скачать книгу бесплатно
Вирусы и эпидемии в истории мира. Прошлое, настоящее и будущее
Майкл Олдстоун
Интересный научпоп. Хиты Amazon
С самого возникновения цивилизации человечество сосуществует с невидимыми и смертоносными врагами – вирусами. Оспа унесла больше жизней, чем все техногенные катастрофы и кровопролитнейшие войны XX века; желтая лихорадка не позволила Наполеону создать колониальную империю и едва не помешала строительству Панамского канала.
Ученый-вирусолог, профессор Майкл Олдстоун, основываясь на свидетельствах современников ужасных эпидемий и ученых, «охотников за микробами», показывает, насколько глубоко влияние вирусов на жизнь человечества. Вам предстоит узнать истории успеха – о врачах-героях, создавших вакцины от оспы и желтой лихорадки, преодолев бытовые и религиозные предрассудки, и конкуренции между вакцинами от полиомиелита, избавивших людей от страха стать инвалидами. Конечно, есть в книге место и историям продолжающейся борьбы: из-за ошибок бизнеса и властей при сборе донорской крови – со вспышкой гепатита; из-за ложных сведений о том, что вакцина от кори вызывает аутизм у детей, – со страхом и недоверием к медикам и государству. И ученые продолжают бороться с новыми угрозами, которые, появляясь внезапно, словно из ящика Пандоры, напоминают, что мы напрасно воспринимаем здоровье как должное.
В формате PDF A4 сохранен издательский макет.
Майкл Олдстоун
Вирусы и эпидемии в истории мира. Прошлое, настоящее и будущее
Michael B. A. Oldstone
VIRUSES, PLAGUES, AND HISTORY
Past, Present, and Future
© Oxford University Press, 2020
© Перевод на русский язык. ООО «Издательство АСТ», 2021
© Оформление. ООО «Издательство АСТ», 2021
* * *
Посвящается моей семье: Бетси, Дженни, Бо и Крис, Кэролайн Энн, Эйлин Элизабет, Мадлен Роуз, Фей Анастасии, Рейне Элизабет, Мэрили Кейт; моим коллегам и друзьям, моим 87 сослуживцам и 22 приглашенным исследователям
Не убоишься ужасов в ночи,
Стрелы, летящей днем,
Язвы, ходящей во мраке,
Заразы, опустошающей в полдень.
Псалом 90
Введение
«Единственное, чего нам следует бояться, – это самого страха».
Франклин Делано Рузвельт. Первая иннаугурационная речь
В 1940-х годах, когда я был подростком, меня отправили домой из летнего лагеря, поскольку двое ребят в нем слегли с полиомиелитом. Меня посадили нач карантин, на три недели, прописали постельный режим, и семейный доктор регулярно осматривал меня на дому. Я помню панику моих родителей, их страх, что я могу стать инвалидом, если заболею. Подобные чувства испытывали тысячи других родителей, пока 26 марта 1953 года Джонас Солк не объявил, что ему удалось разработать вакцину от полиомиелита. За одно поколение в США полностью избавились от этого заболевания, и на сегодняшний день оно практически исчезло с лица земли благодаря сотрудничеству всех стран, как на правительственном, так и на частном уровне, а также здравому отношению к научным исследованиям.
В момент написания этих строк, в апреле 2020 года, никто еще не может предсказать, как и когда окончится пандемия COVID-19. Впервые зафиксированный в провинции Ухань в Китае в конце 2019 года, COVID-19 буквально поставил весь мир на колени. Умерли десятки тысяч человек, многократно большее число людей заразились (и в обозримом будущем эти цифры будут продолжать расти). Закрыты предприятия, школы, места религиозного поклонения. Бо?льшая часть населения Земли находится дома на самоизоляции, добровольной или вынужденной. Делается это в надежде на то, что социальное дистанцирование поможет «сгладить кривую» заболеваемости и избежать разрушительной волны инфекций, которая бы создала катастрофическую нагрузку на больницы и системы здравоохранения. Мировой экономике этот кризис, прежде чем он разрешится, обойдется в триллионы долларов, и неизвестно, сколько жизней будет потеряно.
Несомненно, тем не менее что рано или поздно пандемия COVID-19 закончится. Со временем накопленные научные и эпидемиологические изыскания позволят открыть и запустить в массовое производство спасающие жизнь средства лечения и эффективную профилактику заболевания, включая и вакцину. Начинается все, как и всегда в науке, с проблемы (COVID-19 и его катастрофического воздействия на человечество), окончательное решение которой неизвестно. Решение придет в результате успешно воспроизводимых экспериментальных исследований и полученных неопровержимых фактов.
Хотя подчас может показаться, что мы блуждаем в потемках, это не совсем верно. Жизненный цикл вирусов предсказуем. То, что известно науке и медицине о вирусах, появлявшихся до COVID-19, позволяет оценить угрозу, которую несет данная пандемия, и спрогнозировать ее исход. Более того, эти знания дают нам ключ к тому, где и как искать методы лечения этого вируса. В настоящее время не существует лекарства, которое оказалось бы действительно эффективным против инфекции COVID-19. Тем не менее сейчас рассматриваются несколько экспериментальных лекарственных средств и ведется разработка новых препаратов. Этот процесс может показаться медленным, однако современное понимание молекулярной и клеточной биологии, а также биомедицинские технологии позволяют достичь в этой области значительного прогресса. Фундаментальные исследования позволили выделить молекулу белка-рецептора на поверхности клетки для вируса SARS-CoV-2, дающую ему возможность проникнуть в клетку хозяина. Определены и перечислены также все ступени, которые внедряющийся в клетку вирус проходит при репликации, экспансии и исходе из клетки-хозяина вирусного инфекционного потомства, что и вызывает само заболевание. Что касается новых противовирусных препаратов, в настоящее время проходит скрининг экспериментальных лекарств, разработанных на базе публичных и частных банков молекул белка, а на основе кристаллографического анализа вирусных протеинов создаются новые белковые молекулы для развития терапевтических средств.
Подобные энергия и преданность делу уже проявлялись раньше при изобретении противовирусных препаратов, которые сегодня спасают от смерти, опосредованной инфекцией вируса иммунодефицита человека (ВИЧ), и излечивают от гепатита С. Однако COVID-19 – враг коварный. РНК-вирусам, таким как SARS-CoV-2, особенно свойственна высокая частота мутаций, поэтому вполне вероятно, что понадобится целый коктейль активных антивирусных агентов для прекращения пандемии COVID-19 в 2020 году. Даже при наличии противовирусных препаратов, блокирующих и сдерживающих саму болезнь, определенно понадобится дополнительная стратегия борьбы с дыхательной недостаточностью, вызванной этим заболеванием. Дыхательная недостаточность возникает из-за накопления в легких жидкостей и миграции клеток крови, блокирующих поступление кислорода через альвеолярную мембрану. Вирус гриппа, хантавирус и вирус – возбудитель (тяжелого острого респираторного синдрома (SARS)) также создают паталогическую картину инфильтрата жидкости и воспалительных клеток в легкие. Пульмональный портрет этих вирусов создается массированным высвобождением цитокинов – небольших сигнальных молекул иммунных реакций – из инфицированных клеток, что является основной причиной дыхательной недостаточности и в результате получило название «цитокиновый шторма». Идентификация таких молекул в организме пациентов, зараженных COVID-19, поможет прогнозировать, как у них будет протекать болезнь: в тяжелой форме или в легкой, от которой они оправятся без особых проблем. Более того, блокировка цитокинового шторма позволит снизить вероятность смертельного исхода от COVID-19. Лекарства, нейтрализующие воздействие таких цитокиновых молекул, уже существуют, их эффективность проверяется на больных, у которых подтвержден COVID-19.
