы никто не писал, они просто существуют. Их нельзя преодолеть или обмануть, они вшиты в структуру нашего с вами космоса. Можно их назвать первичными законами, если хотите. Первым законом, вышедшим из-под пера молодой Вселенной, была гравитация. Не успела гравитация вступить в свои законные права, как на скрижали законов появились еще два: законы электрослабого и сильного ядерного взаимодействия (впрочем, есть основания утверждать, что они изначально были слиты с гравитацией). Еще слегка погодя электрослабое взаимодействие разделилось на электромагнитное и слабое ядерное. С тех пор четыре закона, четыре фундаментальные силы главенствуют в нашем мире: слабое ядерное взаимодействие отвечает за процессы радиоактивного распада, сильное ядерное скрепляет в единое целое атомное ядро, электромагнитное позволяет атомам взаимодействовать друг с другом, а гравитация отвечает за скопления веществ.

Вселенная имеет начало. Неправильно говорить, что она появилась в какой-то момент, поскольку время привязано к внутренностям Вселенной, но с нашей позиции она появилась «когда-то», причем довольно давно. Вселенная не вечна, она была не всегда, и уже это может навести на размышления. Что было до нее? Почему она возникла? Какие силы, если таковые были, заставили ее появиться? На эти вопросы сразу хочется дать понятный любому ответ – это чьи-то проделки. Кто-то или что-то запустили столь сложный процесс. У всего должна быть причина. Но, как показывает история, со временем подобный ответ теряет свою актуальность. Раньше люди думали, что солнце и луна поднимаются над горизонтом, потому что за это кто-то отвечает. Пантеон профессионалов, каждый – ответственный за свою работу. Кто-то поднимает солнце, кто-то помогает расти зерну на полях, кто-то вызывает приливы и отливы, а еще смертоносные штормы, губящие моряков. У этих персонажей были свои проблемы, они взаимодействовали не только друг с другом, но и с людьми, и это самое важное. На них можно было повлиять, а значит, повлиять на законы природы, что было весьма приятно. Но потом оказалось, что солнце поднимается на рассвете не вслед за несущейся огненной колесницей, а в результате вращения нашей шарообразной планеты вокруг своей оси, а приливы и отливы вызывает луна, которая движется по небосводу по своей достаточно просто вычисляемой траектории.

По мере того как развивался пытливый человеческий ум, как копились знания, все меньше места в мире оставалось на долю воздействия высших сил. Теперь же у нас остался главный вопрос – почему все возникло? Можно сказать, последний, фундаментальный вопрос. Наконец-то ребята-физики не могут на что-то ответить, а значит, там что-то есть! Так вот, то, что физики не знают чего-то, является для нас лишь причиной еще немного подождать. Я не утверждаю, что ответ будет найден, все-таки мы находимся внутри Вселенной и выйти за ее границы пока не можем. Обращаю внимание на слово «пока». То, что сейчас происходит в нашей повседневной жизни, сто лет назад посчиталось бы просто невозможным. Те приборы и устройства, которые мы используем каждый день, взорвали бы сознание любого человека из самого обозримого прошлого. Что будет через 10, 20, 30 лет, просто невозможно просчитать или представить. Какие открытия нас ждут, в том числе открытия по части устройства нашего мира? То, что мы чего-то не знаем, не повод плодить лишние сущности, так удобно объясняющие все. Они делают Вселенную просто менее удивительной, чем та, что уже нас окружает.

Один лишь свет

Возвращаемся к растущей Вселенной. Точка продолжает расширяться, с момента ее появления прошла одна триллионная секунды. В это эпоху есть лишь свет, а именно фотоны. Во Вселенной было настолько горячо, что фотоны, являясь волной и частицей одновременно, могли свободно превращаться в пары частиц вещества и антивещества, чтобы затем схлопнуться обратно в фотон. В принципе мы все являемся законсервированной энергией того первозданного начала, поскольку вещество и энергия есть по сути две стороны одной медали. Знаменитое уравнение Эйнштейна E = mc2, где m – это масса объекта, а c – скорость света, показывает, сколько этой энергии в веществе есть, если его полностью пустить на энергию. У каждой частицы в мире может быть ее двойник, античастица. У кварков (слагающих протоны и нейтроны) и лептонов (например, электронов и нейтрино) есть соответственно антикварки и антилептоны[2]. Для электрона, заряженного отрицательно, есть положительно заряженная противоположность – позитрон. Бозоны же – это частицы, обеспечивающие взаимодействие других частиц. Например, фотон – как раз такая частица.


