banner banner banner
Cerebro Y Pandemia: Una Perspectiva Actual
Cerebro Y Pandemia: Una Perspectiva Actual
Оценить:
Рейтинг: 0

Полная версия:

Cerebro Y Pandemia: Una Perspectiva Actual

скачать книгу бесплатно

Cerebro Y Pandemia: Una Perspectiva Actual
Juan Moisés De La Serna Tuya

Marcos Altable Pérez

Si bien la preocupación principal relacionada con el COVID-19 ha sido sobre sus consecuencias especialmente en cuanto a los problemas respiratorios se refiere, los avances en el conocimiento de esta enfermedad ha permitido comprender cómo sus efectos se extienden más allá de los pulmones pudiendo llegar a afectar el sistema nervioso. Si bien la preocupación principal relacionada con el COVID-19 ha sido sobre sus consecuencias especialmente en cuanto a los problemas respiratorios se refiere, los avances en el conocimiento de esta enfermedad ha permitido comprender cómo sus efectos se extienden más allá de los pulmones pudiendo llegar a afectar el sistema nervioso. En este texto se aborda desde una doble perspectiva las implicaciones en el cerebro del COVID-19, la primera desde la neurología donde se contempla sobre las implicaciones neuronales de la enfermedad presentada por el Dr. Marcos Altable Pérez, Neurólogo y fundador de Neuroceuta en Ceuta, y la segunda desde la neuropsicología donde se atiende a diversos procesos cognitivos que se han visto implicados en esta pandemia. Igualmente el texto cuenta con el excepcional testimonio de la Dra. Mª Esther Gómez Rubio, Psicóloga Clínica y Neuropsicóloga, Facultativo Especialista de Área del Hospital Nacional de Parapléjicos (SESCAM) quien nos narra su experiencia en los momentos más complicados de la pandemia.

Juan Moisés de la Serna

Cerebro y Pandemia: una Perspectiva Actual

Cerebro

y

Pandemia

una Perspectiva Actual

Juan Moisés de la Serna Tuya

Marcos Altable Pérez

Mª Esther Gómez Rubio

Editorial Tektime

2020

“Cerebro y Pandemia: una Perspectiva Actual”

Escrito por Juan Moisés de la Serna Tuya, Marcos Altable Pérez y Mª Esther Gómez Rubio

1ª edición: mayo 2020

© Juan Moisés de la Serna, 2020

© Ediciones Tektime, 2020

Todos los derechos reservados

Distribuido por Tektime

https://www.traduzionelibri.it

Para referenciar:

De la Serna Tuya, J.M.; Altable Pérez, M. y Gómez Rubio, M.E. (2020). El Cerebro en Tiempos de Pandemia. Montefranco, Italia. Editorial Tektime.

Declaración:

Los autores están conformes con los contenidos incluidos en el manuscrito, manifestando que no existen conflictos de intereses

Aviso Legal

No se permite la reproducción total o parcial de este libro, ni su incorporación a un sistema informático, ni su transmisión en cualquier forma o por cualquier medio, sea éste electrónico, mecánico, por fotocopia, por grabación u otros medios, sin el permiso previo y por escrito del editor. La infracción de los derechos mencionados puede ser constitutiva de delito contra la propiedad intelectual (Art. 270 y siguientes del Código Penal).

Diríjase a CEDRO (Centro Español de Derechos Reprográficos) si necesita fotocopiar o escanear algún fragmento de esta obra. Puede contactar con CEDRO a través de la web www.conlicencia.com o por el teléfono en el 91 702 19 70 / 93 272 04 47.

Prólogo

Si bien la preocupación principal relacionada con el COVID-19 ha sido sobre sus consecuencias especialmente en cuanto a los problemas respiratorios se refiere, los avances en el conocimiento de esta enfermedad ha permitido comprender cómo sus efectos se extienden más allá de los pulmones pudiendo llegar a afectar el sistema nervioso.