Главным инструментом предотвращения повторных вспышек COVID-19, как и в борьбе с полиомиелитом (о чем уже упоминалось ранее), станет, конечно, вакцинация. Вакцина вызвала бы иммунный ответ, подобный тому, который возникает у переболевших COVID-19. Иммунный ответ проявляется, когда инфицированный организм начинает вырабатывать специальные клетки-киллеры – T-киллеры, или цитоксические T-лимфоциты (CTL), взаимодействующие с зараженными клетками и уничтожающие их. Параллельно с этим возникает гуморальный иммунный ответ, направленный на создание антител. T-киллеры распознают клетки-фабрики, в которых вирусы размножаются, вступают с ними во взаимодействие и удаляют их, в то время как антитела снижают содержание вирусов в организме, в первую очередь, в плазме крови. Клеточный и гуморальный ответы – это две составляющие адаптивной иммунной системы человека, и они эволюционируют и сохраняют свои свойства уже на протяжении тысяч поколений. Наряду с их только что описанными уникальными защитными свойствами, они вместе с антителами уменьшают количество вирусов, способных инфицировать клетки хозяина, позволяя тем самым T-киллерам реагировать на опасность эффективнее и быстрее. В целом клетки CTL играют главную роль на ранней стадии реагирования на инфекцию, так как они очищают организм от вирусов в течение двух первых недель. В противовес этому антитела, нейтрализующие вирус, обнаруживаются обычно только после полного выведения вируса из организма хозяина, по крайней мере от четырех недель до четырех месяцев после болезни.
Присутствие антител, нейтрализующих SARS-CoV-2, указывает на защищенность пациента от этого болезнетворного вируса. В случае с COVID-19, однако, очень мало известно о продолжительности и надежности приобретенного иммунитета, а также о компонентах вирусных частиц SARS-CoV-2, распознаваемых обеими составляющими иммунной системы. Далее, мутирует ли геном (гены, размещенные в нужном порядке и ориентации) SARS-CoV-2, как геномы ВИЧ и гриппа, или он сохраняется в какой-нибудь части организма инфицированного человека, как вирус лихорадки Эбола? Если это так, иммунный контроль, основанный на существующем ныне строении этого вируса, может быть затруднен. В настоящее время ни в изначально выделенном в Китае геноме SARS-CoV-2, ни в более поздних изолятах не обнаруживаются какие-либо заметные отличия[1 - На данный момент известно уже семь штаммов: GR, G, GH, O, S, L и V. – Прим. науч. ред.], что позволяет предположить, что столкнуться с такой проблемой нам не придется. Но если мутации SARS-CoV-2 будут иметь биологический (болезнетворный) характер, придется разрабатывать вакцину, эффективную против множества штаммов вируса. Многочисленные мутации генома вируса кори привели к его различным генетическим вариантам, не представляющим, однако, отдельных биологических проблем, поэтому для успешной вакцинации достаточно только одного штамма этого вируса. Эффективная вакцина от полиомиелита, напротив, была окончательно разработана только к 1953 году, после того как было обнаружено, что три штамма вируса независимо друг от друга вызывают заболевание. Первоначально же появление вакцины предполагалось еще в начале 1900-х годов, сразу после выявления вируса полиомиелита.
Рано или поздно COVID-19 будет остановлен, как это случилось с полиомиелитом в 1953 году, с «испанкой»[2 - Испанский грипп, или «испанка» – вероятно, самая массовая пандемия гриппа, продлившаяся с января 1918 по 1920 год; число заразившихся превысило 550 миллионов человек. – Прим. изд.] в прошлом веке, оспой и множеством других болезней, и страх перед этой конкретной пандемией будет преодолен. Люди выйдут из самоизоляции, начнут собираться большими группами, вернутся на учебу и работу. Но мы не можем себе позволить, чтобы не поддающиеся контролю пандемии случались вновь. Мы должны извлечь урок из этого беспрецедентного испытания, чтобы лучше подготовиться к новым вспышкам вирусных заболеваний. Ведь если многовековая борьба человечества с вирусами и научила нас чему-то, так это тому, что эпидемии будут продолжаться.
М. Б. А. О.
Ла-Хойя, Калифорния
Предисловие
Итак, предыдущее издание моей книги «Вирусы и эпидемии в истории мира» дополнено актуальными данными и отражает как достижения, так и разочарования в период, прошедший с момента ее первой публикации. В этом издании описываются инфекции, недавно появившиеся в мире, в особенности – нанесшие наибольший урон человечеству в XXI веке. В книге будут рассмотрены: ближневосточный респираторный синдром (MERS), инфекция, сходная с SARS, который стал первой выявленной эпидемией нынешнего века. Вирус Зика – еще одно недавнее бедствие, подобно вирусу желтой лихорадки переносится комарами. С вирусом Зика, впервые идентифицированным на двух американских континентах, связывают обычно врожденные дефекты у младенцев и паралич у взрослых. И наконец, болезни, порожденные вирусами гепатита, инфекции, особенно часто наблюдавшиеся во время Второй мировой войны. Первоначально считалось, что они возникают из-за переливаний крови и вакцинаций. С тех пор гепатитные вирусные инфекции поразили миллионы людей, вызывая у одних острые заболевания печени, а у других (чаще всего) пожизненные хронические поражения печени. У части инфицированных развивается рак печени. Тем не менее были разработаны фармацевтические средства, практически избавляющие людей от подобных болезней, что стало несомненным триумфом в лечении инфекционных заболеваний. Например, почти все жертвы гепатита C (более 97 %) были излечены от этой вирусной инфекции. Этот невероятный результат стал побочным продуктом основного исследования, проводимого как в области вирусологии, так и в области клеточной и молекулярной биологии, в процессе которого были созданы препараты для блокировки определенных этапов жизненного цикла вируса гепатита С.
Приобретенные благодаря исследованиям с 2010 года обширные знания значительно улучшили наше представление о природе эпидемий, как только что возникших, так и уже известных. Эти успехи описаны в данной публикации. К сожалению, некоторые люди продолжают отказываться от вакцинации по собственным убеждениям. Результатом такого отношения стало недавнее возвращение таких вирусных заболеваний, как полиомиелит и корь. И, как следствие, ни один из этих вирусов не был полностью уничтожен к началу XXI века, вопреки планам Всемирной организации здравоохранения (ВОЗ). Хотя в ограничении их распространения результаты оказались выдающимися, полностью избавить человечество от этих вирусных заболеваний пока не удалось именно из-за приведенных выше причин. И все же новые методы создания вакцин и разработки антивирусных препаратов – это быстро развивающиеся области с огромным потенциалом.
Аутизм как явление, причиной которого ошибочно считается вакцинация, рассматривается здесь с научной точки зрения, а не с ложных позиций эмоциональной подмены причин следствием. Как споры о природе аутизма, так и апатичное отношение к инфекциям являются отражением конфликта между культурой, политикой и правительством с одной стороны и наукой – с другой. К сожалению, в этом конфликте наука часто оказывается проигравшей стороной, отступая перед религией, мифами и невежеством. В итоге вместо успешного контроля над заболеваниями и их полного искоренения их количество и интенсивность продолжают расти, как и подверженность им народонаселения. И все же со времени первого издания книги достижения в диагностирующей вирусологии, терапевтике, понимании иммунной системы оказываются по меньшей мере поразительными. Глубокое понимание генетики вирусов и соответствующих реакций организма-хозяина в сочетании с неизменной преданностью своему делу исследователей и ученых, уже занятых в этой области и только что к ней присоединившихся, позволяют надеяться, что в будущем безразличие населения, неверные решения правительственных чиновников или искажения информации в массовой культуре будут наконец устранены. Представьте эффект от увеличения количества методов и средств лечения для жертв этих инфекций.
Данная работа была задумана в духе книги Поля де Крюи «Охотники за микробами»[3 - Книга имеется в русском переводе: де Крюи П. Охотники за микробами. М.: АСТ, 2020. – Прим. изд.], впервые прочитанной мною в средней школе. Герои этого произведения были великими и бесстрашными медицинскими исследователями, стремившимися во что бы то ни стало познать неизведанное и облегчить человеческие страдания. Оглядываясь назад, можно утверждать, что эти истории стали той путеводной звездой, которая привела меня в медицинскую школу и к карьере исследователя-биомедика. Благодаря этому я познакомился с Фрэнком Диксоном, Карлом Хабелем, Берни Филдсом, Хилари Копровским, Моррисом Хилеманом, Эддом Леннеттом, Джонасом Солком, Альбертом Сейбиным, Джоном Эндерсом, Томом Уэллером, Фрэнком Феннером, Джо Смейделом, Ренато Дульбекко, Георгом Кляйном, Уоллиэмом Дейлсом, Тони Эллисоном, Фредом Брауном, Иэном Уилсоном, Дэнисом Бертоном, Фредом Рэппом, Нилом Натансоном, Джеффри Таубенбергером, Питером Палезе, Эдом Килбурном, Йоши Каваокой, Леннартом Филипсоном, Хью Розеном, Эбнером Ноткинсом, Франком Чизари, Харви Олтером, Чарли Райсом, Тони Фаучи, Рольфом Цинкернагелем, Питером Доуэрти, Джеймсом Полсоном, Питером Хоули, Диком Компаном, Скоттом Хальстедом, Эриой Олльман-Сэпфайа, Робертом Гэрри, Кристианом Андерсеном и Пардисом Сабети. Все они либо фигурируют в моих историях, либо помогали в их создании.
