banner banner banner
Борьба со старением, или Не все мы умрем…
Борьба со старением, или Не все мы умрем…
Оценить:
Рейтинг: 0

Полная версия:

Борьба со старением, или Не все мы умрем…

скачать книгу бесплатно


В молодости длина теломер у человека составляет около 15 тыс. пар нуклеотидов. При каждом делении клетки длина теломер сокращается. Это объясняется тем, что ДНК-полимераза, копирующая ДНК при делении, первоначально занимает часть теломеры, к которой первоначально прикрепляется. Поэтому она не может скопировать эту часть. Клетки перестают делиться при длине теломеры 2 тыс. пар нуклеотидов, когда ДНК-полимеразе уже не на чем первоначально закрепиться. Однако человек обычно умирает раньше, с длиной теломер 5–7 тыс. пар нуклеотидов. Тем не менее связь длины теломер со временем жизни очевидна и теломерная теория старения человека остаётся одной из наиболее популярных.

В ДНК есть ещё один тип фрагментов, вызывающих у геронтологов повышенный интерес. Это транспозоны, или «прыгающие гены», – участки ДНК, способные менять свое положение в молекуле (транспозицию). У человека транспозоны составляют до 45 % всей ДНК и по типу являются ретротранспозонами. Отличительной чертой ретротранспозонов является транскрипция их кодов в РНК, как у обычных генов, а затем обратная транскрипция из РНК в ДНК в другом месте молекулы ДНК. Излишняя подвижность ретротранспозонов, их способность производить свои копии, которые могут портить ДНК, вынудила клетку использовать механизмы избавления от них. В частности, для этого используется особый тип коротких РНК – пивиРНК, помогающие специальному белку распознать опасность и дезактивировать транспозон.

Рис. 1.2.10. Хромосомные территории (вид с использованием микроскопа – сверху и схема – внизу)

«Прыгающие гены» считаются причиной около 100 различных заболеваний. Их активность усиливается с возрастом, что внушает подозрения в том, что они могут быть важными факторами старения. Основанную на этих подозрениях теорию старения мы рассмотрим в следующей части.

Итак, ДНК в хромосоме всегда находится в более или менее компактной форме. Однако плотность укладки или степень конденсации ДНК неодинакова в различные периоды жизни клетки. Перед делением клетки конденсация ДНК, то есть плотность упаковки, значительно увеличивается. Клетка собирается перед самым ответственным моментом в своей жизни. В этот момент ДНК в хромосомах становится таким плотным, что их можно увидеть в обычный световой микроскоп. В период между делениями (в интерфазе) каждая хромосома занимает в ядре вполне определенную область (хромосомную территорию).

На рис. 1.2.10 видно (верхнее изображение), что хромосомные территории имеют нечеткие границы. Они имеют пористую границу, через которые проникают различные белки и матричная РНК. Отцовская и материнская хромосомы часто располагаются на отдаленных друг от друга территориях. Между хромосомными территориями расположены межхромосомные пространства, в которых располагаются группы ферментов, и активно идет работа генов: производится матричная РНК. Работающие гены находятся обычно в распутанном, деконденсированном состоянии и располагаются ближе к границам хромосомной территории.

В заключении этого раздела упомянем самую маленькую, но очень важную ядерную структуру – ядрышко. Оно не имеет мембраны и представляет собой сгусток белков (на 60 %) и нуклеотидов. В ДНК имеются гены, ответственные за образование специфической РНК для производства рибосом – рибосомных РНК или рРНК. Эти гены называют ядрышковыми организаторами[46 - У человека ядрышковые организаторы располагаются в коротких плечах 13, 14, 15, 21 и 22 хромосом.]. Вблизи них располагаются ядрышки. Их число может меняться в зависимости от типа клетки, но обычно их довольно много (сотни). Основная функция ядрышек – производство рибосом, важнейших органелл, синтезирующих белки.

Как и всё в клетке, ядрышки – динамичные структуры. При начале деления клеток и конденсации (упаковке, уплотнении) хромосом они исчезают, поскольку работа генов прекращается. После деления они возникают, растут, могут сливаться друг с другом. Они могут перемещаться в межхромосомное пространство, структура которого, так же как и границы хромосомных территорий, весьма подвижна и динамична.

1.2.4. Как поддерживаются форма и структура клетки, ее энергообеспечение и управление внутриклеточными процессами

Как мы уже говорили, клетка напоминает медузу с гибкой оболочкой, наполненной цитоплазмой. Оболочка клетки – чрезвычайно сложная структура, состоящая из двух слоев жиров (липидов), погруженных в них белков, а также расположенных с внешней стороны клетки рецепторов.