En este texto se aborda desde una doble perspectiva las implicaciones en el cerebro del COVID-19, la primera desde la neurología donde se contempla sobre las implicaciones neuronales de la enfermedad presentada por el Dr. Marcos Altable Pérez, Neurólogo y fundador de Neuroceuta en Ceuta, y la segunda desde la neuropsicología donde se atiende a diversos procesos cognitivos que se han visto implicados en esta pandemia.

Igualmente el texto cuenta con el excepcional testimonio de la Dra. Mª Esther Gómez Rubio, Psicóloga Clínica y Neuropsicóloga, Facultativo Especialista de Área del Hospital Nacional de Parapléjicos (SESCAM) quien nos narra su experiencia en los momentos más complicados de la pandemia.

Sobre los autores:

Dr. Marcos Altable Pérez, licenciado en Medicina, especialista en Neurología, Máster en Neurología Pediátrica y Neurodesarrollo, y Máster en Neuropsicología. Con múltiples publicaciones en diversos espacios (revistas científicas y congresos nacionales e internacionales, periódicos, páginas web, capítulos de libros, etc.) compaginando el ejercicio clínico en Ceuta, con el continuo estudio y actualización en la Neurología, Neuropediatría y Neuropsicología.

Dr. Juan Moisés de la Serna, Doctor en Psicología, Máster en Neurociencias y Biología del Comportamiento, y Especialista en Hipnosis Clínica, director de postgrados en TECH Universidad Tecnológica y en Universidad Europea Miguel de Cervantes; docente postgrado y director de TFM en la Universidad Internacional de la Rioja y en la Universidad Internacional de Valencia.

Dra. Mª Esther Gómez Rubio, Psicóloga Especialista en Psicología Clínica, Licenciada en Filosofía y Ciencias de la Educación (sección Filosofía), Máster en Neuropsicología Cognitiva, Máster en Psicopatología y Salud, Máster en Modificación de Conducta, Facultativo Especialista de Área del Hospital Nacional de Parapléjicos (SESCAM). Licenciada en Filosofía en UCM, Psicóloga especialista en Psicología Clínica UNED, PIR Hospital de la Princesa (Madrid), Máster Psicopatología y Salud UNED, Máster Modificación de Conducta UNED, Máster Neuropsicología Cognitiva UCM y FEA SESCAM, personal adjunto del Hospital Nacional de Parapléjicos.

https://youtu.be/CDDDsNGV0Eg (https://youtu.be/CDDDsNGV0Eg)

Capítulo 1. Introducción al estudio del Cerebro

La investigación sobre el cerebro ha sido una constante en la ciencia, existiendo vestigios al respecto ya desde tiempo de los egipcios, los cuales dejaron evidencias de las trepanaciones en el cráneo, que realizaban para “liberar” al paciente de sus problemas, práctica que se mantuvo hasta el desarrollo de la medicina como ciencia (Collado-Vázquez & Carrillo, 2014).

Los primeros estudios anatómico-descriptivos de los cerebros postmortem permitieron diferenciar lóbulos, surcos y cisuras cerebrales a nivel de corteza y la identificación de las estructuras subcorticales, las cuales eran visibles a pesar del reducido tamaño de algunas.

El desarrollo del microscopio permitió la aparición de la histología, conocida también como anatomía microscópica, donde con el tiempo se empiezan a observar las células del cerebro, para con posterioridad ir clasificándolas y estableciendo las regiones donde se encuentran más frecuentemente, y gracias a las tinciones y contrastes como, por ejemplo, con cloruro de oro o cromato de plata, se ha podido delimitar la estructura de las capas y dentro de ellas las formas de las neuronas.

Actualmente los microscopios electrónicos, que tienen una resolución cinco mil veces mayores que los microscopios ópticos, ha permitido observar a las mitocondrias, el aparato de Golgi y otras estructuras internas de las neuronas, así como de las proteínas (@rafaelsolana2, 2020) (ver Ilustración 1 (#x8_x_8_i8)).