Отслеживая те усилия, которые были потрачены на поиски каждого возбудителя описанных здесь болезней, могу сказать, что я задавался следующими вопросами: что известно из первоначального описания возбудителя болезни? какие проблемы являются для него уникальными? какие действия стали решающими для устранения проблем? почему именно эти решения были приняты? на каком этапе необходимые ресурсы были предоставлены благодаря общественной и правительственной поддержке? и наконец – когда общество и правительство мешали разрешению проблем? Для выполнения этой задачи я выбрал в качестве примеров шесть вирусных заболеваний: натуральную оспу, желтую лихорадку, корь, полиомиелит, гепатит и лихорадку Эбола. Первые пять из шести перечисленных находятся под контролем науки, хотя когда-то они приносили опустошение и горе. Шестая – лихорадка Эбола – остается вне этого контроля. Перечисленные болезни я сравниваю с семью вирусными инфекциями, которые все еще не удалось обуздать. Это вирус лихорадки Ласса, хантавирус, SARS, MERS, вирус Западного Нила, вирус Зика и ВИЧ, который пока невозможно предотвратить, но уже можно успешно контролировать с помощью антивирусной терапии. Кроме того, остается постоянная угроза пандемии гриппа всемирного масштаба, распространение которого достаточно ограничено, но потенциально такая опасность существует. Неконтролируемая эпидемия лихорадки Эбола началась впервые в декабре 2013 года в Западной Африке. Более 28 000 человек были инфицированы, погибли более 12 000, а экономике и политическим организациям Сьерра-Леоне, Гамбии и Гвинеи был нанесен колоссальный урон. Перенос вируса Эбола в США и Европу вызвал заболевание и там. Без эффективного управления вспышка лихорадки Эбола предстоит нам снова.
Нельзя обойти стороной и необычную группу прогрессирующих неврологических расстройств, губкообразные энцефалопатии (скре?пи, или почесуху), коровье бешенство, разновидность болезни Крейтцфельдта – Якоба (БКЯ), хроническое истощение у оленей и лосей. Горячие и продолжительные в свое время дебаты вокруг этих заболеваний завершились, когда был обнаружен настоящий возбудитель, которым оказался не вирус, а белок прион[4 - Инфекционный патоген (англ. prion; от protein – «белок» и infection – «инфекция»). – Прим. изд.].
Красной нитью через повествование проходит рассказ о страхах, суевериях и нерациональном поведении, свидетельствующих о том, что людям свойственно ошибаться. Ничем не подтвержденные слухи или убеждения в том, что полиовирусная вакцина была причиной ВИЧ и что она содержит компоненты, вызывающие бесплодие; что противокоревая вакцинация вызывает аутизм – все это привело к отказам от вакцинации. В результате вирусные инфекции, которые могли бы быть элиминированы, достигали масштабов эпидемии. Тем не менее мотивация и профессионализм ученых в сочетании с эффективной работой общественных и правительственных лидеров вместе с соответствующей финансовой поддержкой одержали победу над некоторыми вирусными заболеваниями, что служит примером для достижения будущих побед.
Огромное число достижений слишком часто предаются забвению. Давайте вспомним о них. Натуральная оспа в прошлом веке унесла более 300 миллионов жизней, а сейчас полностью уничтожена на нашей планете. Корь, некогда ежегодно убивавшая миллионы жизней по всему земному шару и сегодня уносящая примерно по 400 000 жизней в год в странах третьего мира, в развитых промышленных странах затрагивает лишь немногих. Вирус желтой лихорадки опустошал целые поселения по берегам Миссисипи и некоторые портовые города в США, а в 1793 году американское правительство было вынуждено прекратить свою работу из-за вспышки этой инфекции. Теперь желтая лихорадка уничтожена на территории Соединенных Штатов, и регистрируются только завозные случаи инфекции. Однако в тропических лесах Южной Америки и Африки эта вирусная инфекция по-прежнему существует. Вирус полиомиелита, вызывающий детский паралич, был одно время на пятом месте среди инфекций-убийц в Скандинавии и был широко распространен в США. Я помню, как каждое лето мои родители испытывали страх перед полиомиелитом, страх, который до сих пор жив в умах тех из нас, кому за 60, тех, кто видел, как заразившиеся этим вирусом родные, одноклассники или друзья либо умирают, либо остаются инвалидами. И все же, как только сами американцы, а также правительственные учреждения вместе с частными фондами начали спонсировать научные исследования, полиомиелит был побежден, так что ни в Европе, ни в Америке, ни на большей части Африки и Азии не найти сейчас случаев заболевания не поддающимся культивированию («диким») вирусом полиомиелита. Им сейчас заболевают не более нескольких сотен человек в Нигерии, Афганистане и Пакистане.
Самая существенная польза от победы над инфекционными заболеваниями заключается, конечно, в восстановлении здоровья, облегчении боли и избавлении от страданий. Но не следует недооценивать и значительную денежную выгоду. Средства, больше не требующиеся на госпитализацию и лечение, могут быть потрачены на улучшение условий жизни. Люди, которые в противном случае оказались бы нетрудоспособными, теперь здоровы и могут работать, покупать товары и платить налоги. По здравой оценке, на каждый доллар, вложенный правительством в исследование этих заболеваний, ему возвращается прибыль от 1000 – до 10 000-кратной – с учетом затрат, которые были бы необходимы для долгосрочного лечения тех, кто благодаря этим исследованиям сейчас здоров и приносит финансовую прибыль. Однако с успехом приходят успокоенность, самодовольство и ослабление осознания того, что вирусные заболевания всегда будут оставаться угрозой. В наши дни ни родители, ни врачи не наблюдают вспышек таких изнурительных вирусных заболеваний, как корь, ветрянка, свинка, полиомиелит и оспа, регулярно случавшихся до конца 1940-х – середины 1960-х годов. Только при непрерывном внимании к проблеме и ее исследовании, изучении, наблюдении, обучении и информировании населения человечество может надеяться на успешную борьбу с еще существующими или вновь обнаруженными инфекционными болезнями, а также предотвратить возвращение уже некогда укрощенных вирусов.
Данная книга большей частью основана на личных отчетах, письмах и сообщениях основных свидетелей событий, своими глазами наблюдавших их развитие. Я пытался, насколько это возможно, брать информацию из первоисточников. Мне посчастливилось подружиться с многими из тех, кто играл ведущую роль в борьбе за контроль над вирусами, описанными в книге, и их полное уничтожение. У меня была возможность обсуждать с этими новаторами многие эпизоды, упомянутые в этой работе. В высшей медицинской школе на меня оказал серьезное влияние Теодор Вудворд, превосходный преподаватель и клинический врач, который, будучи заведующим медицинской кафедрой в Университете Мэриленда, обучал меня клиническим аспектам инфекционных заболеваний. Вместе с заведующим Отделением микробиологии Чарльзом Уиссеманом он настоял на том, чтобы я провел одно лето, работая в больнице и Исследовательском институте Уолта Рида. Там я лично познакомился с Джозефом Смейделом, деканом факультета научной вирусологии. Вскоре после этого он познакомил меня с Джоном Эндерсом, который посоветовал мне по завершении программы медицинского обучения применить мою подготовку в области инфекционных заболеваний и выпускную работу по вирусам и риккетсии пограничной области в вирусологии и иммунологии. В данной книге и Джону Эндерсу, и Смейделу отводятся ключевые роли. По совету и предложению Эндерса я посетил лабораторию Уолли Роу в Национальных институтах здравоохранения США (National Institutes of Health, NIH), а затем переехал в Ла Хойю, штат Калифорния, для обучения в Клинике и Научно-исследовательском фонде Скриппса (ныне Научно-исследовательский институт Скриппса) под руководством Фрэнка Диксона, одного из главных специалистов в современной иммунологии. В свою очередь, меня представили Фрэнку Макфарлейну Бёрнету, Джону Хамфри, Баруху Бенасеррафу, Генри Кункелю и другим ведущим иммунологам. В конце 1960-х – начале 1970-х годов у меня появилась возможность продолжить обучение иммунологии под руководством Диксона и пройти подготовку в области вирусологии, работая плечом к плечу с выдающимся вирусологом Карлом Хабелем, благодаря которому я познакомился с крупными специалистами – вирусологами.
