banner banner banner
Борьба со старением, или Не все мы умрем…
Борьба со старением, или Не все мы умрем…
Оценить:
Рейтинг: 0

Полная версия:

Борьба со старением, или Не все мы умрем…

скачать книгу бесплатно


Рис. 1.2.2. Ковалентная связь молекулы воды

Связываясь с атомом наиболее электроотрицательных элементов (фтор, кислород, хлор и азот), атом водорода приобретает положительный заряд. При этом в отличие от других атомов водород, отдавший электрон, является ядром, абсолютно лишенным электронной оболочки. Размеры ядра в тысячи раз меньше размера атома. Поэтому водород может подойти очень близко к другим атомам – электронная оболочка ему уже почти не мешает. Если рядом находится другой диполь, водород притянется к его отрицательному концу. Так образуется водородная связь. Она в 4–10 раз менее прочна, чем ковалентная и ионная. Водородные связи часто встречаются в молекулах белков, нуклеиновых кислот и других биологически важных соединений, поэтому эти связи играют важную роль в биохимии.

Ковалентная и водородная связи составляют основу биохимии. Используя ковалентную связь, аминокислоты могут связываться в огромные по размеру и весьма сложные белки[31 - Белок мышцы человека титин состоит из 38138 аминокислот. Это самый большой из известных белков.].

Для наиболее продвинутых и любознательных читателей поясним, что для построения сложных белков служит ковалентная связь между атомами азота и углерода.

От одной аминокислоты с конца COOH (карбоксила) отщепляется – OH, а от конца с NH

(аминогруппы) – другой – H, из них образуется вода (H-O-H, или хорошо знакомая всем H

O). Освободившиеся при этом электроны образуют ковалентную связь между C и N. Ковалентную связь между двумя аминокислотами принято называть пептидной[32 - Для тех, кто окончательно забыл школьный курс органической химии, напомним, что на схеме черточка, соединяющая два элемента, обозначает связь, в которой участвуют два электрона.].

Рис. 1.2.3. Образование пептидной (ковалентной) связи между двумя аминокислотами

В белковых цепях атомы водорода, ковалентно связанные с атомами азота (левый конец на рисунке 1.2.3), взаимодействуют с атомами кислорода соседней цепи или другого участка этой же цепи (справа) и образуют водородную связь. Все сложные белки содержат сотни водородных связей, которые сворачивают их в причудливые формы (шары, спирали и т. д.).

Водородная связь играет важнейшую роль в построении молекул ДНК и РНК, задающих и передающих генетический код. ДНК состоит из четырех типов элементов, которые называют нуклеотидами.

Рис. 1.2.4. Двойная спираль ДНК

Каждый нуклеотид состоит из одинакового для всех связующего звена, состоящего из сахара и остатка фосфорной кислоты, и одного из четырех разных кодирующих элементов: аденина, гуанина, тимина или цитозина. Связующие элементы создают между собой прочные ковалентные связи (азот – углерод), вместе образующие спираль, напоминающую штопор. Кодирующие элементы связываются друг с другом водородными связями: аденин с тимином двумя водородными связями, а гуанин и цитозин – тремя. Через мостики кодирующих элементов две спирали ДНК связываются, образуя двойную спираль с перемычками, напоминающую лесенку (рис. 1.2.4).

Так устроена основная молекула жизни!

РНК отличается от ДНК незначительно. Во-первых, в качестве связующего звена используется другой тип сахара – не дезоксирибоза, а просто рибоза. Во-вторых, вместо тимина РНК использует другое основание – урацил.

Ковалентная и водородная связи определяют многие свойства основы нашего тела – воды. Ковалентная связь создает асимметрию молекулы воды и создает ее двухполюсную структуру, кратко диполь. То есть отрицательно заряженный атом кислорода в молекуле воды несколько отстоит от положительных ядер атома водорода (как показано на рис. 1.2.2).

Образование диполя – фундаментальное свойство воды. Если воду поместить в электрическое поле, то диполи начнут переориентироваться так, чтобы ослабить приложенное поле. Такая картина наблюдается во многих средах, но только вода ослабляет внешнее электрическое поле так сильно – в 81 раз!