Протон. Он состоит из двух u-кварков и одного d-кварка. Всего есть шесть типов (ароматов) кварков: верхний, нижний, очарованный, прелестный, странный и истинный. Названия такие им дали исключительно для того, чтобы было легче их различать


Забавно, что кварки, из которых состоят протоны и нейтроны в атомном ядре, не могут в нормальных условиях существовать поодиночке – они должны всегда быть либо в паре, либо в тройке. Если же вы решите специальными средствами растащить пару кварков, то чем сильнее станете тянуть, тем сильнее они будут притягиваться друг к другу. Как сейчас считается, в это время между ними появляется все больше специальных частиц, глюонов, обеспечивающих взаимодействие кварков. Но в какой-то момент Вселенной станет выгоднее просто сделать по новому кварку, вместо того чтобы тянуть старые. Глюоны исчезнут, и теперь у вас будет две пары кварков: каждый старый кварк станет держать за ручку своего нового соседа. Когда мы погружаемся в физику элементарных частиц, законы привычной нам логики перестают работать. Здесь можно сделать что-то из пустоты. В самые ранние моменты Вселенной она, судя по всему, представляла собой котел кварк-глюонной плазмы, то есть кварки не могли образовывать никаких пар, а бурлили в единой свободно перемешивающейся массе вместе с глюонами.

В нашем мироздании тем временем продолжает появляться вещество и антивещество. Но по неведомой нам пока причине на один миллиард частиц антивещества приходилась 1 млрд и одна частица вещества. Этот дисбаланс привел к тому, что вещества начало становиться все больше по сравнению с антивеществом, которое при встрече с веществом обычным аннигилировало с ним (превращалось в ничто), выделяя энергию в соответствии с уравнением E = mc2. Если бы не было такого неравенства, не было бы известной нам Вселенной: все ее слагаемые проаннигилировали бы друг с другом, оставив лишь вспышку. Но такая несправедливость случилась, и теперь физики называют этот парадокс «барионная асимметрия Вселенной». На сегодня нет признанного объяснения этого феномена. Поживем – увидим. Вещество и антивещество очень бурно реагируют друг с другом. При взаимодействии 1 кг антивещества и 1 кг вещества выделится приблизительно 1,8×1017 джоулей энергии, что эквивалентно энергии, выделяемой при взрыве 42,96 мегатонны тротила. Самое мощное ядерное устройство из когда-либо взрывавшихся на планете, «Царь-бомба» (масса 26,5 т), при взрыве высвободило энергию, эквивалентную ~57–58,6 мегатонны. Поэтому, если вдруг встретите себя же, состоящего из антивещества, то есть абсолютно зеркального, не обнимайтесь с ним. Это будут воистину горячие объятия.

Кстати, если вы до сих пор считаете антивещество одним из придуманных феноменов колдунов-физиков, мне придется вас огорчить. Антивещество можно создать в лаборатории, чем некоторые физики и занимаются. Полученный продукт очень дорогой – по оценкам НАСА, один миллиграмм позитронов будет стоить 25 млрд долларов, а за один грамм антиводорода придется раскошелиться на 62,5 трлн американской валюты. Разумеется, никому в таких количествах антивещество не нужно, тем более что его очень неудобно хранить. Позитроны еще ладно, они имеют положительный заряд, а значит, их можно поймать в магнитную ловушку, чтобы они не столкнулись с обычной материей и не схлопнулись в вспышке. С антиводородом все гораздо сложнее, так как молекула сама по себе электронейтральна, и поймать ее в магнитную ловушку уже не получится. Вот и приходится сидеть физикам и гадать, как эффективно хранить антиматерию – все-таки это самая дорогая субстанция на нашей планете. Хранить как-то все же необходимо, поскольку только на большом количестве вещества можно проверить определенные свойства материи, например отношения с гравитацией. Вдруг антивещество обладает еще и свойствами антигравитации, то есть будет отталкиваться от нашей планеты, а не притягиваться! По идее, такого происходить не должно, и макроколичества антивещества должны вести себя абсолютно так же, как и обычное вещество. Может быть, во Вселенной есть целые области, состоящие из антивещества: галактики, планеты, звезды, – которые ведут себя точно так же, как и обычные, привычные нам аналоги, но мы этого не знаем. Мы можем только догадываться об их отсутствии вследствие четкого знания – если звезда из антивещества и обычная звезда столкнутся, то мощность выплеска энергии при таком столкновении должна превысить светимость всех звезд в сотне миллионов галактик. Если бы такое где-нибудь и когда-нибудь произошло, мы, скорее всего, видели бы следы подобного инцидента, но таких улик нет. Так что, если вы смотрите на небо через телескоп и видите другую галактику, она будет состоять из обычного вещества. Правда, стоит оговориться (такие оговорки в науке обычно остаются за кадром, но все про них помнят): то, что мы такого не наблюдаем, не означает, что такое неосуществимо. Может быть, где-нибудь в космосе и вправду есть гигантские залежи антивещества и в какой-то момент оно прореагирует с обычным, а мы увидим этот процесс. Великолепное зрелище, но это будет последнее, что мы увидим. Такой выброс гамма-излучения сотрет в пыль огромную область пространства вокруг реакционного центра, в том числе и нашу планету. Это будет очень красиво, но недолго.