Я особенно благодарен Хилари Копровскому, Джонасу Солку, Альберту Сейбину, Джону Эндерсу, Тому Уэллеру, Самуэлю Кацу, Д. А. Хендерсену, Фрэнку Феннеру, Джону Скелю, Роберту Галло, Брайану Махи, Жорди Казальсу, Люку Монтанье, Рафи Ахмеду, В. Иену Липкину, Харви Олтеру, Фрэнку Чизари, Джеффри Таубенбергеру, Питеру Палезе, Робу Уэбстеру, Хью Розену, Дэннису Бертону, Иену Уилсону, Кену Тайлеру, Роберту Гэрри, Кристиану Андерсену и Пардису Сабети за вклад в данную работу. Конечно, я перечитал серьезный объем соответствующей литературы и более 50 лет непосредственно участвовал в вирусологических и иммунологических исследованиях. Я в долгу перед Паулой Кинг и Маризелой Перез-Меза из медицинской библиотеки Научно-исследовательского института Скриппса за оказанную ими помощь. Я признателен сотрудникам двух лондонских библиотек: Медицинской библиотеки Совета по медицинским исследованиям в Милл Хилл и Библиотеки по истории и пониманию медицины. Я чрезвычайно признателен Брайану Махи и К. Дж. Питерсу, моим близким друзьям и бывшим ведущим вирусологам в Центрах по контролю и профилактике заболеваний США (Centers for Disease Control and Prevention, CDC) в Атланте, штат Джорджия, за обсуждения лихорадки Ласса, вируса Эбола и хантавирусов. Я благодарен Роберту Гэрри (Туллейн), Кристиану Андерсену и Брайану Салливану (Научно-исследовательский институт Скриппса) и Пардису Сабети (Гарвард), вместе с которыми я работал непосредственно над вирусами Эбола и Ласса. Особую благодарность хочу выразить моей дочери Джениффер Олдстоун-Мур, профессору и бывшей заведующей кафедрой религиоведения в Университете Уиттенберга, за разъяснения и подробный рассказ о Китае и его культуре.
Я в глубоком долгу как перед Берроуз Уэллком Траст за возможность поработать в Лондоне внештатным профессором вместе с Джоном Скелем в Милл Хилл, так и Фонду Рокфеллера за предоставление стипендии, позволившей мне поселиться в Италии на вилле Сербеллони в Беладжио, ставшей тем прибежищем, где первоначально были выражены словами многие мои мысли и был сформулирован план для создания книги. На протяжении всего проекта Гэй Уилкинс-Блейд оказывал мне высокопрофессиональные услуги секретаря. Мне также посчастливилось сотрудничать с Филлис Миник [Ла Хойа] и Сарой Харрингтон [Oxford University Press], дававшими редакторские консультации; с Мадлен Роуз Олдстоун, составившей алфавитный и предметный указатели. Я также благодарю своих коллег за ценные предложения и комментарии к некоторым главам этой книги: ныне покойных Фрэнка Дж. Диксона и Кертиса Уилсона; Дж. Линдсея Уиттона, Хью Розена и Фрэнка Чизари (Научно-исследовательский институт Скриппса, Ла Хойа); Марти Штайна [Калифорнийский Университет в Сан-Диего], Томаса Меригана (Стэнфордская высшая медицинская школа, Пало Альто, штат Калифорния); Джона Скеля (Совет по медицинским исследованиям, Милл Хилл, Лондон, Великобритания); Роба Уэбстера (Детский исследовательский госпиталь Св. Иуды, Мемфис, штат Теннесси); Брюса Чейзбро (Лаборатория Скалистых гор NIH, Гамильтон, штат Монтана); Джо Эспозито (CDC); Дуга Лоуи и Эбнера Ноткинса (NIH, Бетесда, штат Мэриленд); Роберта Галло (Университет Мэриленда, Институт вирусологии человека, Балтимор, штат Мэриленд); а также Свена Гарда и Эрлинга Норрби (Каролинский институт, Стокгольм, Швеция).
Майкл Б. А. Олдстоун.
Ла Хойа, штат Калифорния.
Апрель 2020 года
Часть I. Вирусы и эпидемии в истории мира
Глава первая. Общее вступление
У некоторых вирусов сложился интригующий и уникальный образ жизни. Многие из них изменяли и продолжают изменять мир вокруг нас. Опустошение, вызванное в Новом Свете вирусами оспы и кори, когда-то ненароком занесенными туда европейцами и десятикратно сократившими численность местного населения, позволило переселенцам из Старого Света беспрепятственно оккупировать и колонизировать эти территории. С древних времен население Азии, Ближнего Востока и Европы заражалось оспой и корью. В результате тягостного отбора были отсеяны наиболее уязвимые, выжившие же приобрели иммунитет к этим инфекциям (защиту от них). К примеру, коренные жители Нового Света, никогда ранее не подвергавшиеся воздействию подобных вирусов, были крайне подвержены этим заболеваниям, легко заражались и массово умирали. Колонизаторы же были к ним резистентны (устойчивы), так как переболели ими в Старом Свете, где эти болезни уже выкосили наиболее восприимчивых. Рабы, привезенные из Африки, были устойчивы к кори и оспе, однако привезли с собой вирус желтой лихорадки, от которой умирали европейцы, не исключая и военных в Новом Свете. Особенно пострадал французский военный контингент на Гаити. Когда его солдаты пали жертвой этой лихорадки, Наполеон решил продать бо?льшую часть французских владений в Новом Свете только что сформированному правительству США, возглавляемому Томасом Джефферсоном. Приобретение этой огромной территории, вошедшее в историю как «Луизианская покупка», позволило Соединенным Штатам расширить свои владения от Карибского побережья до Канады, а потом и на запад, до Тихого океана. Вдобавок миллионы, уплаченные за эту территорию, позволили новым американцам избежать войны с их более сильными европейскими противниками. Итак, вирусы сыграли ведущую роль в победе над воинами коренного американского населения, в завоевании европейцами большей части этого континента, значительном увеличении работорговли и в судьбе западной экспансии на территории современных США.
В настоящее время мы продолжаем наблюдать изменения в окружающей нас обстановке, вызванные вновь появляющимися, уже известными или хорошо знакомыми вирусами. Во время эпидемии вируса иммунодефицита человека (ВИЧ) и синдрома приобретенного иммунодефицита (СПИД), по некоторым данным, заразились 50 миллионов человек и несколько миллионов умерли. Вызванное этой эпидемией опустошение африканского континента привело к серьезным экономическим и культурным изменениям, неописуемому горю, разрушению семейного уклада и колоссальному увеличению числа сирот. В 2013–2016 годах Африка стала местом, где разразилась еще одна недавняя эпидемия – лихорадка Эбола, возникшая сперва в западной части континента, особенно в Гвинее, Либерии и Сьерра-Леоне. Заразились 24 000 человек, умерли от этой инфекции 12 000. Впервые случаи этого заболевания были зафиксированы в Центральной Африке, где число зараженных редко превышало 400 человек, а смертность составляла от 45 до 80 %. Эпидемия же Эбола нанесла страшный урон экономике и общественной структуре стран Западной Африки, оставив после себя многочисленных сирот. Затем быстрота авиаперелетов в сочетании с двух-трехнедельным инкубационным периодом, еще до получения результатов клинических исследований, привели к тому, что вирус был занесен в Европу и Соединенные Штаты. Помимо лихорадки Эбола, разразилась первая пандемия XXI века – SARS). Правительства и международные организации, такие как Панамериканский союз, Европейский союз и ВОЗ, создали системы мониторинга таких заболеваний. Не прошло и двух десятилетий, как на Ближнем Востоке началась, причинив серьезный ущерб здоровью населения, сходная эпидемия MERS, вызванная родственным SARS вирусом. Сейчас мониторинговые организации наметили ряд профилактических мер для предотвращения в будущем эпидемии гриппа, подобной той, что в 1918–1919 годах унесла 40–60 миллионов жизней.