Рис. 1.2.5. Диполи воды выстраиваются во внешнем электрическом поле так, чтобы его ослабить

На рис. 1.2.5 (слева) показаны диполи воды без внешнего поля, а справа – при наличии поля E

. Диполи воды выстраиваются в направлении, противоположном внешнему полю. В результате оно ослабляется, причем, как показывают измерения, в 81 раз.

Точно так же ослабляются ковалентные и водородные связи в воде. Именно это делает их менее устойчивыми и создает возможности для их разрыва и образования новых связей. Это открывает возможности для различных превращений органических молекул, которые и являются сущностью нашей жизни. Во Вселенной нет больше такой замечательной среды для протекания жизненных процессов, как вода. Так что нам, в который уже раз, исключительно повезло! Воды на Земле оказалось предостаточно для развития жизни.

Рис. 1.2.6. Кластеры водных молекул

Асимметрия обеспечивает образование водородных связей между молекулами воды. Атом водорода, находящийся на положительном полюсе одной молекулы воды, притягивается к атому кислорода, находящимся на отрицательном полюсе другой молекулы воды. Так молекулы воды сцепляются в кластеры (рис. 1.2.6). При охлаждении из этих кластеров образуются кристаллы льда и снежинки. На реально существующем свойстве кластеризации воды основаны спорные гипотезы о «памяти воды» и обоснования действия гомеопатических лекарств[33 - Гомеопатия утверждает, что сила действия гомеопатического средства проявляется при очень большой степени разбавления (потенциирование), даже в том случае, когда в растворе уже не остается молекул лекарственного вещества. При этом объясняют, что целебное действие сохранено, поскольку вода была структурирована лекарством и теперь уже она сама приобрела целебные свойства.].

В клетке вода окружает все органические молекулы. Диполи воды создают между ними энергетические барьеры, которые нужно как-то преодолевать. То есть взаимодействию двух молекул препятствуют электростатические силы отталкивания окружающих каждую молекулу диполей воды.

Клетка представляет собой водную среду в пластичной оболочке, в которой находится множество органических молекул. Все молекулы в клетке постоянно движутся с большой скоростью, но на очень маленькие расстояния, сталкиваясь в основном с молекулами окружающей их воды. Это хаотическое тепловое, или броуновское движение (припоминаете?). Каждая молекула, находящаяся в клеточном «коктейле», пребывает в хаотическом подрагивании или трепетании. Если бы диполи воды не отталкивали бы молекулы и не препятствовали их соединению, органические молекулы слились бы между собой, и жизнь, представляющая собой постоянно идущие химические реакции, прекратилась, так и не начавшись.

Диполи воды как бы изолируют белковые и другие органические молекулы и препятствуют спонтанным, то есть не санкционированным организмом внутриклеточным реакциям. Для того чтобы химическая реакция началась и успешно прошла, нужно каким-то образом преодолеть силу отталкивания диполей воды и создаваемый ими барьер.

Работу фермента легче всего представить себе следующим образом. Фермент представляет собой довольно большую белковую молекулу. Одна его часть временно скрепляется с первой органической молекулой (субстрат), которая должна вступить в реакцию, а другая часть – со второй молекулой. Фермент расчищает пространство между реагирующими молекулами от диполей воды, что позволяет им соприкоснуться и соединиться друг с другом в новое устойчивое соединение – продукт реакции. После этого фермент отпускает новое соединение (продукт) в свободное плавание по клетке. Он вновь готов к работе.

Другие ферменты расщепляют субстрат на отдельные продукты, как показано на рис. 1.2.7. В этом случае фермент создает между частями субстрата щель, в которую проникают надежно разъединяющие продукты молекулы воды.

Рис. 1.2.7. Как работает фермент

В клетке одновременно проходят тысячи химических реакций, и каждую из них обслуживает отдельный фермент, не похожий на другие. Без фермента невозможна биохимическая реакция. Каждая реакция может одновременно проходить в разных частях клетки. Поэтому чем больше ферментов, специфических для этой реакции, тем интенсивнее она будет проходить. Следовательно, влияя на количество ферментов, можно регулировать интенсивность реакции. Каждый белок и, значит, каждый фермент вырабатываются определенным геном. Интенсивность выработки белка, как вы уже, надеюсь, помните, соответствует экспрессии гена, которая регулируется эпигенетическими факторами. Отсюда следует, что мозг, подавая команды через специальные сигнальные молекулы-гормоны или через нервную систему, может эпигенетическими факторами воздействовать на экспрессию генов и, таким образом, регулировать интенсивности всех реакций в клетке.