Рис. 1.2.11. Схема оболочки клетки

Как видно на рисунке 1.2.11, липиды обращены гидрофильными[47 - Гидрофильность – от др. – греч. «гидро» – «вода» и «фил» – «любовь». Хвостики липидов гидрофобные, то есть отталкивают воду.] (хорошо связывающимися с водой) головками к внеклеточной и внутриклеточной среде, а гидрофобными хвостиками – друг к другу. Эти два слоя называют мембраной. Толщина клеточной мембраны – 5–7 нм. Мембрана – универсальная структура. Такая же мембрана ограждает ядро и различные органеллы. При этом неверно представлять себе мембрану как стену из липидов. На самом деле это чрезвычайно подвижная и гибкая оболочка с множеством встроенных между липидами белков, образующих различные проходы и поры. Относительно небольшие молекулы – глюкоза, аминокислоты, жирные кислоты и ионы – могут проникать через мембрану. Проникновение идет самопроизвольно от областей с большей концентрацией к областям с меньшей концентрацией. Однако эти процессы могут контролироваться мембраной.

Другие молекулы могут проходить только при помощи трансмембранных белков, образующих контролируемые проходы в оболочке. Обычно прохождение таких молекул требует затрат энергии. Примером прохождения веществ от областей с меньшей концентрацией к областям с большей концентрацией, требующим потребления энергии, может служить калиево-натриевый насос, представляющий собой фермент Na

/K

-АТФ-аза. Этот фермент присоединяет с внутренней стороны мембраны три иона Na

. При помощи получаемой извне от молекулы АТФ энергии три иона Na

переносятся на внешнюю сторону мембраны, где они отщепляются и присоединяется два иона К

. Один заряд лишний. Так возникает разность потенциалов между внешней и внутренней частью оболочки клетки. После этого фермент возвращается в исходную позицию, а ионы К

оказываются на внутренней стороне мембраны. В результате постоянного действия калиево-натриевого насоса концентрация калия в наших клетках в 30 раз больше, чем в плазме крови, а концентрация натрия, наоборот, в 15 раз меньше, чем вовне. Na связывает воду, а K пытается вывести ее из клетки. Этот насос обеспечивает циркуляцию жидкости из межклеточного пространства в клетку и обратно. Вместе с ней циркулируют и питательные вещества внутрь клетки, а из клетки – продукты жизнедеятельности клетки. Работа калиево-натриевого насоса потребляет примерно треть всей энергии, расходуемой клеткой.

Рецепторы – белки, прикрепленные к внешней части мембраны, – служат для клетки органами чувств. Часто к белкам-рецепторам прикрепляются углеводы-сахара, наподобие антенн. К рецепторам могут прикрепляться различные молекулы, передающие сигнал, например гормоны. После связывания рецептор передает сигнал внутрь клетки.

К оболочке клетки в разных местах прикреплены сети трубочек и нитей, образующих цитосклелет (напомним, что цито – это «клетка» на латыни). По трубочкам и нитям осуществляется транспорт белков в пузырьках (везикулах[48 - Строго говоря, везикулы – это маленькие органеллы, в которых запасаются или транспортируются питательные вещества.]). К сожалению, в молекулярной биологии множество иностранных слов, например нить называют филаментом. На русском всё можно объяснить проще, но иностранные термины уже прочно укоренились, и я их привожу, чтобы вы могли понимать специальную литературу.

Итак, у клетки есть оболочка и скелет, как у человека, определяющий её форму. По нитям и трубочкам скелета буквально ходят, передвигая ножки, специальные молекулярные носильщики, которые в пузырьках транспортируют белки и другие полезные вещества к месту их использования. Его адрес четко указан в прикрепленной к пузырьку молекулярной метке. Простая и понятная модель.

Однако развитие науки идет по извилистым дорожкам, часто сворачивающим в самых неожиданных направлениях. Восхитительно красива и проста была планетарная модель атома Резерфорда! В центре атома, как всегда, ядро. Вокруг, подобно планетам, вращаются электроны. Но, как мы уже говорили и будем еще не раз говорить, жизнь гораздо сложнее. Электроны, вообще оказались не частицами, а сложными квантовыми объектами. И они вовсе не вращаются вокруг атомного ядра. Однако простая резерфордовская модель атома до сих пор служит для объяснения множества явлений не только инженерам, но и профессиональным физикам.

Такая же ситуация и с клеткой. Приведеная нами простая статическая модель не описывает многие сложные динамические процессы в клетке. В реальности жёсткого, неподвижного скелета клетки, подобного человеческому, не существует. Как и всё в клетке, скелет представляет собой очень подвижную и быстро меняющуюся структуру. Образующие его трубочки и нити быстро собираются, разбираются и собираются в новом месте. Ведь весь необходимый для сборки материал в изобилии имеется в цитоплазме клетки. Ничего специально подвозить не нужно: собрал транспортную нить, использовал и разобрал. Точно так же пузырьки и камеры эндоплазматической сети образуются, соединяются друг с другом, постоянно меняя конфигурацию. Этот необычный для привычной нам относительно статичной экономической инфраструктуры, например системы дорог, динамизм объясняется различным масштабом времени процессов, идущих в клетке и в человеческом обществе. Если фотографировать мировую сеть дорог со скоростью один кадр – один год, мы так же, как в клетке, увидим постоянное изменение дорожной сети, создание новых дорог в новых направлениях, а также запустение и разрушение некоторых старых дорог.

Когда мы описываем долгосрочные и долго текущие процессы, такие как старение, удобно и вполне достаточно представлять себе клетку в несколько упрощенном статическом варианте. Вообще, подбор модели, адекватной по сложности поставленной цели исследования и процессу, – важнейший навык ученого, в решающей степени обеспечивающий успех его работы.