И все-таки, чем являются эти возбудители инфекций, называемые вирусами? Что они делают и как действуют? Некоторые из этих вирусов определяли победителей в человеческих битвах, поражая, например, лишь одну из сражающихся армий и не затрагивая другую. Они обескровили несколько стран и континентов; стали причиной географических, экономических и религиозных изменений.
Только оспа в XX веке унесла приблизительно 300 миллионов жизней, что в три раза превышает количество погибших во время всех войн этого века
. В XVI–XVII веках от оспы умирали императоры Японии и Бирмы, а также короли и королевы европейских государств, и, соответственно, прерывались династии, менялось управление странами и распадались союзы
. Оспа помешала морскому вторжению в Англию объединенного франко-испанского флота, возглавляемого Испанией; она же сыграла ключевую роль в предотвращении завоевания Канады Континентальной армией во время Американской революции. Успешное покорение империй ацтеков в Мексике и инков в Перу горсткой испанских конкистадоров под предводительством соответственно Эрнана Кортеса и Франсиско Писаро произошло большей частью благодаря эпидемиям оспы и кори, косившим ряды коренных защитников. Большинство конкистадоров уже переболели этими инфекциями в Европе и поэтому были устойчивы к их воздействию, тогда как население Нового Света было совершенно уязвимо. Действительно нельзя объяснить победу испанцев ни их очевидным техническим превосходством, ни суеверием, гласившим, что Кетцалькоатль или другие боги ацтеков уничтожат местное население, ни союзами испанцев с племенами, угнетенными ацтеками или инками. История утверждает, что спровоцированные на сражение ацтеки свирепо нападали на испанцев и побеждали их. Однако в тот самый вечер, когда ацтеки изгнали испанских конкистадоров из города, который сегодня называется Мехико, убивая многих из них и преследуя остальных, разразилась эпидемия оспы. Пока она свирепствовала в городе
, массово заражая не защищенных от нее ацтекских воинов, добавился еще и психологический аспект. Ацтеки видели, что испанцы, сражавшиеся под защитой христианского бога, не были подвержены этому новому недугу, в то время как ацтекские боги не спасали своих воинов, и это еще больше деморализовало коренное население. Ацтеки не могли знать, что для Европы в то время оспа была эндемична (свойственна местности) и что в Испании многие ею уже переболели и приобрели иммунитет – сопротивляемость последующему заражению этим вирусом. Потрясенные ацтеки объясняли смерть от оспы своих соплеменников, в то время как она обходила испанцев стороной, тем, что христианский бог могущественнее их местных богов. Таким образом, первым прямым следствием массового инфицирования оспой стали порабощение и последующая эксплуатация коренных американцев и мексиканцев испанцами. Вторым и более продолжительным эффектом стало уничтожение местной культуры; по мере того как испанская культура становилась доминирующей, миллионы туземцев обращались в христианство. За период испанского завоевания Нового Света от заражения вирусами кори и оспы погибло примерно от 1/3 до 1/2 коренного населения.
Вдобавок к стимулированию укрепления позиций христианства в Мексике и Латинской Америке, вирусы сыграли роль и в увеличении торговли рабами из Африки на территории обоих американских континентов. Коренные африканцы были относительно устойчивы к вирусу желтой лихорадки, тогда как белое население и коренные американцы были намного более подвержены этому заболеванию. Из-за смерти большого числа туземцев от желтой лихорадки для выполнения тяжелой работы на полях и в шахтах осталось слишком мало работников. Тогда испанцы стали привозить рабов-африканцев в качестве замены рабочей силы
. В результате ввоз рабов-африканцев в Новый Свет
значительно увеличился. Ирония была в том, что вирус желтой лихорадки изначально был привезен из Африки на борту торговых и рабовладельческих судов.
Помимо Испании свои права на колонии на американских континентах заявляли и другие европейские страны. Французы колонизировали Гаити и, учитывая, что африканцы устойчивы к вирусу желтой лихорадки, а значит, будут более надежными работниками, использовали на своих плантациях в основном рабочую силу из Африки. Вирус желтой лихорадки был родом из африканских джунглей, и в Новый Свет его принесли африканские рабы. Он отомстил, вновь изменив историю человечества, когда рабы взбунтовались в самом начале XIX века. Для подавления восстания Наполеон послал на Гаити более 27 000 ударных войск. Очень скоро большинство французских солдат умерли от желтой лихорадки, впервые столкнувшись с этим вирусом, переносимым москитами. Такая огромная потеря военных сил, необходимых Наполеону для поддержания статуса-кво, повлияла на его решение не рисковать еще бо?льшим числом войск, нужных для защиты других французских территорий в Новом Свете. Привело это к переговорам о продаже Территории Луизиана Соединенным Штатам
.
Англия также колонизировала большие части Северной Америки, включая те, которые должны были стать первыми Соединенными Штатами и Канадой. Во время Войны за независимость американское колониальное правительство отправило армию для того, чтобы вырвать Канаду из-под власти англичан. Захватив Монреаль, колониальная армия, превосходившая противника по численности, двинулась на Квебек. Но тут в лагерь Колониальной армии вошла оспа. Вскоре после этого обескровленные американские войска
, похоронив своих сослуживцев умерших в братских могилах, в беспорядке отступили от города. Таким образом, включение Канады в состав Соединенных Штатов было сорвано.
Более масштабная картина возникает из-за последствий инфекций, вызванных вирусами оспы, кори и желтой лихорадки. Некоторые историки связывают богатства Испании в Новом Свете с ее изначальным доминированием в Европе. Тем не менее последующее резкое падение влияния Испании на европейскую политику приписывается именно сокровищам, приобретенным ею в Америках. Считается, что обретенное благополучие способствовало появлению праздного населения, не спешившего принимать участие в индустриальной революции. Ситуация могла сложиться совершенно иначе, не будь туземцы столь уязвимы перед болезнями, принесенными им испанцами. Вмешательство вирусов привело к тому, что США и Канада так и не объединились. Более того, вирусы, способствовавшие приобретению Луизианы, позволили США увеличить свою территорию путем беспрецедентной экспансии на запад материка, не спровоцировав при этом потенциального геополитического конфликта с Францией. Последствия вирусной инфекции согнали туземцев Южной, Центральной и Латинской Америк с их исконных земель и искоренили их культуры, на смену которым пришла европейская, несущая знамя христианства. Совершенствование транспортных перевозок и использование в Новом Свете все более и более ценных африканских рабов заполнило нишу, появившуюся из-за вирусов оспы, кори и желтой лихорадки, заметно сокративших коренное население.
Кто мог представить в то время, что древние напасти человечества – оспа и корь – будут в конце концов побеждены? Оспа, в десятки раз уменьшив древнее население будущей Мексики, все еще продолжала убивать: к примеру, до начала 1940-х годов этот вирус ежегодно уносил в Мексике более 10 000 жизней. И все же сегодня она ликвидирована не только в Мексике, но и во всем мире благодаря программам вакцинации, что является одним из исключительных достижений в медицине и общественном здравоохранении. Элиминация вируса кори должна быть целью системы здравоохранения. Однако уничтожить этот вирус пока не удается – возможна лишь профилактика. Корь больше не представляет опасности в большинстве промышленно развитых стран, где вакцинация проводится или должна проводиться регулярно и повсеместно. В 1970 году вирусом кори заразились примерно 130 миллионов человек, умерли 8 миллионов. Сегодня в развитых странах случаи заражения корью очень редки: они встречаются в основном там, где распространены отказы от вакцинации. В США в 1970 году было объявлено о 47 000 случаях заражения корью, а в 2017-м – о 118. Больше всего заражений происходит в слаборазвитых странах третьего мира. Например, только в Нигерии было инфицировано вирусом кори 16 033 человека, а скончались 86. Вирус чумы рогатого скота из семейства коревых вызвал серьезное заражение и потерю крупного рогатого скота в Африке, приведя к экономическому упадку. Этот вирус был ликвидирован вакцинацией. Почему же не вирус кори?