Это главный механизм, регулирующий все химические реакции в клетке.

1.2.2. Как устроена клетка

В конце предыдущей главы мы описали, как живет клетка в клеточном сообществе, которым, по существу, является тело человека. Она получает от других клеток всё необходимое для жизнедеятельности и сама выполняет свойственные ей в этом сообществе функции. Строение каждой клетки должно обеспечивать:

• выполнение определенных для этого типа клетки функций в организме человека, например производство гормонов для клеток эндокринной железы или желудочного сока для клеток желудка;

• индивидуальность этой конкретной клетки путем построения надежной границы между тем, что находится внутри и снаружи клетки (это свойство любого живого организма; в частности роль границы тела человека играют кожа и внутренние поверхности пищеварительных и дыхательных органов, соприкасающиеся с внешней средой);

• размножение клетки путем деления, то есть создание своей копии (при этом, в отличие от человека, клетка создает свою полноразмерную копию, поэтому перед делением ей нужно накопить в себе все необходимые белки, жиры, углеводы и нуклеотиды в двойном размере).

Для выполнения этих основных задач клетка должна содержать:

• оболочку, надежно отделяющую ее содержимое от внешней среды, но позволяющую полезным веществам и управляющим молекулам проникать в клетку и из клетки в межклеточную жидкость;

• хорошо охраняемое хранилище, содержащее информацию о структуре клетки, ее функциях, структуре белков и т. д., и центр управления производством всех необходимых клетке веществ (белков, жиров, нуклеотидов и т. д.);

• изолированные части клетки (цеха) для производства и сборки необходимых клетке белков, жиров, нуклеотидов и т. д.;

• систему энергообеспечения клетки, поставляющую энергию для всех потребляющих её производственных процессов;

• инфраструктуру, поддерживающую форму клетки и транспортирующую по клетке вещества;

• систему ремонта частей клетки и вывоза разнообразного мусора.

Как мы видим, перечень необходимых частей клетки примерно совпадает с органами и системами человека или частями крупного города, что вполне закономерно, поскольку сложные системы и организмы устроены похожим образом.

Строение клетки вполне соответствует поставленным задачам. Да иначе и быть не могло. Основные части, их расположение и взаимодействия, в принципе, известны давно. Впервые, в 1665 году, клетку увидел в микроскопе английский естествоиспытатель Р. Гук, который, кстати, открыл известный закон Гука и не без оснований претендовал на пальму первенства в открытии закона всемирного тяготения Ньютона. Однако хорошо известно только строение мертвой клетки в неподвижном статическом положении. А вот изменения структуры, динамика клетки изучены пока очень слабо. Поэтому в этом разделе мы сначала рассмотрим структуру мертвой клетки в статике, а потом обсудим, что происходит в живой клетке.

Как мы уже говорили, клетки имеют очень разные формы и размеры. Каждый из нас не раз держал клетку в руках, очищая и съедая куриное яйцо. Клетки человека, конечно, намного меньше. Их примерный средний размер – 20 тысяч нанометров[34 - Нанометр – 10

м, одна миллиардная часть метра.]. Мы все размеры будем измерять в нанометрах (нм) для удобства сравнения. Например, толщина человеческого волоса – 80 тысяч нанометров. Клетки бактерий примерно в 10 раз меньше человеческих, вирусы – где-то 100 нм (это размер вируса гриппа), белки – около 2–5 нм, а нуклеотиды и сахара – 0,5–1 нм. Так что по объему молекула белка меньше клетки в 60 миллиардов раз, и для белков и, тем более, для других более мелких молекул клетка – огромный город. (Человек ростом около 1,7 м примерно во столько же раз меньше крупного города радиусом 17 км, во сколько средний белок меньше клетки).

Рис. 1.2.8. Структура клетки

Наша цель – понять, как устроена клетка и как она функционирует, для того чтобы выделить в этих процессах наиболее вероятные факторы старения нашего организма.