Вселенная продолжает расширяться и остывать. Кварки начинают объединяться, появляются протоны и нейтроны, чтобы затем объединиться в ядра будущих атомов. Вселенная теперь полна вещества, большая часть из которого – водород (90 %) и гелий (10 %). Есть еще немного дейтерия, трития (тяжелые формы водорода) и лития, но их в расчет пока брать рано. Последующие 380 тысяч лет ничего интересного не происходило. Нет, разумеется, все это время было наполнено различными процессами, все-таки мы говорим о рождении Вселенной, но это был достаточно стабильный период. Электроны при еще достаточно высокой температуре свободно перемещались по пространству, то и дело натыкаясь на фотоны, раскидывая их на своем пути. Если бы вы оказались там в тот момент (представим, что у вас есть средства защиты), то вы ничего не увидели бы, кроме сверкающего непрозрачного молока космоса. Фотоны не попадали бы к вам в глаза свободно из окружающего пространства, их сбивали бы электроны.

Как только температура космоса опустилась ниже 3000 градусов (примерно вдвое ниже температуры поверхности Солнца), электроны начали попадать в ловушку атомных ядер. Вселенную залил видимый свет – период образования материи завершился успешно. Кстати, этот ослепительный период, оставивший нам так называемый космический фон, мы можем измерить по тем остаточным фотонам, что освободились от надоедливых электронов и только сейчас достигли нас. Фотоны, находившиеся тогда в видимой части спектра, спустя миллиарды лет путешествия по расширяющейся Вселенной растягивались вместе с ней и переходили в диапазон микроволн. Мы до сих пор можем регистрировать события тех времен по остаточному реликтовому космическому микроволновому излучению. Когда-нибудь физики напишут о реликтовом радиоволновом излучении, которое еще ниже по спектру, но это случится еще очень нескоро. Может, через несколько десятков миллиардов лет, но будут ли в те времена физики?

Звездная кузница

Уже миллиард лет Вселенная расширяется и остывает. Созданное из первичной энергии вещество, а это в основном водород, начинает объединяться в конгломераты, которые мы в итоге назовем галактиками. Во Вселенной галактики – главные действующие персонажи, в масштабах космоса объекты меньшего размера рассматривать не имеет смысла. Водород – главное вещество мироздания. Он самый простой. Есть один протон и один электрон, который вокруг этого протона находится. Причем выглядит атом водорода не так, как мы привыкли видеть в Интернете.

Если спросить человека, как он представляет себе атом, то, скорее всего, он расскажет про ядро и несущиеся по своим орбитам электроны вокруг этого ядра. В реальности все обстоит гораздо интереснее. Электрон является одновременно и частицей, и волной, поэтому он как бы размазан по структуре нашего пространства-времени в виде облака, окружающего атом. И когда атомы взаимодействуют между собой, они соприкасаются электронными облаками, и взаимодействие происходит именно на этом уровне. Когда вы стоите на полу у себя дома, электронные облака атомов ваших стоп или ботинок соприкасаются с электронными облаками атомов пола, но взаимодействия не происходит, поскольку в таком случае вы вросли бы в пол. Получается, когда вы стоите на чем-либо, вы на самом деле на микроуровне левитируете. И никогда вы не касались никакого объекта в нашем обывательском смысле: любое ваше внешнее воздействие будет электростатическим отталкиванием между отрицательно заряженными оболочками атомов вашего тела и электронными облаками вашего окружения, несущими такой же заряд. А проваливаться сквозь пол вам не позволяет одна из фундаментальных сил, появившихся в ранней Вселенной, а именно электромагнетизм. Элементарным переносчиком электромагнитного взаимодействия является фотон, он частица света. Получается, что все вокруг нас пропитано светом, именно свет не позволяет любой структурированной материи развалиться на части и мы отчасти тоже свет. Из знания физических законов можно сделать красивые выводы.