Некоторые ученые считают, что сложность некоторых живых конструкций, которые называются молекулярными машинами, принципиально нельзя уменьшить, убирая для упрощения то или иное звено. Эти системы называют системами неснижаемой сложности. Если убрать какую-либо часть или деталь в системе неснижаемой сложности, вся система не сможет работать. Например, системой неснижаемой сложности является мышеловка: уберите любую деталь, и мышеловка не будет ловить мышей.

К системам неснижаемой сложности относятся молекулярные машины, которых немало в клетке. Одну из таких машин – натриево-калиевый насос – мы уже описали. Другую машину – молекулярного носильщика пузырьков с белками – недавно упомянули. Жгутики, при помощи которых движутся некоторые бактерии и сперматозоиды, вращаются молекулярным моторчиком. Вся машина состоит из более чем 40 деталей, причем ни одну из них нельзя убрать без полной поломки всей системы. Здесь встает вопрос: как в процессе эволюции, которая в классическом варианте идет путем небольших пошаговых улучшений системы, могли возникнуть такие сложные молекулярные машины?

Рис. 1.2.12. Схемы работы АТФ-синтазы

Наиболее важной молекулярной машиной в человеческой клетке является АТФ-синтаза – фермент, производящий молекулу аденозинтрифосфорной кислоты (АТФ), которая служит универсальным источником энергии в живых клетках. АТФ – относительно небольшая молекула, проникающая во все уголки клетки (рис. 1.2.12). Она расщепляется на аденозиндвуфосфорную кислоту (АДФ) и фосфор с высвобождением энергии, которая обеспечивает все идущие в клетке химические реакции – синтез белков, перенос веществ через мембраны и др.

Время жизни молекулы АТФ в клетке составляет в среднем 30 секунд, а при физических нагрузках – около секунды. За сутки в человеческом организме распадается и вновь синтезируется количество АТФ, примерно равное 40 кг.

Синтез АТФ происходит в специальных органеллах клетки – митохондриях, число которых в клетке зависит от ее энергопотребления и в среднем равно 500. На многочисленных складках мембраны митохондрии располагается множество АТФ-синтаз, представляющих собой крайне миниатюрный (примерно 10 нм) станок с электромоторчиком. Как показано на рисунке, неподвижная часть электромоторчика – статор – погружена в липидный слой, который служит изолятором. Между межмембранным пространством и внутренней стороной мембраны митохондрий поддерживается разность потенциалов, которая, собственно, и дает энергию для работы микростанка.

Разность потенциалов обеспечивает постоянный ток ионов водорода H

(или, что то же самое, протонов). Этот ток точно так же, как в обычных электромоторах, вращает группу молекул, играющую роль ротора. Через специальный молекулярный привод вращение ротора приводит в движение молекулярный станок. Он захватывает молекулу АДФ, у которой только две молекулы фосфора, и с силой, как прессом, присоединяет к ней третью молекулу фосфора. Обе эти молекулы обычно находятся во внутриклеточной жидкости в митохондрии. Если какой-то части в жидкости не хватает, станок останавливается, чтобы зря не расходовать энергию. После соединения молекула АТФ выпихивается из станка в свободное плавание по клетке.

Удивительно, что человек в XIX веке изобрел точно такой же электродвигатель, который в микроварианте работал во всех живых клетках миллиарды лет. Видимо, продуктивных идей во Вселенной не так уж много!

Остается понять, как создается разность потенциалов, или, что то же самое, электродвижущая сила (ЭДС – припоминаете?), обеспечивающая ток протонов. Для этого, конечно, необходима энергия. В наших электростанциях турбины движутся за счет сжигания угля, газа или ядерного топлива. В митохондриях сжигается пища. Причем в митохондриях «сгорают» (окисляются) углеводы, белки и жиры в одной и той же замечательной топке, названной циклом Кребса.

Поскольку температура тела значительно ниже температуры горения угля, нефти и других углеводородов, природе (или Богу, как кому нравится) пришлось придумать весьма изощренный процесс окисления пищи при температуре тела. Предварительно глюкоза, аминокислоты (белки) и жирные кислоты (жиры) в ходе различных процессов превращаются в универсальное топливо ацетил-коэнзим А, или ацетил-КоА. Собственно, топливом является ацетил, а коэнзим А только способствует реакциям окисления. Дальше ацетил-КоА соединяется с щавелевоуксусной кислотой, и образуется лимонная кислота[49 - Цикл Кребса называют еще циклом лимонной кислоты или циклом трикарбоновых кислот, поскольку большинство участников цикла являются трикарбоновыми кислотами.]. Затем проходит серия из девяти последовательных превращений трикарбоновых кислот. В конце этой серии вновь получается щавелевоуксусная кислота. Образуется цикл. Это и есть цикл Кребса!

При этом выделяется энергия, которая выталкивает образующиеся в цикле протоны в межмембранное пространство. Образующиеся в цикле электроны остаются с внутренней стороны мембраны. Таким образом, создается разность потенциалов, или электродвижущая сила, создающая ток протонов из межмембранного пространство внутрь митохондрии. Именно этот поток протонов движет турбину электромоторчика и микростанок по производству АТФ.