Для наглядности приведем одно из известных схематических изображений структуры клетки (рис. 1.2.8).

Клетка отделена от других клеток и межклеточной жидкости оболочкой-мембраной, которая состоит из двух слоев водоотталкивающих липидов (жиров). Она способна пропускать только определённые вещества и только в определенном направлении. Через неё внутрь клетки может медленно просачиваться глюкоза, аминокислоты, жирные кислоты и ионы. Причём скорость просачивания может регулироваться.

Внешняя липидная оболочка клеток покрыта полисахаридами и белками, которые присоединены к липидам. Белки покрывают поверхность мембранной оболочки наподобие мозаики. К ним так же часто прикреплены полисахариды. Часть белков образуют в мембране ходы, через которые могут проникать внутрь клетки или выводиться вовне строго определенные молекулы. Другие белки служат органами осязания клетки – рецепторами. Они могут распознавать подходящие к клетке чужеродные молекулы.

В клетке можно выделить две основные части – ядро и внутриклеточное пространство, или цитоплазму, в которой плавают различные органы клетки – органеллы. Ядро отделено от цитоплазмы двумя ядерными мембранами, которые так же, как и клеточная мембрана, состоят главным образом из жиров-липидов. Все клеточные и внутриклеточные мембраны имеют толщину около 7 нм.

Теперь о главном. Клетка должна постоянно производить белки для восполнения собственных расходуемых или разрушающихся в процессе эксплуатации белков, для производства белков дочерних клеток, образующихся при делении, и белков, которые будут использоваться организмом вне данной клетки. Белок – сложнейшая трехмерная конструкция, состоящая иногда из многих сотен аминокислот, причудливо свернутых и переплетенных. При этом для выполнения предназначенной конкретному белку функции важна не только последовательность аминокислот в белке, но и их взаимное расположение в трехмерной конфигурации. Для производства белка, как и любого изделия такой сложности, необходим проект и инструкция по его сборке.

Общеизвестно, что инструкции по сборке белков закодированы в ДНК, находящейся в ядре клетки. Как огромная молекула ДНК (около 2 метров длины) помещается в маленьком ядре (диаметр всего 6000 нм, в 330 тысяч раз меньше длины ДНК), мы расскажем в следующем разделе.

Сегодня уже почти каждый знает, что код инструкции состоит из четырех букв – T, A, C и G[35 - Это первые буквы названия нуклеотидов, составляющих ДНК. T – тимин, A – аденин, C – цитозин, G – гуанин.], образующих сцепленные друг с другом пары нуклеотидов T – A, C – G. Полный код содержит примерно 3 млрд пар таких букв (нуклеотидов), которые по их предназначению можно разбить на отдельные группы – гены. Каждый ген – это участок ДНК, который является инструкцией по производству соответствующей ему молекулы РНК (рибонуклеиновая кислота). РНК очень похожа на ДНК, только тимин в ней заменен на близкий по строению и функциям урацил. Принято считать, что РНК возникли в процессе эволюции раньше ДНК и 3–4 миллиарда лет назад мир органических соединений был представлен только молекулами РНК. Говорят даже о мире РНК, который предшествовал началу жизни.

Однако РНК имеет только одну цепочку. Она может образовывать две связанные цепи как ДНК, но такая молекула не будет достаточно устойчивой. Поэтому для передачи наследственной информации лучше подходит устойчивая и стабильная ДНК. В то же время РНК оказалась незаменимым инструментом для передачи информации в процессе производства белков и регулирования процессов внутри клетки.

Теперь опишем производство белка в клетке по шагам.

1. Упакованный в цепочке ДНК ген, кодирующий определенный белок, распаковывается служебными белками и выводится в рабочую область. В ядре к нему подходит специальный фермент (белок) РНК-полимераза. Она узнает участок гена, называемый промотором, и, связываясь с ним, последовательно производит молекулу РНК, используя ген ДНК как шаблон. В результате получается молекула РНК[36 - Этот тип РНК называют матричными РНК, или м-РНК. В ней содержится и переносится полная информация о гене, на основе которого, как с матрицы, производится белок.], в которой та же последовательность букв, что и в гене ДНК, только на месте тимина стоит урацил. Производство м-РНК на основе гена ДНК принято называть транскрипцией[37 - Транскри?пция – «переписывание», от лат. trans– «через, пере-» и scribo – «черчу, пишу».]. Информация транскрибируется, то есть переписывается из кода ДНК в почти такой же код РНК.