Во Вселенной тем временем появился большой объем газа, который начинает скапливаться из-за собственной массы. Если в нашем мире вы обладаете массой, то обладаете также и гравитацией. Когда вы смотрите на небо в дождливый день, а может, и не очень дождливый, вы видите облака. Облака есть не что иное, как водяной пар, и весить этот пар может сотни тонн. В космосе примерно такая же ситуация: любое скопление газа, если мы его видим в таких больших масштабах, обладает огромной массой, а значит, и гравитацией. В какой-то части облака газа больше, в какой-то меньше, и области с большей концентрацией газа начинают притягивать те, что более разреженны. В итоге газ начинает скапливаться вокруг одной точки, концентрируется, и получается шар. Дальше у этого шара два пути: либо его массы будет недостаточно, чтобы внутри полностью набрал силу процесс, который называется «термоядерный синтез», и тогда в итоге он остается несчастным коричневым карликом. Впрочем, если масштабы еще меньше, это скопление газа вполне может стать газовой планетой по типу Юпитера, например.


Представление о том, что электрон вращается вокруг ядра по орбите словно спутник, не соответствует действительности


Электрон формирует так называемое электронное облако. Он размазан по пространству-времени вокруг ядра атома


Если же массы достаточно, а давление внутри настолько огромное, что атомы водорода начинают активно сливаться друг с другом, образуя атомы гелия, то загорается звезда. Так, кстати, примерно 4,5 млрд лет назад возникло и наше Солнце. Звезда светит не потому, что внутри нее происходит химическая реакция или реакция ядерного распада – там происходит термоядерный синтез. Через множество превращений четыре ядра атомов водорода соединяются друг с другом. В процессе этого взаимодействия происходит превращение части протонов в нейтроны, выделяется много побочных продуктов и энергия, и получается гелий. Потихоньку звезда исчерпывает энергию, запасенную в той массе водорода, из которой она и состоит. Одним из побочных продуктов этого необычного процесса являются неуловимые частички, названные человеком «нейтрино».


Упрощенная схема термоядерного синтеза внутри звезды

Чуть-чуть истории, чтобы понимать, с чем мы имеем дело. Специалисты предположили существование нейтрино еще в 1930 году, когда озаботились проблемой радиоактивного распада. В 1914 году Джеймс Чедвик обнаружил, что во время бета-распада, то есть потери атомом одного электрона, все потерянные электроны имеют разную энергию. А этого быть не должно, если работает закон сохранения энергии, – электроны должны вылетать одинаковой энергии, если только у них кто-то эту энергию не забирает. Для спасения закона сохранения энергии Вольфгангом Паули была предложена новая частица, которая играла бы роль воришки в этом процессе. Так было впервые предсказано существование новой, неизвестной ранее скромной частицы.

«…я предпринял отчаянную попытку спасти “обменную статистику” и закон сохранения энергии. Именно – имеется возможность того, что в ядрах существуют электрически нейтральные частицы, которые я буду называть “нейтронами” и которые обладают спином 1/2… Непрерывный β-спектр тогда стал бы понятным, если предположить, что при β-распаде вместе с электроном испускается еще и “нейтрон” – таким образом, что сумма энергий “нейтрона” и электрона остается постоянной.

Я признаю, что такой выход может показаться на первый взгляд маловероятным… Однако, не рискнув, не выиграешь».

Обращу внимание, в итоге нейтроном назвали другую частицу, которую вскоре открыли. Нейтроны образуют вместе с протонами ядра атомов. Предсказанная же Паули частица в работах 1933–1934 годов итальянца Энрико Ферми на итальянский манер была названа «нейтрино», то есть «нейтрончик».

Осталось только найти эти частицы. Каждую секунду через участок на Земле площадью в 1 см2 проходит около 60 млрд нейтрино, однако обнаружить их невероятно сложно, поскольку они практически не взаимодействуют с веществом. Чтобы их все-таки поймать, начали строить громадные сооружения. Исследовательская станция IceCube, построенная совсем близко к Южному полюсу, пытается уловить нейтрино, летящие к Земле от Солнца. Все такие станции строят глубоко под землей или подо льдом, чтобы не мешали помехи от космических лучей. Нейтрино этих глубин достигают без труда, и более того, они чаще всего проходят сквозь планету, не задев ни единого атома.

Масштабы проектов по поиску нейтрино поражают. Глубина нейтринной обсерватории «Ледяной куб» почти 3 км. Пять с лишним тысяч датчиков погружены в многовековой лед, где на глубине из-за высокого давления вытесняются все, даже мельчайшие пузырьки воздуха, и лед становится кристально чистым. Когда нейтрино от Солнца с малой вероятностью все-таки сталкивается с каким-то атомом в толще льда, то датчики улавливают крохотную вспышку света, которая сопровождает этот процесс. Зачастую таких вспышек может быть лишь несколько в год.