По сравнению с вышеперечисленными, эпидемии вирусного полиомиелита появились относительно недавно: они были зафиксированы только в XIX столетии, при этом в XX веке число заболеваний возросло
. Одно время вирус полиомиелита был причиной каждой пятой смерти от тяжелых заболеваний в Швеции
. Угроза стать инвалидом в результате полиомиелита была одним из величайших страхов XX века. Никто не мог тогда предположить, что будет возможна профилактика полиомиелита или что его полная ликвидация, хоть еще не достигнутая, станет целью ВОЗ. Подобным же образом, благодаря вакцинации, вирус желтой лихорадки больше не вызывает такого ужаса и опустошения, как когда-то. Подобные успехи медицины демонстрируют, чего можно добиться, когда ученые-медики и правительственные организации сотрудничают и вместе используют свои ресурсы для решения проблем здравоохранения.
В противовес этим вирусам, уже укрощенным благодаря инновациям в сфере здравоохранения, возникли новые эпидемии пугающих размеров. Хотя сообщается, что ВИЧ заражено 50 миллионов человек, и при этом примерно 37 миллионов живут со СПИДом, спасительной вакцины от него не существует. Впечатляет то, что препараты, созданные и используемые сейчас для лечения ВИЧ/СПИД, значительно снизили уровень смертности, так что вполне вероятно, что жизнь инфицированных, получающих такие лекарства, продлится положенный срок. Однако совсем вывести этот вирус из организма все еще невозможно, так что инфицированные по-прежнему могут передавать ВИЧ и СПИД.
Среди других появившихся эпидемий SARS унес тысячи жизней в XXI веке. Распространившись из Китая до Торонто в Канаде, эпидемия этого вируса привела к изоляции города и к тому, что медицинские службы / службы здравоохранения оказались перегружены. Геморрагические лихорадки стали грозой второй половины XX столетия. Многие стали жертвами возбудителей Эболы, хантавируса и Ласса – вирусов геморрагических лихорадок, зафиксированных на всех континентах и демонстрирующих пугающий уровень смертности. Сегодня даже сами названия этих заболеваний вызывают такой же страх, как возникавший когда-то при упоминании оспы, желтой лихорадки и полиомиелита. Еще один вирус, никогда раньше не проявлявшийся в США, возник в Куинсе и Нью-Йорке в 1998 году, сначала поразив птиц, а затем и людей. Этот вирус, известный как вирус Западного Нила, впоследствии распространился по всей территории США, Канады, Мексики, а также Карибским островам, Центральной и Южной Америке, убивая тысячи людей на своем пути. Вспышки вируса Зика 2013 и 2014 годов, не дав исследователям-инфекционистам расслабиться, были впервые зафиксированы на нескольких тихоокеанских островах, включая Французскую Полинезию и Таити. К маю 2015 года Бразилия первой среди государств обеих Америк сообщила о вспышке лихорадки Зика. Вирус быстро распространился на Карибские острова, а потом и на Соединенные Штаты. В 2017 году в Бразилии было отмечено более 17 000 заболевших, в США – 452, из них 437 (97 %) оказались туристами, вернувшимися из зон заражения. У 7 % младенцев, подвергшихся воздействию вируса Зика, выявлены врожденные отклонения. Особенно часто это случается, когда заражение происходит на ранних сроках беременности. Ожидается, что и еще одна напасть из прошлого, вызванная разновидностью вируса гриппа, убившего более 50 миллионов человек в 1918–1919 годах, – больше, чем погибло в Первую мировую войну – может вернуться в своем прежнем виде или в новой вариации, в виде так называемого птичьего гриппа. При птичьем гриппе главный белок человеческого вируса гриппа – гемагглютинин, существующий в трех видах, заменяется не содержащим его вирусным белком птиц, у которого известно 15 разновидностей. И последней в этом списке стоит вызывающая панический страх угроза нового заражения говядины коровьим бешенством, которое может вызывать деменцию у людей. Вероятность этого или того, что болезнь достигнет размеров эпидемии, тем не менее сомнительна. Маловероятно, что возбудитель болезни будет идентифицирован как вирус. Однако тот факт, что прионы изначально считались вирусами, кажется мне достойным включения в данное издание книги.
Чтобы помочь читателю разобраться в том, как обнаруживали эпидемии в прошлом и потом побеждали их вопреки многочисленным трудностям, следующие две главы вкратце описывают основные принципы действия вирусной инфекции и ее протекание. В главе 2 дается определение вируса и объясняется, как он реплицирует и как вызывает заболевание. В главе 3 рассматривается то, как иммунная система человека борется с вирусами, либо спонтанно ликвидируя инфекции, либо получив стимул к предотвращению вирусных заболеваний при помощи вакцинации. Интересующимся иммунологией и вирусологией рекомендуются к прочтению главы 2 и 3. В противном случае читатель может сразу перейти к главе 4. Изучение жизненного цикла вируса и понимание того, как вакцины задумывались и разрабатывались, помогает объяснить, почему так трудно создать вакцину от ВИЧ и какие шаги необходимы для успешного сражения с вирусными инфекциями и их искоренения. Баланс сил между любым вирусом и организмом-хозяином, который он инфицирует, отражает соотношение между силой вируса, или его вирулентностью, и сопротивляемостью (резистентностью), или восприимчивостью организма-хозяина.
Читатели познакомятся с ведущими «охотниками за микробами», сражавшимися с вирусами оспы, кори, желтой лихорадки, полиомиелита и гепатита; с вирусами лихорадок Ласса, Эбола; с хантавирусом, вирусами SARS, MERS, Западного Нила, Зика, ВИЧ, гриппа и губчатой энцефалопатии. История вирусов и вирусологии – это еще и история тех мужчин и женщин, которые сражались с этими болезнями. Победа и профилактика любого заболевания требуют усилий множества людей. Тем не менее история признает героями лишь некоторых, прославившихся благодаря идентификации, выделению или излечению вирусных инфекций. Часть книги посвящена изучению научно-исследовательской работы медицинских исследователей, связавших в итоге определенные заболевания с конкретными вирусами, благодаря чему они были взяты под контроль. Но ученые-вирусологи – тоже люди, поэтому между ними неизбежны конфликты. Некоторые из этих эпизодов также включены в повествование.
История вирусологии была бы неполной без описания политических акций и предрассудков, спровоцированных вирусами и вызванными ими заболеваниями. К примеру, в США в 1878–1879 годах во время эпидемии желтой лихорадки вооруженные граждане и милиция попытались остановить толпы перепуганных людей, стремившихся бежать из Мемфиса; в 1916 году во время эпидемии полиомиелита в Нью-Йорке не давали уезжать из города тем, кто бежал от болезни; в 1995 году в Заире[5 - В 1960 году колония Бельгийское Конго получила независимость и офицальное название «Республика Конго», но уже в 1964 году страна была переименована в Демократическую Республику Конго (ДРК), чтобы избежать путаницы с названием соседнего государства Конго (бывш. Французское Конго). В период диктатуры Мобуту (1971–1997) страна носила название Заир. С 1997 года – вновь Демократическая Республика Конго. – Прим. изд.] была предпринята попытка помешать населению, стремившемуся спастись от лихорадки Эбола, покинуть город Звитеба. Таким образом, в полотно истории вирусных эпидемий оказываются вплетенными человеческие страхи, предрассудки и невежество.