Рис. 1.2.9. Синтез белка в рибосоме

2. Построенная таким образом молекула РНК покидает ядро через поры в ядерной мембране и попадает в эндоплазматическую сеть (ЭПС), которая представляет собой сложную систему мельчайших пузырьков, полостей, камер и канальцев. ЭПС занимает от 30 до 50 % объема клетки.

3. На стенках ЭПС располагаются примерно 10 млн рибосом – молекулярных комплексов, производящих белки по инструкции, принесенной РНК. Рибосома состоит из белков, соединенных со специальными РНК[38 - Этот тип РНК называют рибосомными РНК.]. Она состоит из двух частей и по форме напоминает трубку, лежащую на телефоне (см. рис. 1.2.9). Матричная РНК (м-РНК), попавшая в эндоплазматическую сеть, втягивается в ближайшую рибосому между ее двумя частями («трубкой» и «телефоном»), и нуклеотид за нуклеотидом проталкиваются через нее.

Каждая из 20 аминокислот кодируется тремя нуклеотидами – кодонами. Например, кодон GCU (гуанин – цитозин – урацил) кодирует аминокислоту аланин, а AAA (аланин – аланин – аланин) – лизин[39 - Разные кодоны могут кодировать одну и ту же аминокислоту. Возможных кодонов 64, а аминокислот 20. Например, аланин кодируется не только GCU, но и GCU, GCA и GCG кодонами.]. Получив команду в виде кодона, например AAA, специальная транспортная РНК (т-РНК) ищет в растворе цитоплазмы нужную аминокислоту, в нашем случае аланин, и транспортирует ее к рибосоме[40 - Каждая т-РНК может соединиться только с одной аминокислотой.]. Рибосома обеспечивает присоединение аланина к уже синтезированной части белка. Фактически рибосома работает как молекулярная машина по сборке белков. Она транслирует код из четырех букв-нуклеотидов и белковый код из 20 аминокислот. Этот процесс называют трансляцией.

4. Из рибосомы в ЭПС выходит только что собранный белок. Обычно он проходит еще довольно длительный путь досборки и обработки. Каждая камера ЭПС имеет свой специфический набор ферментов, обеспечивающий строго определенные химические реакции. Белок из рибосомы проходит через определенную последовательность камер ЭПС, подобно тому как изделие проходит заводские цеха в процессе обработки. Для транспортировки по ЭПС и дальше по клетке белок обычно погружен в пузырек-везикулу, который «везет» по клеточным путям – трубочкам и нитям – специальный транспортный белок.

5. Белки образуются и обрабатываются в покрытой миллионами рибосом шероховатой ЭПС. В то же время для выполнения функций клетки и ее деления необходимы также полисахара и липиды (жиры). Они производятся из простых сахаров, жирных кислот и других элементов в гладкой ЭПС, которая по строению похожа на свою шероховатую коллегу.

6. После прохождения всех производственных процессов в ЭПС белок транспортируется в комплекс Гольджи (см. рис. 1.2.9). При этом белки имеют сигнальные химические метки (в виде олигосахаридов), которые «сообщают» комплексу Гольджи, что с ними делать. Комплекс Гольджи, подобно ЭПС, состоит из множества полостей, которые из-за их формы принято называть цистернами, пузырьков, канальцев и трубочек. Сюда в пузырьках-везикулах транспортируются белки из шероховатой ЭПС и липиды и полисахара из гладкой ЭПС. Здесь белки, жиры и сахара взаимодействуют, белки модифицируются и готовятся к транспортировке в другие части клетки и в межклеточное пространство. Если в функции клетки входит производство гормонов и других важных для всего организма веществ, комплекс Гольджи в них сильно развит и занимает больше места, чем в обычных клетках. В комплексе Гольджи белки проходят «контроль качества». Прошедшие контроль белки получают специальные метки из полисахаридов, которые одновременно указывают маршрут дальнейшей транспортировки. Белки, не соответствующие требованиям «контроля по качеству», отсортировываются и отправляются на утилизацию в специальные органеллы – лизосомы, которые формируются в этом же комплексе.