Ilustración 1 Tweet Neurona al Miscroscopio Electrónico

Hay que aclarar que hablar de las neurociencias y del cerebro es hoy en día bastante habitual, pero no siempre ha sido así, debido a que es un campo del conocimiento que ha surgido relativamente hace poco; aunque en sentido estricto no es posible decir que exista una neurociencia como tal, sino que es un conjunto de aportaciones de muchas ramas del saber que alimentan y conforman el cuerpo de las neurociencias; así si se tiene en cuenta su objeto de estudio, el sistema nervioso y su actividad, se podrá entender que éste abarca, tanto la anatomía, la bioquímica, pero también la genética, y hasta la psicología.

Si bien inicialmente pudo surgir como una especialización de la medicina, de los análisis anatomofisiológicos del sistema nervioso hoy en día sería imposible separarlo de todas las aportaciones que ha ido recibiendo de otras áreas del saber.

Igualmente, las neurociencias no sólo van a servir para explicar cómo funciona el sistema nervioso, y su órgano más importante, el cerebro, sino que se va a ocupar de múltiples subáreas, como el neuromarketing, la neuroeconomía (Terán & López-Pascual, 2019), la neurofarmacología, la neuropsicología, la neuroanatomía o la neurolingüística entre otros.

La importancia de este campo de estudio radica en que gracias a ello se puede conocer mucho mejor cómo se funciona como persona y como sociedad, así como a la hora de afrontar trastornos del desarrollo tan importantes como el Trastorno del Espectro Autista o enfermedades neurodegenerativas como la enfermedad de Alzheimer.

Un campo de conocimiento en el que participan investigadores de todos los países del mundo, que día a día va ofreciendo nueva información, que no hace sino abrir nuevas interrogantes, en la búsqueda de entender el órgano más complejo del cuerpo humano, el cerebro.

Por ejemplo, en el estudio para la comprensión sobre la temática del desarrollo de los superdotados o de las personas con altas capacidades, esta parece estar un poco alejada del interés de la sociedad, más sensibilizada con otras problemáticas, entendiendo que los “más inteligentes” van a poder “sobrevivir” y “salir adelante” por sí mismos, centrando las políticas con respecto a las necesidades especiales con los que “realmente” lo necesitan” para que puedan alcanzar el mismo nivel que el resto, y mejorar en la medida de lo posible.

En cambio hay sociedades que se preocupan por este colectivo, estableciéndose políticas orientadas a la detección temprana y formación específica para potenciar sus capacidades como una forma de invertir en su propio futuro por parte de la sociedad, sabiendo que estas personas van a ser las que el día de mañana van a conseguir solucionar los problemas que vayan surgiendo aportando nuevos avances y descubrimientos.

Dos concepciones basadas en distintas aproximaciones a la inteligencia, la primera daría cuenta de una más biológica, en donde se asume que dada una dotación genética, la persona va a tenerla toda su vida, y esto le va a “facilitar” su desarrollo.

En cambio, la segunda, sin rechazar la dotación genética concibe que se ha de trabajar mediante el esfuerzo y la práctica para poder conseguir desarrollar al máximo sus capacidades, lo que permitirá a la persona ser un “gran” médico, músico o científico, pero ¿tienen los superdotados cerebros diferentes?

Esto es lo que se ha tratado de averiguar con un estudio llevado a cabo con la participación del Instituto de Investigación Biomédica August Pi i Sunyer (IDIBAPS); la Escuela Oms y Prat, Fundació Catalunya; la Fundación Oms; el Centro de Diagnóstico por Imagen del Hospital Clinic; el Grupo de Procesamiento de Datos y Señales; y el Grupo de Investigación en Cuidado Digital de la Universidad de Vic; junto con el Instituto de Neurociencias y el Departamento de Psicología Clínica y Psicobiología de la Universidad de Barcelona (España) y la Unidad de Mapeo Cerebral del Departamento de Psiquiatría de la Universidad de Cambridge (Inglaterra) (Solé-Casals et al., 2019).