Итак, примерно в 60 трлн клеток человека в среднем по 500 митохондрий в, очень приблизительно, миллионах АТФ-синтаз постоянно производят АТФ, которая участвует практически во всех химических процессах. Напомним, что АТФ отдает запасенную в этой молекуле энергию и распадается на АДФ и фосфор. Отсюда следует, что молекулы фосфора также повсеместно присутствуют в клетках и они активно используются, в частности для передачи сигналов. Как и любая значимая реакция в клетке, реакция присоединения фосфора (или фосфорной группы) нуждается в специальном ферменте. Такие ферменты называются киназы, а процесс присоединения фосфора – фосфорилирование. Поскольку типов молекул, главным образом белков, к которым может присоединяться фосфор, множество, видов киназ также очень много. Геном человека содержит более 1000 генов, кодирующих киназы, а фосфолирированию подвержена примерно треть всех белков клетки человека.

Клетка, как и человек, существо общественное, и ей необходимо получать сигналы от других клеток, в том числе руководящие указания от мозга и клеток эндокринной системы. Сигнальные молекулы, например гормоны, подплывают к клетке по межклеточной жидкости. Как мы уже знаем, на внешней оболочке клетки расположены белковые молекулы – рецепторы. Их огромное количество. Они очень специфичны, то есть каждый тип рецептора может соединиться только со «своими» сигнальными молекулами, которые определяются рецептором по принципу «ключ-замок». Присоединение сигнальной молекулы меняет конфигурацию, то есть пространственную организацию и форму молекулы-рецептора.

Внешний сигнал в конечном счете может приводить к двум основным реакциям:

1) активация (экспрессия) или дезактивация (блокирование, репрессия) генов в содержащейся в ядре клетки ДНК; это приводит к увеличению или уменьшению количества производимых этими генами белков;

2) активация или дезактивация (блокирование) ферментов. Как мы помним, ферменты можно представить себе как станки, производящие различные операции при производстве сложных белков. Внешний сигнал может менять производительность этих станков и, следовательно, всей поточной линии станков, в которую включен данный фермент.

В результате этих двух реакций функционирование клетки может значительно измениться. В частности, может начаться деление или самоуничтожение клетки.

От рецептора к молекулам, активирующим или дезактивирующим гены (транскрипционные факторы[50 - Транскрипционные факторы – белки, способные активировать, «разбудить» (или, напротив, дезактивировать, «усыпить»), и экспрессировать те или иные гены.]), и белкам-ферментам идет внутриклеточный сигнал. Он может передаваться специальными небольшими сигнальными молекулами и запускать сигнальный каскад химических реакций. Например, изменение рецептора вызывает фосфорилирование первой киназы, она инициирует фосфорилирование второй киназы и т. д. Этот каскад передач фосфорной группы по группе киназ, кстати чрезвычайно распространенный, подобен передаче важного письма по эстафете или прохождению документа по бюрократической цепочке. Эти каскады называют сигнальными путями. В клетке их великое множество. Они образуют сигнальные сети, из которых учеными изучена лишь небольшая часть.

В настоящее время к использованию открыто довольно много коммерческих и общедоступных коллекций молекулярных карт сигнальных путей (например, на сайте http://navicell.curie.fr (http://navicell.curie.fr/)). Воздействие любого лекарства, в том числе геропротекторов, проходит по определенным сигнальным путям. Поэтому для нас они будут представлять особый интерес.

1.2.5. Как рождается и умирает клетка

Как и для человека, рождение и смерть – два важнейших события в жизни клетки. При рождении функции клетки в клеточном сообществе и ее дальнейшая судьба определены гораздо жестче, чем для человека. После рождения подавляющее большинство клеток выполняет четко определенные функции в клеточном сообществе. Каждый вид клетки (нервные клетки, клетки печени, соединительной ткани и т. д.) имеет различные и даже очень различные интервалы жизни. Мы уже приводили их значения.

Кроме выполнения своего клеточного долга в организме, клетка, как и всё живое, стремится к размножению. Взрослея и развиваясь, клетка постепенно запасает необходимое для воспроизводства количество белков и других веществ. Через определенное время после рождения клетка получает сигнал на начало деления (пролиферация[51 - Пролиферация (от лат. proles – «отпрыск, потомство» и fero – «несу») – размножение клеток делением. Мы, как и раньше, будем приводить общепринятые биомедицинские термины. Они не нужны для понимания нашего текста, но могут пригодиться продвинутым читателям при чтении дополнительной специальной литературы.]).

После этого начинается удвоение хромосом (репликация). То есть каждая хромосома внутри ядра производит свою точную копию. Для этого специальные белки расплетают петли, в которые ДНК обычно плотно сложена в ядре, а другие белки-ферменты (хеликазы) разрывают водородные связи между нитями ДНК. Остаются две «обнаженные» нити ДНК, готовые присоединить к себе подходящие нуклеотиды (как вы, надеюсь, помните, T к A и C к G).