7. Лизосомы – маленькие органеллы (диаметром от 200 до 800 нм), содержащие набор ферментов, которые синтезируются на шероховатой ЭПС и перемещаются в аппарат Гольджи. Там происходит их модификация и упаковка в мембранные пузырьки, которые после отделения от аппарата Гольджи, собственно, и становятся лизосомами. Лизосома может содержать от 20 до 60 различных видов ферментов. В лизосомах негодные белки и другие вещества расщепляются и перевариваются в формы, пригодные для дальнейшего использования. Остатки выбрасываются из клетки или консервируются для хранения.

8. Наконец, большинство производственных процессов требует затрат энергии (всё как на обычном заводе). Источником энергии в клетке являются митохондрии, производящие молекулы АТФ, доставляющие энергию во все части клетки. Об этом мы подробно поговорим в следующих разделах этой главы.

Теперь мы представляем себе все наиболее важные внутриклеточные процессы. Общую схему взаимосвязей этих процессов необходимо запомнить.

• Записанная в гене в кодах ДНК информация транскрибируется в коды РНК.

• В рибосоме информация транслируется из кодов РНК в белковый код аминокислот – синтезируется белок.

• В ЭПС под действием ферментов белки обрабатываются и собираются.

• В комплексе Гольджи белки модифицируются и сортируются.

• Подходящие по качеству белки транспортируются в везикулах к месту назначения.

• Бракованные белки утилизируются (перевариваются и расщепляются) в лизосомах, которые формируются в комплексе Гольджи.

Первые два выделенных положения настолько важны, что они получили почетное звание «Центральная догма молекулярной биологии».

На первый взгляд, идущие в клетке процессы очень похожи на производственные процессы на крупном заводе. Сначала в центре управления, которым в клетке является ядро, формируется план и техническое задание на изготовление изделия, затем она трансформируется (в клетке – транскрибируется) в техническую документацию и передается в цеха. Здесь изделие (в клетке – белок) собирается из подвозимых с других предприятий деталей (в клетке это происходит в рибосоме), потом еще в нескольких цехах проводится дополнительная обработка изделия (в клетке – в ЭПС), его упаковка и технический контроль (в клетке – в комплексе Гольджи). Забракованная часть продукции разбирается (в клетке – в лизосомах) и по возможности вновь используется в производственных процессах, а остатки, отходы производства выбрасываются (из клетки) в специально отведенные места (в межклеточное пространство).

К сожалению или к счастью, жизнь устроена намного сложнее простых схем. И это проявляется не только в клетке, но и в экономических системах.

Клетка представляет собой водный раствор белков и других органических веществ, ограниченный гибкой оболочкой и разграниченный внутри еще великим множеством оболочек-мембран на разнообразные камеры, цистерны, пузырьки и т. д. Как и в любом химическом растворе, белки и другие молекулы находятся в постоянном движении. Они со скоростью самолета пролетают микроскопические расстояния и сталкиваются друг с другом, молекулами воды, оболочек и органелл. Трубочки и нити, по которым транспортируются белки, постоянно разбираются и вновь строятся, уже в других направлениях. Камеры, цистерны и пузырьки то сливаются друг с другом, то вновь образуются. Всё в клетке движется и изменяется.

Если рассматривать клетку в соответствующем движению молекул масштабе времени (микросекунды), мы увидим только бурлящий раствор хаотически двигающихся и постоянно сталкивающихся объектов. Вспомните известное всем хаотичное броуновское движение. Точно так же в газе молекулы беспорядочно сталкиваются друг с другом и за этими столкновениями не угадывается никакой закономерности. Но стоит подняться на уровень выше, рассмотреть статистику, посмотреть на изменения статистических параметров, и выявятся простые и всем с детства знакомые газовые законы Гей-Люссака, Бойля-Мариотта и др.

