banner banner banner
Законы и закономерности развития систем. Книга 4
Законы и закономерности развития систем. Книга 4
Оценить:
Рейтинг: 0

Полная версия:

Законы и закономерности развития систем. Книга 4

скачать книгу бесплатно

Законы и закономерности развития систем. Книга 4
Владимир Петров

Это четвертая книга из монографии «Законы и закономерности развития систем». Практически – это вторая часть книги 3. Книга включает закономерность изменения степени управляемости и динамичности, а также прогнозирование развития систем.Монография предназначена для широкого круга читателей, интересующихся инновациями. Она может быть полезна инженерам, руководителям предприятий и бизнесменам.

Законы и закономерности развития систем

Книга 4

Владимир Петров

© Владимир Петров, 2022

ISBN 978-5-0051-6373-8 (т. 4)

ISBN 978-5-0051-5728-7

Создано в интеллектуальной издательской системе Ridero

Петров В.

Законы и закономерности развития систем. ТРИЗ. Книга 4. Законы эволюции систем.Часть 2. Закономерность изменения степени управляемости и динамичности. Прогнозирование. Тель-Авив, 2020.

Впервые монография была издана в 2013 году[1 - Vladimir Petrov. The Laws of System Evolution. Berlin: TriS Europe GmbH, 646 pages, published in Russian. INNOVATOR (06) 01/2013, ISSN 1866—4180. Петров В. Законы развития систем. Монография. Тель-Авив, 2013 – 646 с.]. Позже была издана книга «Законы развития систем»[2 - Петров Владимир. Законы развития систем: ТРИЗ. Изд. 2-е, испр. и дополненное / Владимир Петров. [б. м.]: Издательские решения, 2019. – 926 с. – ISBN 978-5-4490-9985-3.]. Данное издание переработанное и дополненное.

Это четвертая книга из монографии законы и закономерности развития систем. Практически – это вторая часть книги 3. Книга включает закономерность изменения степени управляемости и динамичности, а также прогнозирование развития систем.

Монография содержит 4 книги. Это единственное самое полное изложение законов и закономерностей развития систем. С такой подробностью законы и закономерности развития систем еще не были изложены ни в одной книге. Монография также содержит методику прогнозирования – это основа эффективной методики получения перспективных идей, прогноза развития систем и обхода конкурирующих патентов, которая имеет ощутимые преимущества перед существующими подходами.

Монография предназначена для широкого круга читателей, интересующихся или занимающихся инновациями. В первую очередь она предназначена научным работникам, инженерам и изобретателям, решающим творческие задачи. Она может быть полезна преподавателям университетов, аспирантам и студентам, изучающим теорию решения изобретательских задач (ТРИЗ), инженерное творчество, системный подход и инновационный процесс, а также руководителям предприятий и бизнесменам.

Особый интерес книга может представлять для патентных поверенных.

Глава 22. Закономерность изменения степени управляемости и динамичности

…динамизация – универсальный закон, определяющий направление развития всех технических систем, даже таких, которые по самой своей природе, казалось бы, должны оставаться жесткими.

    Г. С. Альтшуллер[3 - Альтшуллер Г. С. Найти идею. Введение в теорию решения изобретательских задач. – Новосибирск: Наука, 1986, С. 59.]

22.1. Общие понятия

Закономерность изменения степени управляемости и динамичности является основной из закономерностей эволюции систем (рис. 22.1

Рис. 22.1. Структура закономерностей эволюции систем

Эта закономерность содержит две тенденции: увеличения и уменьшения управляемости и динамичности (рис. 22.2).

Основная из этих тенденций – это увеличение управляемости и динамичности. Вторая тенденция – вспомогательная. Особенности их применения будут изложены ниже.

Рис. 22.2. Закономерность изменения степени управляемости и динамичности систем

Эта закономерность имеет подзакономерности – закономерность изменения степени вепольности и закономерность изменения управляемости веществом, энергией и информацией (рис. 22.3).

Рис. 22.3. Закономерность изменения управляемости и динамичности

Как уже говорилось, эта закономерность содержит две тенденции: увеличения и уменьшения управляемости и динамичности.

Основная из этих тенденций – это увеличение управляемости и динамичности. Вторая тенденция – вспомогательная. Особенности их применения будут изложены ниже.

Увеличение управляемости и динамичности – две взаимосвязанные тенденции, позволяющие увеличить степень идеальности системы.

• Более идеальная система должна быть более управляемой и более динамичной.

• Более управляемая система должна быть более динамичной.

• Динамичная система может приспосабливаться к внешним и внутренним изменениям, меняя свои параметры, структуру и функции:

– в пространстве;

– во времени;

– по условию.

Закономерность увеличения степени управляемости и динамичности заключается в том, что любая система в своем развитии стремится стать более управляемой и боле динамичной, т. е. система должна повышать свою степень управляемости и динамичности.

22.2. Закономерность увеличения степени управляемости

22.2.1. Общая тенденция

Развитие системы идет в направлении увеличения степени управляемости.

Система может быть управляемой тогда и только тогда, когда она содержит в себе элементы способные воспринимать управляющие сигналы, преобразовывать их в управляющие воздействия и адекватно воспринимать информацию о внутренних изменениях в системе и внешних воздействиях на нее. Это свойство часто называют отзывчивостью.

Общая тенденция увеличения степени управляемости (рис. 22.4) – переход:

– от неуправляемой к управляемой системе;

– неавтоматического (ручного) управления к автоматическому;

– проводного управления к беспроводному;

– непосредственного управления к дистанционному;

– от центрального управления к распределенному и самоорганизующемуся управлению (сетевому управлению).