Как и всё в клетке, это естественное присоединение требует участия своего фермента, который называется просто ДНК-полимераза[52 - «– аза» всегда используется для обозначения фермента, ДНК-полимераза – фермент, создающий полимер ДНК. Всё просто.]. Этот фермент не только обеспечивает присоединение подходящего нуклеотида, но и может проверять, правильно ли собирается вся копия. При ошибках процесс сборки может быть остановлен.

Для начала своей работы ДНК-полимераза должна прикрепиться к цепочке ДНК. Место своего крепления на конце ДНК она скопировать не может. Поэтому копии получаются немного короче. Для своего крепления ДНК-полимераза использует находящиеся на конце ДНК теломеры, поэтому с каждым делением теломеры немного укорачиваются. Мы об этом уже говорили раньше.

Здесь мы коснулись двух процессов, которые традиционно считаются причинами старения: удвоение ДНК и сопровождающих его ошибок-мутаций и укорочение теломер. Мы подробно остановимся на них в следующей части книги, посвященной старению.

Итак, в ядре созданы дубли хромосом для построения новой клетки. Для того чтобы распределить эти хромосомы по новым «квартирам», в клетке имеются специальные органеллы – центриоли. Мы о них раньше не говорили, потому что они выходят на сцену только при делении клетки. Грубо говоря, центриоль – это пучок трубочек, которые используются для растаскивания хромосом в новые клетки. Она находится вне ядра, но близко от него. Поскольку для притягивания хромосом в каждую новую клетку нужна своя центриоль, эти органеллы также удваиваются. Вот теперь уже всё готово и процесс разделения (митоз)[53 - Мито?з (др. – греч. ????? – «нить») – деление клетки.] начинается.

Теперь хромосомы, которые были развернуты для удвоения, туго сворачиваются (конденсируются). В таком виде их уже хорошо видно в микроскоп. Ядерная оболочка распадается, и центриоли тянут свои трубочки к соответствующим хромосомам.

Рис. 1.2.13. Растаскивание хромосом центриолями

Сами хромосомы выстраиваются в одной плоскости посередине клетки, как это показано на средней схеме рис. 1.2.13.

Центриоли прикрепляются трубочками к дублированным («сестринским») хромосомам в месте их прикрепления друг к другу, (называемого цетромерами, мы о них уже говорили[54 - Центромеры – участок хромосомы, делящий ее на два неравных плеча. Центромеры, так же как теломеры, представляют собой повторяющиеся последовательности нуклеотидов.]).

Дальше трубочки сжимаются и растаскивают дублированные («сестринские») хромосомы (рис. 1.2.13). И наконец, вокруг каждой группы хромосом образуются новые ядерные мембраны и появляется два новых ядра. ДНК в новых ядрах приводится в рабочее состояние (деконденсируется). Внутри новых ядер образуются ядрышки, и цитоплазма делится между двумя новыми клетками. Образуются новые оболочки. Процесс деления завершен.

Так рождаются почти все клетки человека. За исключением половых или репродуктивных. Процесс рождения и деления половых клеток (мейоз) сильно отличается от обычного.

Собственно, отличия связаны с функциями половых клеток. Во-первых, мужские клетки должны соединиться с женскими и образовать первую клетку организма ребенка (зиготу). Значит, в каждой половой клетке (гамете) должен быть только один набор хромосом – 23 хромосомы. Второй набор берется от партнера.

Во-вторых, как мы помним, каждая клетка содержит два набора хромосом – материнский и отцовский. В половую клетку попадет только один набор. При этом он не может быть только материнским или только отцовским, иначе смысл полового размножения теряется. Необходимо, чтобы в ДНК сперматозоида и яйцеклетки были представлены гены обоих родителей, отца и матери. Это достигается тем, что перед делением отцовская и материнская хромосомы с одинаковым набором генов (гомологичные хромосомы) притягиваются друг к другу, тесно сближаются и во многих местах скрепляются[55 - Процесс точного и тесного сближения гомологичных хромосом называется конъюгация (от лат. conjugatio – «соединение»). Места соединения называют хиазмами.]. Далее между ними начинается удивительный процесс обмена генами (кроссинговер). В результате на каждой хромосоме присутствуют и отцовские, и материнские гены – получается уже отцовско-материнская хромосома.

Рис. 1.2.14. Схема деления половых клеток (мейоза)

В целом схема мейоза представлена на рис. 1.2.14. Мейоз состоит из нескольких шагов.

Сначала всё идет как при обычном делении клеток: хромосомы удваиваются.

Однако второй шаг, совершенно особенный, – кроссинговер, обмен генами уже удвоившихся хромосом.

На третьем шаге уже смешанные отцовско-материнские хромосомы делятся на две клетки с обычным двойным набором хромосом.

Наконец, на четвертом шаге происходит еще одно деление каждой из двух клеток на две с уже одинарным набором хромосом. Итак, родилась половая клетка, готовая к соединению с половой клеткой партнера и образованию первой клетки нового организма (зиготы).