En el estudio participaron 29 niños con una media de 12 años, 15 superdotados con C.I. mayor de 145 con percentiles por encima de 90% en actitud memorística, espacial, numérica, razonamiento abstracto y verbal; y el resto que actuaría como grupo control con C.I. hasta 126, evaluado mediante el Wechsler Intelligence Scale for Children (Wechsler, 2012).

A todos ellos se les hizo pasar por una resonancia magnética en estado de reposo para comparar las características cerebrales de ambos grupos.

Los resultados muestran diferencias anatómicas entre ambos grupos igualados por edad, que en el caso de los superdotados contienen estructuras con una interconexión global e integrada, es decir, se produce una concentración topológica a nivel neuronal que incrementa su eficacia frente al grupo control que tiene una distribución más amplia y difusa.

De esta forma los cerebros de los superdotados no sólo realizan procesamientos más eficientes en áreas específicas, sino que también la comunicación entre dichas áreas y la integración de la información es más rápida y eficiente, permitiendo por ejemplo tener una mayor capacidad en la memoria de trabajo, la cual requiere de la participación de diversas regiones para poder seguir y completar una tarea dada.

Entre las limitaciones del estudio comentar el que únicamente se hubiesen incluido a niños dejando fuera el análisis del cerebro de las niñas e igualmente que se analizase sólo el cerebro de los diestros, siendo la representación de diestro entre los superdotados mucho menor que en la población general.

A pesar de lo anterior el estudio permite comprender cómo los menores superdotados van a tener una mayor capacidad cerebral de procesamiento de la información, lo que no necesariamente se relaciona con unos mejores resultados académicos.

Aunque los autores no comentan sobre el “origen” de estas diferencias, al no entrar a valorar el papel de la genética o del ambiente, es evidente que queda en manos del sistema educativo poder proporcionar la estimulación necesaria para poder desarrollar la potencialidad neuronal del menor.

El Desarrollo Cerebral

El desarrollo cerebral viene genéticamente determinado, de forma que las estructuras neuronales se “repiten” de humano a humano, lo que permite una identificación morfológica, aunque ello no implica que los cerebros sean iguales, pero sí la distribución en lóbulos, áreas y regiones, y también los surcos, tractos o ventrículos neuronales.

De hecho, los primeros estudios anatómicos del cerebro, realizados postmorten, se fijaban precisamente en las semejanzas y diferencias de los cerebros de personas que habían sufrido alguna patología, para compararlo con los cerebros sanos, y de esta forma intentar comprender las implicaciones neuronales de dicha patología (Haines, Faaa, & Mihailoff, 2019).

Así uno de los casos más reconocidos en la historia es el de Phineas Gage, quien sufrió un accidente laboral en la mina, donde le atravesó el cráneo una barra con la que trabajaba, a partir de entonces, su comportamiento cambió siendo errático, imprevisible e incluso temerario.

El estudio post-morten permitió conocer las áreas afectadas, en concreto el lóbulo frontal izquierdo, lo que permitió establecer las primeras hipótesis sobre el papel del lóbulo frontal en el control de los impulsos, el juicio, así como sobre su participación en tareas de planificación, coordinación, ejecución y supervisión de conductas (Echavarría, 2017).