Аналогично обстоят дела в экономических системах. При производстве любого сложного изделия, например автомобиля, детали и материалы приходят на завод со всего света. Если проследить за движением отдельных деталей, оно может показаться хаотическим. Поставщики могут довольно быстро меняться, и на карте поставок будут возникать и исчезать различные маршруты. На всё это накладываются кризисы, забастовки, отзывы бракованной продукции – в общем, беспорядок. Участвующие в экономической деятельности люди действуют в соответствии с собственными интересами и вроде бы совершенно свободны в своих действиях. Однако каждое утро большинство из них идет на довольно скучную работу, потом покупает еду, другие товары, и так изо дня в день. При этом, как это ни удивительно, почти всем людям (хотя бы в развитых странах) находится работа, кто-то производит для них нужные товары – и «так весь мир вертится»[41 - Шекспир У. Гамлет.]. Экономисты считают, что порядок на хаотичном рынке наводит некая «невидимая рука»[42 - Смит А. Исследование о природе и причинах богатства народов. 1776 г.].

Физикам при определенных упрощениях удалось построить элегантные математические мостики от хаотичных молекулярных взаимодействий к статистически обоснованным газовым законам. В экономике также изрядно потрудились математики, и уже имеется набор математических моделей, объясняющих, хотя и при целом ряде допущений, действие «невидимой руки рынка». В молекулярной биологии клетки до этого еще очень далеко. Пока нет не только законченных математических моделей, но и ясного понимания молекулярных клеточных процессов. Что ж, и объект исследований у них намного сложнее.

В следующих разделах этой главы мы подробно остановимся на важнейших частях клетки и решающих моментах ее жизни. Мы будем главным образом оставаться в рамках простых и понятных макросхем, но также описывать нижний молекулярный уровень жизни клетки. Это необходимо для понимания процессов клеточного старения.

1.2.3. Как размещена в ядре и работает ДНК

Каждое живое существо стремится к двум целям: сохранить и продлить свое существование и распространить свою персональную, исходящую от него информацию. При этом первая цель, кажущаяся важнейшей, часто уступает главенство второй.

Миллиарды лет основным способом распространения персональной информации была передача своего генетического кода потомкам. Поэтому всё живое стремится произвести максимальное количество потомков и по возможности обеспечить им максимально большой и комфортный ареал распространения.

Люди научились распространять информацию о себе другими способами и очень этим увлеклись. Цари и вожди повсеместно ставили свои статуи, открывали в свою честь памятники и храмы. Последователи Герострата сжигали храмы и пытались убить вождей и президентов. Художники, актеры и писатели мечтали прославиться своими действительными и мнимыми талантами. В XXI веке возможностей распространять информацию о себе стало многократно больше. Каждый теперь может стать писателем-блоггером, запечатлеть себя в различном окружении и выложить фото в социальных сетях и т. д. Эти новые колоссальные возможности составили конкуренцию традиционному генетическому способу распространения индивидуальной информации, что не замедлило сказаться на демографии, особенно в развитых странах и крупных городах.

Таким образом, распространение информации – важнейший процесс как эволюции живых организмов, так и человеческой цивилизации. Признавая невероятно быстрые успехи человечества в этом вопросе, мы всё же должны почтительно склонить голову перед достижениями эволюции.

Природа или Бог, как кому нравится, организовали этот процесс с невероятной красотой и изяществом. Главной находкой эволюции стала молекула ДНК (рис. 2.4), которая обладает целым рядом необходимых для распространения информации свойств:

• во-первых, ДНК может легко и почти безошибочно создавать свою копию (репликация);

• во-вторых, ДНК гораздо более устойчива к повреждениям, чем РНК; при повреждении водородная связь между тимином и аденином не разрывается, а переходит в другую конфигурацию (одни атомы в связи заменяются на другие), при этом цепь ДНК сохраняется и может восстановиться в прежнем виде;

• в-третьих, ДНК может быть чрезвычайно плотно упакована и относительно легко распаковывается при необходимости.

Молекула ДНК человека разделена в ядре на 46 частей, названных хромосомами. Напомним, что в молекуле ДНК около 3 млрд пар нуклеотидов. Они делятся на 46 хромосом так, что в каждой хромосоме насчитывается от 50 до 245 миллионов пар нуклеотидов. В ДНК около 20 тысяч генов, которые делятся по хромосомам – примерно от 400 до 3500 генов в хромосоме.