Похожие сооружения помещают в глубокие шахты – такова, например, лаборатория SNOLAB, которая располагается на глубине 2 км в никелевом руднике. Туда исследователи спускаются вместе с шахтерами, только последние выходят из лифта раньше, а ученые спускаются еще глубже. Потом идут 1,5 км по грязному туннелю, чтобы попасть в научный комплекс (очень напоминает фильм «Обитель зла»). Затем после такого путешествия они входят в стерильную зону, где предварительно принимают душ, переодеваются, и с них сдувают все лишние частицы вплоть до последней пылинки. Как пример таких сооружений можно упомянуть нейтринный детектор Super-Kamiokande в Японии, где на глубине одного километра в цинковой шахте регистрируют нейтрино после взрывов далеких сверхновых. Каждую секунду через ваше тело проносится несчетное множество крохотных частиц, образовавшихся во время взрыва звезд. Вы их не чувствуете, они и через ваше тело пройдут, не столкнувшись ни с единым атомом. Но все же они есть. Как говорится, «Видишь суслика? И я не вижу. А он есть».

Вернемся в нашу Вселенную. Скопления звезд в космосе образуют галактики, у которых тоже насыщенная жизнь. Они бывают разных форм и размеров, и, по приблизительным подсчетам, в наблюдаемой Вселенной порядка 2 трлн галактик (цифры разнятся от 100 млрд до 2 трлн галактик), в каждой в среднем по 100 млрд звезд. Маленькие галактики вертятся вокруг больших в ожидании, пока бо́льший собрат их сожрет. Наша галактика называется Млечный Путь, поскольку, с нашей точки зрения, она похожа на разлитое по небосводу молоко. Она тоже участвовала когда-то в акте каннибализма – поглотила маленького соседа, остатки которого до сих пор видны в виде потока звезд в районе созвездия Стрельца. Стоит заметить, на этом приключения нашей галактики только начинаются. Она и всем известная галактика Андромеды сближаются друг с другом на 100–140 км каждую секунду. Соответственно, столкновение двух галактических систем произойдет приблизительно через 3–4 млрд лет. Когда это случится, скорее всего, будет образована одна большая галактика. Не исключено, что наша Солнечная система при этом окажется выброшенной в межгалактическое пространство мощными гравитационными возмущениями. Однако разрушения Солнца и планет, вероятнее всего, при этом процессе не произойдет. Интересно, будет ли на тот момент в нашей галактике разумная жизнь, которая проследит за этим процессом? Или, может, такая жизнь окажется в галактике Андромеды, кто знает.

Поскольку галактики являются главными действующими персонажами в космосе, физики решили подсчитать суммарную гравитацию, которую они создают. И оказалось, что подсчитанная гравитация не может быть объяснена наблюдаемой видимой материей галактик. Это заметно по движению звезд-одиночек, находящихся на отшибе своих галактик или во внегалактическом пространстве. Что-то их тянет, что-то обеспечивает высокую скорость их движения. Согласно наиболее распространенной на сегодня концепции, 85 % всей гравитации Вселенной обеспечивает не видимая материя, а темное вещество, субстанция, никак не участвующая в электромагнитном взаимодействии. Все, что мы знаем, все, что мы видим, – это огромное число галактик и звезд внутри них вносят вклад в наблюдаемую гравитацию лишь на 15 %. Огромный космический океан по большей части состоит из чего-то, что для нас выглядит как ничто, но при этом обладает гравитацией. Тут возникает множество фантастических теорий. Что это за темное вещество? Может быть, это и не вещество вовсе, а некоторое давление сил из параллельных измерений? Впрочем, может оказаться, что все намного прозаичнее, тем более что обнаружены галактики без темной материи, но вдумайтесь: мы дошли до того, что физики всерьез обсуждают вероятность существования параллельных реальностей. Причем законы физики это позволяют! На мой личный взгляд, это фантастика.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Примечания

1

Здесь и далее я буду говорить именно о наблюдаемой Вселенной. Кто знает, что находится за наблюдаемыми нами пределами. Чтобы не повторяться, далее опускаю слово «наблюдаемая», но о нем всегда стоит помнить.

2

Кстати, кварки и лептоны называются вместе фермионами и выполняют роль кирпичиков, из которых состоит все, что мы наблюдаем.

Вы ознакомились с фрагментом книги.

Для бесплатного чтения открыта только часть текста.

Приобретайте полный текст книги у нашего партнера:


Полная версия книги

Всего 10 форматов

bannerbanner