В то время, когда корь и полиомиелит исчезали в таких странах, как США и Великобритания, возникало равнодушное отношение к вакцинации, в основном среди тех, кто никогда не наблюдал разрушительных последствий этих вирусных заболеваний. Более того, возникли организации, единственной целью которых является отказ от вакцин. Под влиянием этой дезинформации родители, принимающие участие в движении против вакцинации, подвергают опасности не только своих, но и других детей, потому что дети часто заболевают и передают инфекцию товарищам по играм, одноклассникам и близким. Это, в свою очередь, повышает вероятность того, что возбудители этих инфекций вернутся и снова нанесут колоссальный урон.
И наконец, стоит напомнить, как даже граждане США, сумевшие объединиться в «крестовом походе» против полиомиелита, погрязли в полемике о том, как облегчить вызванные ВИЧ страдания и остановить его распространение. Хотите верьте, хотите нет, но подобное отсутствие поддержки со стороны промышленно развитых стран мира, включая и Соединенные Штаты, в свое время помешало осуществить планы по ликвидации оспы
, а позднее привело к тому, что превентивные меры в начале эпидемии Эбола 2013–2016 годов
оказались слишком запоздалыми и ничтожными.
Глава вторая. Введение в основы вирусологии
Биолог Питер Медавар, получивший Нобелевскую премию по медицине и физиологии в 1960 году, дал следующее определение вирусам: «Вирусы – плохие новости, упакованные в белковую оболочку»
. И действительно, вирусы – не что иное, как крохотная частица генетического материала – один-единственный вид нуклеиновой кислоты (сегментированной или несегментированной, ДНК или РНК) – и оболочка, состоящая из молекул белка. Вирусы размножаются в соответствии с информацией, содержащейся в их нуклеиновой кислоте. Все остальное, кроме ДНК или РНК, неважно и служит главным образом для того, чтобы вирусная нуклеиновая кислота попала в нужное место в нужной клетке организма, в которую вирус внедряется. Не захватив живую клетку, вирусы не могут размножаться. Вирусы, однако, способны проникнуть в любую клеточную форму жизни, от растений и животных до бактерий, грибов и простейших. Вместе вирусы, растения и животные образуют три основные группы, охватывающие все живое. В отличие от животных и растений, состоящих из клеток, вирусы лишены клеточных мембран и поэтому являются паразитами, размножение которых зависит от клетки, которую они инфицируют.
По сравнению с другими организмами, вирусы имеют относительно мало генов. Геномы вирусов кори, желтой лихорадки, полиомиелита, лихорадок Ласса и Эбола, хантавирусов, а также ВИЧ представлены менее чем 10 генами, в то время как вирусы оспы и герпеса могут содержать 200–400 генов. Для сравнения, у бактерий – 5000–10 000 генов, а у человека – примерно 25 000.
Существует мнение, что нуклеиновая кислота вирусов образовалась из генов здоровых клеток. Посредством мутационных изменений, реассортаций и рекомбинаций вирусы затем смогли создать свои собственные генетические структуры. (Рисунок 2.1.) Возможно, некоторые вирусы оставались внутри исходного хозяина, из которого они развились и с которым находились в симбиозе или в близких к симбиозу отношениях. Но по мере того, как вирусы переходили от одного вида к другому или мутировали и образовывали новые генные комбинации, некоторые из этих прежде симбиотических вирусов достигали высокого уровня вирулентности. Исследователи подозревают, что вирус собачьей чумы или чумы рогатого скота у овец мог перейти к другому виду и проникнуть в человеческий организм, в котором они прошли достаточное количество мутаций, став в результате вирусом кори. Эта концепция постулируется из-за того, что геномные последовательности вирусов собачьей чумы, чумы рогатого скота и кори имеют между собой больше общего, чем геномные последовательности других вирусов. Такая взаимосвязь между этими тремя вирусами, скорее всего, возникла в период, когда большие группы людей жили в непосредственной близости от домашних животных. Похожая ситуация способствовала проникновению обезьяньих вирусов в организм человека, где они эволюционировали в вирус ВИЧ, вызвавший СПИД.
Вирус, переносимый обезьянами в организме, однако, не вызывает заболевания. Таким образом, каждый раз, когда он сталкивается с незнакомым организмом, вирус может пройти многочисленные мутации и превратиться в штамм, который вызовет новое и тяжелое заболевание. Например, вирус человеческого гриппа содержит один из трех вирусных гемагглютининов, которые являются внешними гликопротеинами вируса, служащими для того, чтобы прикрепляться к молекулам на поверхности клетки(-ок) хозяина. Обозначенный H1, H2 или H3, гемагглютинин (H) вируса человеческого гриппа может быть вытеснен птичьим гемагглютинином, к примеру H5 у птиц, что приведет к заболеванию, известному нам как птичий грипп. Два внешних белка (гликопротеина) на поверхности вируса гриппа – это H и нейраминидаза (N). Заразные для некоторых птиц, вирусы птичьего гриппа H5 и H7 сейчас впервые инфицировали человеческий организм, приведя к высокой смертности среди первых зараженных и госпитализированных. Штаммы птичьего гриппа H5 и H7, опасные для человека, еще не передаются легко от одного заболевшего к другому, но если вдруг такое произойдет, вполне может разразиться новая пандемия гриппа. Существует и другая вероятность. Кроме H1, H2, H3, H5 и H7 птичий грипп содержит еще 11 молекул гемагглютинина, обладающих способностью заменять человеческий гемагглютинин. Несколько исследователей – хотя их опыты и вызывают множество споров – в качестве эксперимента изменили геномы гриппа или последовательности вирусных геномов, чтобы понять, появляются ли у них новые функции или теряются уже имеющиеся. Положительной стороной этих исследований является возможность предсказывать новые опасные вспышки заболевания и подготавливаться к ним; отрицательной – вероятность создания нового вируса гриппа, вируса-Франкенштейна, который сможет вызвать пандемию. Разумеется, подобные исследования проводятся в строго охраняемых закрытых лабораториях.
РИСУНОК 2.1. Вирусы отличаются друг от друга образом жизни. В процессе развития у них появились различные формы и размеры для размещения генетического материала. Здесь в масштабированном виде сравниваются вирусы, обсуждаемые в данной книге. Они варьируются от самого маленького, полиомиелита, до самого большого – вируса оспы
Чтобы сохраняться и размножаться в природе, вирус должен пройти несколько этапов. Во-первых, ему нужно найти способ проникнуть в подходящую клетку-хозяина. Вирус вступает в контакт с клеткой, которую он будет инфицировать, а затем прикрепляется к рецептору на ее поверхности. Основная функция плазменной мембраны, или внешней «кожи», содержащей ядро клетки, – защита клетки от проникновения в нее вирусов. И все же вирусы часто проходят через эту оболочку со своими вспомогательными белками и генетическим материалом в цитоплазме (внутренней среде) клетки. Затем вирусы проникают внутрь самой клетки, что приводит к сбрасыванию или удалению внешней оболочки вируса. После этого вирус использует благоприобретенную стратегию для экспрессии своих генов, репликации своего генома и собирает свои составляющие (нуклеиновые кислоты и белки) в многочисленные копии, или потомство. По завершении этой последовательности готовые вирионы – вирусные частицы, сформировавшиеся в процессе репликации, – покидают инфицированную клетку. Процесс этот называется почкованием. В некоторых случаях вирус, произведя многочисленное потомство, убивает инфицированную клетку, больше не нуждаясь в ней для создания следующего поколения.
Обычно прикрепление вирусов к клетке и проникновение внутрь нее зависит от функций самой хозяйской клетки и от свойств конкретных вирусных генов. На поверхности клетки находятся рецепторы, к которым вирус, зацепившись за них, прикрепляется при помощи специально развившихся для этого белков. После того как прикрепление завершится, клетка также должна обеспечить вирусам механизм проникновения и путь, по которому они будут проходить внутрь клетки (в ее цитоплазму или ядро), где они смогут реплицироваться.
Как описано выше, первым шагом в инфицировании хозяйской клетки является прикрепление вирусного белка (точнее, последовательности аминокислот в данном белке) к одному из ее рецепторов. Уникальное распределение некоторых рецепторов и либо их наличие только на ограниченном числе типов клеток, либо, наоборот, их большой диапазон, присутствующий на самых разных видах клеток, диктует количество порталов для внедрения вирусов в клетку. Более того, тяжесть болезни, которую может вызвать вирус, распределение инфицируемых зон (органов, тканей, клеток) в хозяйском организме, а также его способность к выздоровлению определяются типом клетки с такими рецепторами и/или ее способностью реплицировать данный вирус. Например, заражение/уничтожение невосполнимых нейронных клеток в центральной нервной системе (ЦНС) или жизненно важных клеток сердца представляет чрезвычайную угрозу для организма. Намного менее опасно поражение клеток кожи, не являющихся столь критичными для выживания и легко заменяемых.