Хромосомы образуют 23 пары. В каждой паре одна хромосома – от матери, одна – от отца. 22 пары хромосом имеют одинаковые наборы генов, а 23-я пара, половая, содержит у женщин – одинаковые хромосомы, а у мужчин – разные. В ней у мужчины имеются длинная женская X-хромосома от матери и короткая Y от отца. Парные (гомологичные) хромосомы имеют одинаковые наборы генов. Это создает дополнительную устойчивость: при дефекте гена на одной хромосоме (например, отцовской) будет работать ген, расположенный в другой (в нашем примере – материнской) хромосоме.

Хромосома состоит из участка ДНК с набором генов и белковых структур, на которые наматывается молекула ДНК. Именно эта чудесная упаковка, или, как ее принято называть, конденсация ДНК, позволяет хранить двухметровую спираль в мизерном объеме ядра, диаметр которого, как мы уже говорили, примерно в 60 тысяч раз меньше длины этой спирали.

В упаковке (конденсации) ДНК можно выделить несколько уровней. Сначала молекула ДНК обматывается вокруг белков – гистонов[43 - Гистоны – белки, состоящие из аминокислот лизина и аргинина и образующие шаровидные структуры, вокруг которых намотана молекула ДНК, крепящаяся к ним водородными связями.], образуя структуру, похожую на бусы. Ее называют хроматином[44 - Хроматин (от др. – греч. «цвета») – нуклеопротеид, составляющий основу хромосом и состоящий из ДНК, РНК и белков (главным образом гистонов). Его нетрудно окрасить, отсюда название.]. Далее эти бусы наматываются на белковую основу наподобие катушки, образуя тонкую нить, многократно сворачивающуюся в петли. До конца процесс упаковки ДНК науке пока не известен, и вам нужно запомнить только тот факт, что ДНК в ядре чрезвычайно плотно и замысловато упакована.

В тех местах, где упаковка ДНК плотная, работа генов невозможна. Ведь работа (активность, экспрессия генов) обеспечивается специальными ферментами (РНК-полимеразой), которые должны подойти вплотную к уже неупакованной и расплетенной молекуле ДНК. Эти ферменты присоединяются к определенному участку гена – промотору, с которого начинается транскрипция участка ДНК в матричную РНК. Промотор и, следовательно, весь ген могут быть заблокированы (деактивированы), если к нему, естественно под действием фермента, присоединилась метильная группа (CH

). Этот важнейший эпигенетический механизм блокирования генов именуется метилированием. Обратный процесс, происходящий под действием другого фермента (деметилирование), приводит к экспрессии (активации) гена.

Мы уже говорили о той огромной роли, которую играет эпигенетика в жизни клеток и всего нашего организма. Фактически эпигенетика занимается включением и выключением различных генов, их активацией и деактивацией. Так вот, основные механизмы эпигенетики – это, во-первых, изменение расположения гена в хромосоме, точнее его деконденсация (разупаковка) и перемещение в свободное пространство с тем, чтобы к нему могла подойти РНК-полимераза, и, во-вторых, освобождение промотора от мешающей началу работы РНК-полимеразы метильной группы (если она там была). Для особенно любознательных заметим, что существует еще несколько механизмов активации и дезактивации (экспрессии и репрессии) генов. Например, ацетилирование гистонов[45 - Ацетилирование – процесс передачи ацетил-группы от одной молекулы (в данном случае ацетил-коэнзим А) к другой.] ведет к ослаблению химических связей гистона и ДНК, стимулирует деконденсацию и активацию соответствующего гена.

В хромосомах всех живых существ выделяются две структуры, играющие важную роль в их жизнедеятельности. В центре хромосом расположены центромеры, а по ее концам – теломеры (в переводе с древнегреческого – «концевая часть»). Центромеры и теломеры представляют собой многократно повторяющиеся небольшие последовательности нуклеотидов.

Центромеры в буквальном и фигуральном смысле занимают центральное место в делении клетки. Теломеры образуют своеобразные колпачки на концах хромосом, которые защищают их от повреждений. Связанные с теломерами белки прикрепляют концы хромосомы к ядерной оболочке и иногда к ядрышкам (о них мы расскажем чуть позже). Теломерные повторы всех позвоночных состоят из шести нуклеотидов TTAGGG, повторы всех насекомых – TTAGG, повторы большинства растений – TTTAGGG.