banner banner banner
В поисках общей теории роста человечества
В поисках общей теории роста человечества
Оценить:
Рейтинг: 0

Полная версия:

В поисках общей теории роста человечества

скачать книгу бесплатно


Само же уравнение предполагает пропорциональность скорости роста населения Земли числу связей между группами людей численностью 67 тыс. каждая. Однако, если каждая из постоянных К и ? имеет фундаментальный смысл, а не является величиной, полученной в результате статистического усреднения, то это уравнение есть не что иное, как констатация равенства приращения численности за время ? – числу связей между группами людей, численностью 67 тыс. каждая, умноженному на два.

И это равенство справедливо на огромном промежутке времени, не зависит ни от уровня развития самого человека, ни от уровня развития его технологий, ни от множества прочих факторов. Это самое большое чудо из всех рассмотренных.

Теория Капицы привлекла внимание ряда отечественных ученых, но все попытки ее развить, представить собственное видение проблемы отмечены печатью деградации. Так, А.В. Подлазов считает введение постоянных К и ? ошибочным:

«При этом уравнение (4), на наш взгляд, может быть про интерпретировано единственным образом: рост численности человечества определяется парным взаимодействием городов! Явственно присутствующий в этом положении элемент мистики обусловлен совершенно искусственным выделением одного из уровней иерархии организации общества.

Людские объединения в высшей степени масштабируемы и способны к самодостаточному существованию при численности как в десятки, так и миллионы человек. Таким образом, расщепление величины C на две константы K и ? является ошибочным и вызвано отсутствием понимания физического смысла выражения, стоящего в правой части уравнения…» [5].

А. Коротаев, Н. Комарова, Д. Халтурина [7], реставрируя модель М. Кремера с «мальтузианско-кузнецианским» уклоном, подгоняют свою «компактную» систему дифференциальных уравнений к желаемому результату. А именно: скорость роста численности населения мира пропорциональна квадрату этой численности. Константы Капицы К и ? в эту систему не входят, возвращена постоянная Фёрстера. Вся логика построена на рассуждениях вида А ~ В, А ~ С, следовательно, А ~ В·С. Исходные линейные зависимости считаются очевидными:

«Модель М. Кремера дает этому очень убедительное объяснение (хотя сам М. Кремер и не показал этого в достаточно ясном виде). А объяснение это заключается в том, что рост численности населения мира с 10 до 100 млн человек подразумевает, что и уровень развития жизнеобеспечивающих технологий вырос приблизительно в десять раз (так как он оказывается в состоянии поддержать существование на порядок большего числа людей). С другой стороны, десятикратный рост численности населения означает и десятикратный рост числа потенциальных изобретателей, а значит, и десятикратное возрастание относительных темпов технологического роста.

Таким образом, абсолютная скорость технологического роста вырастет в 10*10 = 100 раз… А так как N стремится к технологически обусловленному потолку несущей способности Земли, мы имеем все основания предполагать, что и абсолютная скорость роста населения мира (dN/dt) в таком случае в тенденции вырастет в 100 раз, то есть будет расти пропорционально квадрату численности населения» [7].

Изобретательская теория Коротаева и соавторов требует большого числа незначительных изобретений. На самом же деле новационный (и инновационный) процесс устроен иначе: все действительно значимые изобретения, открытия немногочисленны и представляют собой цепочку, в которой каждое последующее звено вытекает из предыдущего. Для Мир-системы в XIX и XX веках – это так называемые «базисные инновации» (по Л. Нефедову), которые в течение последующих десятилетий играют роль локомотива мировой экономики.

Например, в начале прошлого века Планк открывает, что процессы излучения и поглощения электромагнитной энергии нагретым телом происходят дискретно, а Эйнштейн вводит понятие кванта излучения. В двадцатых годах создается квантовая теория; в тридцатых – физика твердого тела; в конце сороковых изобретен первый транзистор; в начале шестидесятых – первая интегральная микросхема.

В конце семидесятых – первый твердотельный компьютер; в начале XXI столетия сотовый телефон становится средством массовой коммуникации. Вряд ли кто-нибудь будет возражать, что изобретение сотовой связи очень сильно повлияло на социум, в том числе и в плане роста его численности.

Но Макс Планк сделал свое открытие в известной мере случайно, оно могло быть совершено другим исследователем как раньше, так и позже отмеченного момента времени. И если сдвигать это первое звено во времени, то с ним сдвигается и вся цепочка. Именно так, а не по Коротаеву, когда мелкие инновации «мгновенно» поднимают потолок несущей способности Земли, устроен научно-технический, социальный и демографический прогресс.