До своего рождения половая клетка (гамета) прошла немалый путь от первой клетки собственного организма (зиготы) через стволовые клетки и многие деления. Естественно, каждое деление сопровождалось определенными ошибками. На каждом этапе часть генов блокировалась различными эпигенетическими способами, о которых мы говорили раньше. В общем, клетка пришла к мейозу постаревшая и изрядно потрепанная жизнью.

И вдруг, совершенно чудесно, вся предыдущая жизнь как бы обнуляется. Клетка мгновенно молодеет, все приобретенные в процессе жизни и многочисленных делений метки исчезают, и половая клетка (гамета) готова к слиянию с партнерской клеткой и рождению нового организма! Значит, существует путь быстрого омоложения клетки. Это очень впечатляет и ободряет!

Однако все клетки, кроме половых, стареют и умирают. В организме пожилого человека клетки работают не так, как у молодого. Теломеры заметно короче. Часть полезных генов эпигенетически заблокировано, а часть вредоносных, наоборот, стала работать интенсивнее. Клетки накопили запас белков для деления, но поделиться уже не могут. Функции этих клеток в организме выполняются заметно хуже. При этом старые клетки плохо влияют на ещё хорошо работающие. Они портят им рабочий настрой и сигнализируют: пора уже на отдых. Однако плохое функционирование больших групп клеток быстро приводит к ухудшению работы органов и систем. Начинаются сбои в работе, и старые клетки бесславно умирают вместе со всем организмом.

На порядки большее число клеток умирает в процессе жизни организма, обеспечивая его дальнейшую работу. Наиболее распространенный тип смерти клетки – запрограммированная смерть (апоптоз).

Клетка гораздо больше, чем человек, склонна к альтруизму. Когда человек осознанно гибнет во имя долга, веры, царя, Родины, его считают героем. Для клетки такое поведение совершенно естественно.

Запрограммированное самоубийство может инициироваться как внешними, так и внутренними сигналами. По разным причинам организм (мозг, нервная и эндокринная системы) может подать клетке сигнал на самоуничтожение. Например, у человеческого эмбриона сначала пальчики рук и ног соединены вместе в единую пластину. На определенном этапе развития подается сигнал на самоуничтожение клеток соединительной ткани между пальчиками и они приобретают привычный нам вид.

Часто многочисленные специальные белки, постоянно тестирующие состояние ДНК и белков-ферментов, обнаруживают в них непоправимые неполадки. В этом случае также подается сигнал на самоуничтожение. В хорошо работающем организме суицидом заканчивают стареющие клетки, которые уже плохо могут выполнять свои функции.

Самоуничтожение идет крайне четко и аккуратно. Специальные белки режут клетку на части, разрезают ДНК и крупные белки. Таким образом, подготовленные части клетки без остатков поглощаются и перевариваются макрофагами – специальными клетками иммунной системы. Такое самоубийство приносит организму пользу: он избавляется от ненужных или больных клеток, а все полезные вещества утилизируются.

Бывают случаи, когда система самоуничтожения не срабатывает. Тогда возникают негативные и даже страшные последствия. Клетка может накопить вредные вещества и умереть не по собственной воле и заранее заданной программе. Она просто взрывается. Происходит заражение межклеточного пространства выбрасываемыми вредными веществами – токсинами, приводящими к гибели соседних клеток. Возникает некроз, и возможно отмирание отдельных тканей. Это может привести к смерти человека.

Как и у людей, клетка может предпочесть героическому поведению предательство. Она отказывается покончить с собой и начинает уже неконтролируемое организмом деление. Образуется множество бесконтрольно делящихся клеток. Так появляются раковые опухоли. Они живут отдельной от организма жизнью: переключают на себя питание, обзаводятся собственной сетью кровеносных сосудов. И в конце концов гибнут вместе с заболевшим человеком.

Подведем итоги этой главы:

1. Все важные для жизни процессы происходят за счет химических связей, вызываемых исключительно электростатическими силами. Сильная ковалентная связь возникает, когда атомы делят общий электрон, а слабая водородная связь – общий протон (ядро водорода). Водородная связь обеспечивает связи между нуклеотидами в ДНК: T – A и C – G. Ковалентная связь образует молекулы воды в форме диполей, заполняющих клетку и не позволяющих молекулам самопроизвольно соединяться. Для соединения молекул в живой клетке необходим фермент, который как бы раздвигает диполи воды и сближает молекулы так, чтобы они могли соединиться, а затем отпускает.

2. Жизнь на Земле существует в форме клеток, окруженных довольно прочной оболочкой. В центре клетки помещено маленькое ядро, хранящее информационную молекулу ДНК. Записанная в гене в кодах ДНК информация транскрибируется в коды РНК. В рибосоме информация транслируется из кодов РНК в белковый код аминокислот – синтезируется белок. Далее в эндоплазматической сети под действием ферментов белки обрабатываются и собираются, а в комплексе Гольджи белки модифицируются и сортируются. Бракованные белки утилизируются или выбрасываются из клетки.