Рис. 22.4. Общая тенденция увеличения степени управляемости

22.2.2. Неуправляемая система

Пример 22.1. Зонт

Считается, что первые зонты появились более 1 тыс. лет до нашей эры в Китае, Индии или Египте. Они защищали от солнца. Их использовали только фараоны, императоры или знать. Первые модели были сделаны из перьев или листьев лотоса, прикрепленных к палке. Далее раму делали из тростника или сандалового дерева и покрывали кожей, тканями или шелком. Более простые зонты делали из плотной бумаги. Такие зонты были 1,5 метра высотой и весили 2 кг. Они не складывались, т. е. были неуправляемые. Первые зонты имели один недостаток – они не были складными, т. е. имели только одно устойчивое состояние – открытое. Соответственно, это была неуправляемая система – независимо от наличия дождя или прямых солнечных лучей зонтик сохранял свои внушительные размеры.

Далее зонты слали складываться, но имели длинную ручку – это переход к управляемым зонтам. Далее степень управляемости зонтом увеличивалась.

Зонты стали использоваться и для защиты от дождя. Появился зонт-трость.

В 1928 году Ханс Хаупт изобрел карманный зонт.

В 1969 году БрэдФиллипс (Bradford E Phillips) владелец компании Totes Incorporated из Лавленда, штат Огайо, получил патент на свой «рабочий складной зонт».

Это был следующий шаг в увеличении управляемости зонтом – он автоматически раскладывался.

Рис. 22.5. Увеличение степени управляемости зонтом – переход от неуправляемого к управляемому зонту.

Пример 22.2. Фотоаппарат

Первые фотоаппараты имели ручное управление. С появлением электроники некоторые операции были автоматизированы. Полный переход к автоматизированному управлению произошел с появлением цифровых камер. Сегодня цифровая камера имеется в любом смартфоне или планшете.

Это пример перехода от неавтоматического к автоматическому управлению.

Рис. 22.6. Увеличение степени управляемости фотоаппаратом – переход от неавтоматического к автоматическому управляемому фотоаппаратом

Пример 22.3. Телевизор

Сначала телевизором управляли с помощью ручек, которые находились непосредственно на телевизоре.

На следующем этапе сделали выносной пульт управления, соединенный кабелем с телевизором.

Далее стали использовать беспроводной пульт управления.

Это пример перехода от проводного к беспроводному управлению.

Управление телевизором с помощью ручек или кнопок к управлению с помощью пульта – это переход от непосредственного к дистанционному вправлению.

Пример 22.4. Распределенное управление

В природе имеется много примеров распределенного, самоорганизующегося управления.

Стаи птиц перемещаются в воздухе образую очень красивые фигуры (рис. 22.7). Подобную картину можно наблюдать у косяков рыб (рис. 22.8). Тысячи птиц или рыб движутся и никогда не сталкиваются друг с другом.

Рис. 22.7. Стаи птиц

Рис.22.8 Косяки рыб

Это же наблюдается со стадами животных (рис. 22.9).

Рис. 22.9. Стадо животных

Толка людей тоже подчиняется этой закономерности.

Это примеры сетевого управления.

В технических системах в основном использовалось центральное управление.

Пример 22.5. Сетевое управление

На автомобильной выставке в Токио в 2003 году была показана концепция автомобиля Toyota Personal Mobility – Toyota PM (рис. 22.10).

Предусматривалось, что к 2010 году будут иметь сетевое управление (рис. 22.11). Однако к этому времени стали развиваться более прогрессивные технологии. Теперь имеются проекты сетевого управления транспортом с помощью 5 G технологии (рис. 22.12).

Рис. 22.11. Сетевое управление автомобилями Toyota PM

Рис. 22. 12. Управление транспортом с помощью 5 G технологии

Уже создано сетевое управление мини-спутниками (рис. 22.13).

Рис. 22.13. Сетевое управление мини-спутниками

Это были примеры перехода от центрального к распределенному, самоорганизующееся управления – сетевому управлению.

Закономерность увеличения степени управляемости также называют закономерностью вытеснения человека из системы, так как увеличение управляемости системы уменьшает степень участия человека в работе системы.

Раньше мы рассматривали следствия этой закономерности при рассмотрении степеней идеализации:

· система появляется в нужный момент в нужном месте, по необходимому условию;

· система все делает сама – самоисполнение (рис. 22.14):

– механизация;

– автоматизация;

– кибернетизация (интеллектуализация).

Рис. 22.14.Уменьшение участия человека в работе системы

Тенденцию самоисполнения еще называют уменьшение участия человека в работе системы.

Сначала человека заменяют на уровне рабочего органа, затем на уровне источника и преобразователя вещества, энергии и информации, далее на уровне связей и наконец, на уровне системы управления, к которым относятся автоматизация и кибернетизация (рис. 22.15).

Рис. 22.15. Вытеснение человека из системы

Пример 22.6. Обработка земли

Сначала первобытный человек копал землю ногтями, затем взял заостренный камень – это замена человека в виде рабочего органа. Ногти заменили камнем.

В дальнейшем камень привязали к палке. Замена на уровне связей (трансмиссии). Инструмент копания усовершенствовался.

Далее человек стал использовать животных как источник и преобразователь энергии. Источник и преобразователь энергии совершенствовался – стали использовать трактор. Управление трактором выполнял человек.