В статье «Человечество подошло к пределу своего роста» А.В. Коротаев и соавторы с удивлением замечают, что модель Кремера заводит их в тупик. Ведь после демографического перехода рост численности населения Земли должен полностью прекратиться, а значит прекратится и всякий творческий процесс. Творчество больше не нужно? – Вопрошают они. А, может, все-таки модель Кремера неверна? Ведь сам Кремер ее так до конца и не сформулировал. Что-то, видимо, его удержало.

Развивая «мальтузианско-кузнецианский» подход, авторы [7] формулируют задачу на языке кибернетики и вводят в рассмотрение нелинейные обратные связи между основными субсистемами «Мир-системы». Но все попытки объяснить как гиперболический рост, так и демографический переход положительными и отрицательными обратными связями в «Мир-системе» (для человечества в целом!) чисто умозрительны, разноплановы и неубедительны. Можно ли поверить в то, что «положительная обратная связь второго порядка», в случае роста численности народонаселения, столь сбалансированна и точна, что погрешность в формуле Фёрстера для показателя степенной функции составляет всего один процент? (Точнее, n = -0,99 ± 0,009).

После демографического перехода уже два контура обратной связи, положительной и отрицательной, т. е. целая система автоматического регулирования, удерживают численность на фиксированном уровне. При этом речь не идет об исчерпании каких бы то ни было ресурсов. Несущая способность Земли может выдержать значительно большую численность. И совершенно непонятно какие такие ограничения механизма развития начинают вдруг играть доминирующую роль.

Законы роста численности изолированных популяций

Введение

Популяция – это совокупность особей одного вида, обладающая общим генофондом и проживающая на общей территории. Она является элементарной генетической единицей вида, первой надорганизменной биологической системой. Считается, что любая популяция способна к неопределенно долгому самостоятельному развитию.

Биотическим потенциалом вида называется показатель скорости роста численности особей этого вида при отсутствии ограничивающих факторов. Совокупность же таких ограничивающих рост популяции факторов называется сопротивлением среды.

Состояние равновесия между биотическим потенциалом вида и сопротивлением среды, поддерживающее постоянство численности популяции, называют популяционным гомеостазом. При его нарушении возникают колебания численности. Различают периодические и непериодические колебания численности популяции.

Обычное, нормальное состояние популяции – это гомеостаз с неизменной численностью, который поддерживается отрицательными обратными связями, обеспечивающими такой гомеостаз. Но в редких случаях численность популяции меняется и за короткий промежуток времени может значительно возрасти или уменьшиться. Этот редкий случай нарушения гомеостаза только и будет здесь нас интересовать.

Причем нами будут рассмотрены только законы роста: законы, по которым растет численность изолированной популяции, т. е. популяции более или менее отделенной в пространстве от других аналогичных совокупностей того же вида. Эти законы представляют для нас интерес в связи с законом роста численности населения Земли.

Идеализации

Построение математической модели какого-либо объекта, явления неизбежно требует принятия некоторых упрощений, идеализаций. Чем больше идеализаций, тем проще модель, тем удобней с ней работать и тем уже спектр явлений, который она способна описать.

С другой стороны, идя по пути усложнения модели, нужно иметь в виду, что даже максимально сложная, «все учитывающая» модель все равно остается всего лишь моделью и неспособна полностью описать явление, зато способна перенести львиную долю внимания исследователя с самого явления на абстрактный математический аппарат, его описывающий.

Поэтому в математическом моделировании существует золотая середина степени усложнения. В математической экологии эффективны простые модели с большим количеством идеализаций. Рассмотрим идеализации для модели роста изолированной популяции, т. е. такой популяции, взаимодействия в которой возможны только между представителями данной популяции [12]:

1. Постоянство внешних условий, т. к. прежде чем исследовать роль внешних воздействий следует проанализировать свойства идеальной, изолированной популяции, на динамику численности которой влияют лишь биотические факторы, причем только те из них, что связаны с внутривидовой деятельностью. Под постоянством внешних по отношению к растущей популяции условий будем понимать также и независимость роста (при прочих равных условиях) от того, на каком участке шкалы физического времени он наблюдается. В уравнениях такого роста не должно, следовательно, явным образом присутствовать время, т. е. они должны быть автономными.