3. Молекула ДНК человека, содержащая около 3 млрд пар нуклеотидов, разделена в ядре на 46 частей, названных хромосомами. Они образуют 22 пары (от отца и матери) и 2 половых хромосомы. Довольно длинная, почти двухметровая ДНК наматывается на белки-гистоны и невероятно плотно упаковывается в малюсеньком ядре. Для начала работы участок ДНК, содержащий ген, должен освободиться и распутаться (деконденсироваться), чтобы к нему мог подойти специальный белок-промотор, строящий соответствующую молекулу РНК. Промотору может помешать прикрепленная к ДНК молекула метила. В этом случае соответствующий ген заблокирован. Копирование ДНК при делении клетки осуществляет ДНК-полимераза, которая прикрепляется к краю каждой хромосомы, называемому «теломера». Поскольку часть теломеры, на которой крепится ДНК-полимераза, не копируется, теломера с каждым делением укорачивается.

4. Форму клетки определяет гибкая оболочка и цитоскелет, состоящий из трубочек и нитей, по которым транспортируются белки. При этом трубочки и нити цитоскелета быстро строятся по мере потребностей и разбираются при ненадобности. В клетке работает несколько видов удивительных молекулярных машин, важнейшие из которых – калиево-натриевый насос, поддерживающий повышенную концентрацию калия и пониженную натрия в клетке по сравнению с межклеточной жидкостью, и АТФ-синтаза, образующую молекулу транспорта энергии АТФ. Невероятно, но АТФ-синтаза – полная копия электромагнитного мотора со статором и ротором.

5. Клетка рождается при делении клетки-родителя путем сложного и многоступенчатого процесса деления – митоза. Иначе происходит рождение половых клеток – мейоз. В результате соединения мужской и женской половых клеток рождается первая клетка нового организма (зигота). Удивительно, но она появляется на свет совершенно обновленной и готовой к огромному числу новых делений. Значит, есть возможность полного омоложения на клеточном уровне. Смерть клетки часто носит характер самоубийства, называемого «апоптоз». Это очень полезный процесс самоуничтожения больных или старых клеток с их полной разборкой «на запасные части» для здоровых клеток. Однако есть клетки, которые хотят жить вечно. Они восстают против установленного порядка и становятся раковой опухолью.

Глава 1.3. Как устроены системы и органы человека

В главе 1.1 мы описали, как работает сообщество клеток, коим, в сущности, и является человек, в самых общих чертах. Во главе 1.2 уже довольно подробно описаны устройство и жизнь клеток. В этой главе мы рассмотрим отдельные системы жизнеобеспечения и входящие в них важнейшие органы человека. Возможно, некоторым читателям известно, как устроены основные системы человека, – тогда он может пропустить известные ему разделы. Нам необходимо это описание для целостности картины, чтобы во второй части книги рассмотреть старение этих систем и связанные со старением болезни, а в третьей части – возможные способы лечения этих болезней и, в определенном смысле, самого старения.

1.3.1. Система пищеварения и энергетического обеспечения человека

Мы начинаем с системы пищеварения, поскольку она, по-видимому, является самой древней. Эта система напоминает огромного червя, которого окружают другие, эволюционно появившиеся гораздо позже системы и органы человека.

В главе 1.1 мы рассмотрели важнейшие составляющие нашей пищи: углеводы, белки и жиры. Целью пищеварительной системы является превращение этих компонент в более простые вещества: углеводов – в глюкозу; белков – в аминокислоты; жиров – в жирные кислоты. Аминокислоты и жирные кислоты клетка умеет превращать в универсальное клеточное топливо ацетил-КоА, из которого довольно сложным, но чрезвычайно эффективным способом (цикл Кребса, фактически сжигание глюкозы) клетка производит энергию. Затем эта энергия на специальном станке (АТФ-аза) преобразуется в энергию химической связи молекулы АТФ, которая участвует практически во всех реакциях организма, требующих энергетических затрат.

Когда мы съедаем какую-нибудь пищу, она при необходимости пережевывается зубами, перемешивается со слюной языком и превращается в пищевой комок. В главе 1.1.4 мы довольно тщательно рассмотрели приготовление углеводов, белков и жиров для их потребления клеткой. Теперь мы изучим эти же процессы с другой стороны: более детально остановимся на работе органов пищеварительной системы. Поскольку мы описываем одни и те же процессы с разных позиций, некоторые важные моменты будут повторены, но, по моему мнению, частичные повторы очень полезны при изучении сложных тем.

Мы будем двигаться по пищеварительной системе сверху вниз, следя за пищевым комком (рис. 1.3.1).

Рот и слюнные железы. Первые превращения пища претерпевает уже во рту под действием слюны. Слюноотделение осуществляется множеством слюнных желёз, среди которых выделяется три пары больших слюнных желёз: околоушные, подчелюстные и подъязычные слюнные железы. Их расположение очевидно из названий. Остальные железы считаются малыми. Железы выделяют 1–2 литра слюны в сутки.

Пища во рту (16–18 секунд до проглатывания) анализируется рецепторами, и результаты анализа передаются всем органам пищеварения для соответствующей подготовки. Слюна – активный пищеварительный сок. В ней содержится около 50 различных ферментов, обеспечивающих ротовое пищеварение. За счет ферментов (амилазы и мальтазы) слюна расщепляет углеводы до простых сахаров. Она смачивает и склеивает пищевой комок. Кроме того, некоторые ферменты могут убивать определенные вирусы и дезинфицировать пищу.