Actualmente el avance de las técnicas permiten observar el cerebro trabajando en vivo ante determinadas funciones, lo que ha posibilitado conocer no sólo las áreas cerebrales implicadas, sino también las vías de comunicación entre áreas corticales y subcorticales de determinados procesos, ya sean de tipo más fisiológicos o cognitivos, lo que aplicado al ámbito de la medicina, permite comparar el cerebro de los pacientes, con el “normal” y así determinar en qué punto del mismo se encuentra el “problema” en cada caso, especialmente importante a la hora de la intervención quirúrgica, cuando el resto de los tratamientos no tienen la eficacia esperada para la resolución del “problema”. Las diferencias morfológicas o de densidad dan pistas a los neurólogos sobre las patologías que puede estar sufriendo un determinado paciente, así en el caso de la enfermedad de Alzheimer la microscopía ha permitido comprobar la presencia de placas seniles y ovillos neurofibrilares, igualmente desde la anatomía macroscópica es característico en esta enfermedad la pérdida de densidad de las estructuras neuronales y el agrandamiento de los ventrículo (@evafersua, 2009) (ver Ilustración 2 (#x8_x_8_i82)).

Ilustración 2 Tweet Cerebro con Alzheimer

Si bien hasta este momento se ha planteado el estudio del cerebro como si fuese este estático e invariable en el tiempo, esta idea se aleja mucho de la realidad, de hecho en el desarrollo del cerebro se pueden distinguir dos etapas claramente establecidas, antes y después de nacer, así y a diferencia de lo que sucede en otras especies, el cerebro humano está todavía sin terminar de formar en el momento del nacimiento, lo que conlleva que sea menos independiente, y que requiera de cuidados y protección durante más tiempo.

El desarrollo neuronal ya puede ser observable desde las cuatro semanas de gestación, a partir de ahí empieza un proceso acelerado de formación de nuevas células, migración de estas, diferenciación y especialización, para con posterioridad establecer las interconexiones axónicas entre ellas (Portellano, 2000).

El sistema nervioso se desarrolla a partir del tubo neuronal donde sobre la cuarta semana de gestación, se divide en tres vesículas del encéfalo, el romboencéfalo, el mesencéfalo y el prosencéfalo.

A las cinco semanas de gestación ya se conforman las cinco vesículas de donde se desarrollarán el encéfalo, dividiéndose el romboencéfalo en metencéfalo (protuberancia y cerebelo) y mielencéfalo (médula oblonga o bulbo); el mesencéfalo dará lugar al pedúnculo cerebral y a cuatro colículos, dos superiores relacionados con la visión y dos inferiores con la audición; el prosencéfalo se dividirá en dos, el diencéfalo (tálamo, hipotálamo, subtálamo, epitálamo y tercer ventrículo) y el telencéfalo (hemisferios cerebrales).

Con tres meses de gestación, el sistema nervioso ya está lo suficientemente formado para expresar los primeros reflejos básicos, como mover las articulaciones.

A los cuatro meses, ya están formados los ojos y oídos, pudiendo reaccionar el bebé a la luces y sonidos externos.

Con cinco meses, ya empiezan los primeros movimientos controlados.

A los seis meses se produce una deceleración de la formación de nuevas neuronas y en cambio se incrementa- el proceso de interconexión entre ellas, formándose los primeros aprendizajes simples, por ejemplo, el de habituación, donde se deja de atender a los estímulos repetitivos.

A pesar de que el cerebro no termina de desarrollarse dentro del vientre materno, se ha comprobado cómo el bebé es capaz de captar diferencias estimulares, tanto visuales como auditivas, y a través de estas se le puede “enseñar”.

Pero hay que entender lo limitado del proceso, debido a que los circuitos neuronales no están consolidados, a pesar de lo cual, se han observado cambios en la actividad eléctrica cerebral en neonatos, ante determinados estímulos presentados mientras se estaba en el vientre materno, al comparar bebés expuestos, frente a no expuestos a cierta estimulación, mostrando así el aprendizaje.

Tal y como se afirma desde la Universidad de Helsinki (Finlandia) (Partanen et al., 2013), quienes estudiaron a 33 mujeres embarazadas, a la mitad de las cuales las hicieron oír repetidamente durante el día una pseudopalabra, es decir, una palabra inventada que no existe en su idioma, mientras que la otra mitad no escuchó nada nuevo.