В качестве примера клеточного рецептора можно привести кластер дифференцировки 4 (CD4), изобилующий на поверхности некоторых лимфоцитов (белых кровяных телец), выделяемых тимусом – зобной, или вилочковой, железой, (CD4
T-клетки). Молекулы этого типа присутствуют, правда, не в таком количестве, и на моноцитах/макрофагах (макрофаги – клетки, сражающиеся с инфекцией, активированная форма моноцитов) в крови и на определенных тканях человеческого тела. Молекула CD4 вместе с конкретными молекулами-хемокинами (сигнальными молекулами, индуцирующими направленный хемотаксис – движение) является рецептором ВИЧ. Из-за того, что этот рецептор находится на относительно малом количестве типов клеток, которые ВИЧ может инфицировать, его вирусы атакуют лишь немногие зоны в человеческом организме
. И напротив, молекула CD46 – один из клеточных рецепторов вируса кори (в частности, для вакцинных штаммов вируса кори), наряду с другими рецепторами – SLAM, или CD150, сигнальной молекулой активации лимфоцитов и нектин-4, – присутствует на клетках многих видов
. CD46 обнаруживается на клетках эпителия, который покрывает большинство полостей в организме, включая нос, глотку, дыхательную/респираторную систему и кишечник; на эндотелиальных клетках, выстилающих кровеносные сосуды; на лимфоцитах/макрофагах и на нейронных клетках головного мозга. Молекулы SLAM находятся на клетках эпителия, эндотелия, нейронах, лимфоцитах/макрофагах и дендритных клетках; нектин – на клетках эпителия. Наличие этих рецепторов на таких клетках объясняет репликацию, тропизм, подавление иммунной системы и мозговые явления, проявляющиеся при коревой вирусной инфекции.
Помимо конкретных клеточных рецепторов, вирусы могут проникать в клетку и по-другому. Когда незнакомый агент, состоящий из чужеродных белков (антигенов) – такой как вирус, – внедряется в организм, защитная реакция хозяина вызывает создание антител, которые связываются с антигенами и нейтрализуют их. Благодаря тому, что антитела имеют форму, примерно напоминающую букву Y, они могут прикрепляться к антигену двумя способами: во-первых, своими «руками» (двумя верхними частями Y), при помощи которых они взаимодействуют именно с антигенами на поверхности клетки, используя место связывания (так называемое место связывания фрагмента антигена [Fab2]). Во-вторых, при помощи своей нижней части, известной как область F
, молекулы антител могут сцепляться с рецепторами (рецепторами F
) на определенных клетках. После того как антитела, произведенные иммунной системой в ответ на появление в организме-хозяине вирусных антигенов, объединяются с этими антигенами, образуется инфекционный комплекс «вирус – антитело»
. Прикрепившись к клетке с помощью рецептора F
, вирус может проникнуть в клетку как часть комплекса «вирус – антитело», даже если на поверхности клетки отсутствует подходящий для него рецептор.
Не все клетки, связавшиеся с вирусом и допустившие его внутрь себя, обладают подобающим механизмом для его репликации. Таким образом, прикрепление вируса к рецептору и проникновение его в клетку необязательно ведет к производству вирионов. Итак, подойдет ли конкретная клетка для размножения в ней вируса, зависит по крайней мере от трех факторов. Во-первых, на поверхности должен находиться функциональный рецептор. Во-вторых, в наличии должен быть конкретный вирусный белок, вернее, его пептидная последовательность, чтобы прикрепить вирус к рецептору клетки. В-третьих, клетка должна обладать необходимым механизмом, чтобы способствовать репликации вируса.
Следующий за прикреплением шаг, во время которого вирус может внедриться в клетку, – процесс активный и зависит от запаса энергии. Проникнуть внутрь за секунды после прикрепления вирус может, либо целиком пройдя сквозь плазменную мембрану клетки – процесс, известный как фагоцитоз (или, конкретнее, эндоцитоз), когда вирусная частица заключается в вакуоль или внутренний отсек клетки, – либо сливаясь с мембраной клетки своей внешней оболочкой. Попав внутрь клетки, вирус сбрасывает свой защитный белковый покров и высвобождает свой геном для репликации. За этой процедурой следует репликация вирусного генома, во время которой производство собственных белков хозяйской клеткой переключается на синтез новых вирионов. Чтобы произвести огромное количество своих собственных белков, вирусы должны развить стратегию, которая даст им преимущество для синтеза вирусных строительных материалов, а не строительных материалов клетки-хозяина. Вирусы добиваются этого, либо лишая клетку способности производить свои собственные белки, либо получив преимущество в выборе производимых клеткой материалов, переключив ее на производство именно вирусных компонентов.
Вирусы содержат либо РНК, либо ДНК и, соответственно, подразделяются на РНК- и ДНК-содержащие. РНК-содержащие вирусы – это единственные известные организмы, использующие РНК в качестве своего генетического материала. Они реплицируют свои РНК-геномы двумя уникальными способами: либо путем РНК-зависимого РНК-синтеза (это свойственно большинству РНК-вирусов, то есть кори, гриппу, полиомиелиту и т. д.), либо путем РНК-зависимого ДНК-синтеза, так называемой обратной транскрипции, за которой следуют интеграция ДНК в клеточное ядро, ее репликация и транскрипция (характерно для ретровирусов, таких как ВИЧ).
Важно то, что РНК-репликация – процесс, сильно подверженный погрешностям, так как у этого класса вирусов нет надежного механизма корректировки ошибок посредством удаления нуклеиновых кислот, претерпевших отклонения или мутации. У фермента (полимеразы), катализатора РНК-репликации, корректировочная активность минимальна. В результате уровень погрешностей у РНК-вирусов в 10 000 раз выше, чем у ДНК-содержащих вирусов (то есть герпесвирусов, оспы), чей корректирующий механизм удаляет отклоняющиеся от нормы вирусные ДНК во время ДНК-репликации. Таким образом, для эволюции, селекции и биологии РНК-вирусов последствия этого весьма значительны. Популяции клонов РНК-вирусов никогда не бывают гомогенны напротив, они представляют собой массу родственных РНК-последовательностей, группирующихся вокруг основной последовательности. Это множество обозначается как квазивиды и представляет собой плодородную почву для создания генетических вариантов, которые могут успешно реагировать на селективные сложности, такие, например, как при инфицировании хозяйского организма, резистентного к данному вирусу. В результате часть генетической композиции вируса может измениться в пользу вируса, обеспечивая ему преимущество в этом процессе, который включает постоянную репликацию, непрерывное продвижение и распространение. Таким образом, РНК-вирусы только эволюционируют до миллиона раз быстрее, чем ДНК-вирусы.
Высокая степень погрешности РНК-вирусов ограничивает их геномы в размере, то есть в количестве их генов. Различные РНК-вирусы могут содержать 4–10 генов; для сравнения, ДНК-вирусы (такие, как вирус оспы) имеют сотни генов. ДНК-вирусы, которым нужно относительно немного генов для репликации, несут с собой целый багаж многочисленных генов, которые обеспечивают им селективное преимущество. В этом багаже находятся дополнительные гены, не представляющие жизненной необходимости для репликации вируса, но важные для повышения его выживаемости и способности производить потомство. Следовательно, РНК-вирусам, несущим значительно меньше генов, чем ДНК-вирусы, приходится выполнять столько же задач, что и ДНК-вирусам, у которых генов множество. РНК-вирусы частично выходят из положения, кодируя белки для выполнения множественных задач. Для РНК-вирусов это разнообразие приводит к индивидуальности многочисленного потомства, а также к потере многих вирусов из всей их массы из-за летальных вирусных мутаций. Преимущество РНК-вирусов состоит в быстрой эволюционной реакции.