Пищевод – следующий этап прохождения пищевого комка – представляет собой полую, покрытую внутри слизью трубку из мышечной ткани, идущую от гортани до желудка. Со стороны глотки и желудка расположены два запирающих клапана (сфинктера), препятствующих выбрасыванию агрессивных жидкостей из желудка в пищевод (нижний сфинктер) и из пищевода в глотку (верхний сфинктер)[56 - Если плохо закрывается нижний сфинктер, то возникает изжога (главный симптом рефлюкс-эзофагита). Плохая работа верхнего сфинктера приводит к неприятной отрыжке.]. Пищевой комок транспортируется по пищеводу под действием самопроизвольных мышечных сокращений 8–10 секунд.

Рис. 1.3.1. Система пищеварения

Желудок – полый, выстланный эпителием и слизью мышечный орган, идущий от пищевода к двенадцатиперстной кишке. Его объем меняется от полулитра (пустой) до 2 литров (полный). Мышцы желудка интенсивно перемешивают пищу, а примерно 15 млн желёз слизистой оболочки желудка выделяет желудочный сок, содержащий соляную кислоту и пищеварительные ферменты (пепсин, липазу и др.). Желудочный сок расщепляет белки до пептидов и аминокислот (пепсин) и частично жиры (липаза), соляная кислота убивает бактерии. Клетки эпителия постоянно соприкасаются с соляной кислотой и поэтому нуждаются в замене примерно раз за двое суток. После переваривания в желудке пищевой комок, который в желудке становится пищевой кашицей и приобретает новое название химус, готов к движению в двенадцатиперстную кишку, куда его проталкивают мышцы желудка.

Двенадцатиперстная кишка[57 - Её длина составляет примерно двенадцать поперечников пальца руки (около 25–27 см). Отсюда название.] – первая часть тонкого кишечника – отделена от желудка еще одним клапаном-сфинктером, красиво названным привратником желудка. Он отделяет желудок с его кислой средой от тонкого кишечника с преимущественно щелочной средой. В двенадцатиперстную кишку через еще один клапан-сфинктер впрыскивается желчь из желчного пузыря и поджелудочный (панкреатический)[58 - «Поджелудочный» и «панкреатический» – синонимы.] сок из, соответственно, поджелудочной железы. Сюда же добавляется произведённый собственными железами тонкого кишечника кишечный сок, содержащий 22 фермента. Смесь кишечного, поджелудочного сока и желчи действует гораздо эффективнее, чем каждое составляющее вещество в отдельности. Так, ферменты поджелудочного сока расщепляют жиры в присутствии желчи в 20 раз эффективнее, чем без нее. Ферменты поджелудочного (панкреатического) сока ДНК-аза и РНК-аза расщепляют длинные последовательности ДНК и РНК до очень коротких, состоящих из относительно небольшого числа нуклеотидов. Поэтому страхи о возможности генно-модифицированных организмов (ГМО) передавать свои гены съевшему содержащий ГМО продукт человеку совершенно беспочвенны.

Тонкий кишечник – орган пищеварения длиной 5 метров и толщиной 3–3,5 см. В нем продолжается и практически завершается пищеварительный процесс, то есть процесс расщепления белков на аминокислоты, углеводов на моносахариды и жира на жирные кислоты и глицерин. Аминокислоты и совсем небольшие пептиды, глюкоза и другие простые сахара, жирные кислоты и глицерин всасываются в тонком кишечнике множеством специальных ворсинок и по крови и лимфе доставляются во все клетки организма. Причем в лимфу поступают продукты переработки жиров, а в кровь – аминокислоты и простые углеводы.

Кишечник – самый защищенный иммунной системой орган. Здесь находится около 80 % всех иммунных клеток, образующих барьер от вредных веществ и бактерий.

При питании белки пищи усваиваются в среднем на 84,5 %, жиры – 94 %, углеводы – 95,6 %. Не переваренные в тонком кишечнике остатки, основную часть которых составляет клетчатка, проталкиваются мышцами кишечника в толстый кишечник.

Толстый кишечник имеет длину около 1,5 метра и толщину от 4 до 7 см в разных частях. Толстая кишка вырабатывает собственный сок, который по составу близок к кишечному соку тонкой кишки, но примерно в 10 раз меньшей концентрации. Собственный сок и проникающий в толстую кишку сок тонкой кишки завершают пищеварительный процесс. В толстом кишечнике из поступающего в него пищевого комка (химуса) формируется каловая масса. В слепой кишке, расположенной правее входа тонкой кишки в толстую кишку, из пищевого комка высасывается большая часть воды. В толстом кишечнике живет почти вся микробиота – около 1000 видов различных бактерий. О микробиоте мы поговорим чуть позже. В толстом кишечнике при помощи микробиоты вырабатываются витамины группы B и витамин K. Каловая масса под действием мышц толстого кишечника (перистальтика[59 - Перистальтика – волнообразное сокращение мышц стенок пищевода, желудка, кишечника, продвигающее их содержимого к выходным отверстиям.]) выталкивается из толстого кишечника через его конечную часть – прямую кишку и задний проход (анус).