Después del nacimiento al bebé se le evaluó empleando el registro mediante electroencefalograma, que evalúa la actividad eléctrica del cerebro, encontrando que los bebés del primer grupo eran capaces de reconocer las pseudopalabras, lo que indicaría cierta capacidad de aprendizaje y memoria, con lo que a partir de este estudio se afirma de la importancia de la estimulación temprana en el desarrollo cognitivo, incluso antes del nacimiento, durante la gestación.

Tras el nacimiento y gracias a la estimulación ambiental, se produce un gran incremento de las conexiones sinápticas entre las neuronas, llegando su máxima expresión sobre los 6 meses.

Con un año de vida, el bebé tiene casi el doble de las conexiones que las de un adulto, conectando estructuras y áreas casi sin ningún tipo de orden, las cuales van a ir perdiéndose por su falta de práctica, gracias al fenómeno de la apoptosis o muerte neuronal programada, de forma que aquellas neuronas que no tengan unas conexiones fuertes van a tender a desaparecer, manteniendo sólo aquellas que son “útiles” basadas en la experiencia y el aprendizaje, produciéndose un adelgazamiento cortical. Mecanismo de apoptosis que no es exclusivo de las neuronas (@CienciaDelCope, 2020) (ver Ilustración 3 (#x9_id_Toc41351129)).

Ilustración 3 Tweet Apoptosis por COVID-19

Técnicas de estudio

Con respecto a la clasificación de las técnicas de análisis del cerebro para llegar a su comprensión se pueden distinguir entre las técnicas invasivas y no invasivas, siendo las primeras aquellas que requieren de una intervención directa a nivel cerebral, algo que con anterioridad era una práctica “habitual”, pero que cada día más se va dejando de usar debido al desarrollo de las técnicas no invasivas, destacando entre las primeras:

– Cirugía estereotáxica, basado en el mapeo de estructuras cerebrales

– Electrocorticograma consistente en la introducción de electrodos bajo el cuero cabelludo, para una localización más fina de la actividad eléctrica neuronal

– Métodos lesivos, donde se lesiona parcial o totalmente una estructura o área con la que estudiar su influencia en el comportamiento del individuo.

– Estimulación eléctrica, donde se transfieren impulsos débiles que aumentan las señales de las neuronas próximas al electrodo, mostrándose patrones comportamentales o puestos al de las lesiones.

– Intervención farmacológica, donde se administran fármacos para comprobar los efectos en el cerebro y en la conducta. Estos pueden provocar lesiones químicas selectivas, mediante el uso de neurotoxinas, o afectar a funciones específicas, mediante la intervención en neurotransmisores o receptores específicos.

– Intervención genética, donde se trata de eliminar o sustituir genes para observar los efectos que provoca a nivel neuronal y comportamental.

Las técnicas no invasivas por su parte son aquellas que permiten realizar inferencias mediante evaluaciones, sin necesidad de intervenir directamente en el cerebro de la persona.

– Tomografía axial computarizada o escáner cerebral, permite mediante rayos X extraer imágenes tridimensionales del cerebro en secciones horizontales

– Resonancia magnética, proporciona imágenes de alta resolución a partir de los átomos de hidrógeno activados por radiofrecuencia.

– Resonancia magnética ponderada por difusión, a través de la cual se permite determinar la tractografía a nivel cerebral, pudiéndose obtener índices como la anisotropia factorial y la difusividad media.

– Resonancia magnética funcional, donde se observa el cambio de flujo del oxígeno en sangre en las zonas activas del cerebro

– Tomografía por emisión de positrones, donde se observa la actividad cerebral mediante un reactivo que se administra vía intravenosa.

– Electroencefalografía, que evalúa la actividad eléctrica del cerebro a nivel del cuero cabelludo empleando para ello electrodos.

– Magnetoencefalografía, que evalúa los campos magnéticos de las corrientes eléctricas (@fisicagrel, 2020) (ver Ilustración 4 (#x10_id_Toc41351130)).

Ilustración 4 Tweet sobre Magnetoencefalografía