2. Целочисленное число особей популяции заменяется для удобства на непрерывную, действительную величину.

3. Рассматриваемая популяция считается однородной, т. е. полностью пренебрегается ее половой, возрастной, генотипической и какой-либо другой структурированностью[92 - Для дальнейшего представляется важным отметить, что население Земли в целом, при том, что все мы принадлежим к одному виду, – этому условию не удовлетворяет. Дело в том, что человечество нельзя считать однородной массой с единым для всех ее частей естественным приростом. В действительности – это конгломерат популяций, образованный различными как по численности, так и по естественному приросту составляющими. (Коэффициент естественного прироста в разные времена, для разных народов мог различаться в разы, поэтому никакое его усреднение по всей массе человечества не может считаться удовлетворительным.) Даже если допустить, что численность каждого народа, этноса будет расти экспоненциально – из этого вовсе не следует, что численность человечества также будет расти экспоненциально.].

4. Рост численности любой популяции есть, строго говоря, случайный процесс, который должен описываться на языке теории вероятностей. Но при исследовании изменения численности популяций с большим числом членов естественно описывать эти изменения на языке средних величин.

5. В случае неперекрывающихся поколений в дискретных моделях принимается синхронное размножение у всех организмов при достижении определенного возраста. Что хотя и не соответствует действительности, позволяет упростить математический аппарат, причем без отрицательного влияния на результат. Момент появления новой особи в непрерывных моделях считается равномерно распределенным на отрезке времени, равном среднему времени жизни особи.

6. В случае перекрывающихся поколений скорость изменения численности может определяться численностью не в текущий, а в некоторый предшествующий момент времени. Динамика изменения численности описывается здесь уравнениями с запаздывающим аргументом. Такое запаздывание, в случае если оно сравнимо или превосходит характерное время системы, может приводить к колебаниям численности и даже к резонансам: колебаниям с нарастающей амплитудой. Пренебрежение таким запаздыванием – еще одна часто принимаемая идеализация.

7. Исследуемая система предполагается либо локальной, т. е. имеющей достаточно малые размеры (для таких систем понятия численности популяции и ее плотности являются синонимами), либо постулируется полное перемешивание, когда особь за время жизни успевает побывать на всей территории обитания популяции. Для человеческого общества предполагается его информационная связность на всем протяжении роста. При исследовании локальных или сосредоточенных сообществ изучается исключительно временна?я динамика. На самом деле сосредоточенных сообществ не существует, а реальная протяженность ареала обитания популяции может в сотни и тысячи раз превышать величину перемещения особи за поколение. Модели пространственно-распределенных сообществ включают анализ как временно?й, так и пространственной организации этих сообществ. Они описываются уравнениями типа диффузия-кинетика, решение которых зачастую сопряжено с непреодолимыми математическими трудностями.

8. Рост численности изолированной популяции предполагается свободным, никем и никак не управляемым ростом, происходящим в естественных природных условиях.

* * *

Условно все идеализированные модели биологических систем можно разделить на три типа: регрессионные, качественные и имитационные [11].

А. Регрессионные зависимости – это не более, чем формулы, описывающие связь различных характеристик системы, которые при этом не претендуют на какой-либо каузальный, физический или биологический смысл. Для построения регрессионной модели достаточно статистически достоверных наблюденных корреляций между переменными или параметрами системы.

Б. Качественные (базовые) модели. В любой науке существуют простые модели, которые поддаются аналитическому исследованию и обладают свойствами, позволяющими описывать целый спектр природных явлений. Их задача качественно описать систему, в данном случае растущую изолированную популяцию. Базовые модели обычно представляют собой системы дифференциальных или разностных уравнений относительно небольшой размерности, допускающие аналитическое и качественное компьютерное исследование. Эти модели позволяют ответить на вопросы: возможны ли в системе колебания, переключения режимов функционирования, пространственно-неоднородные решения, квазистохастическое поведение. При этом важно понимать, что истинные причины наблюдаемого поведения популяции, особенности роста ее численности могут никак такой моделью не отражаться.

В. Имитационные модели. По меткому выражению Р. Шеннона имитационное моделирование – это нечто промежуточное между искусством и наукой. Суть его заключается в исследовании сложной математической модели с помощью вычислительных экспериментов и обработки результатов этих экспериментов. Как правило, создатели такой имитационной модели пытаются максимально использовать всю имеющуюся информацию об объекте моделирования как количественную, так и качественную. При этом модель может получиться разной у разных авторов, поскольку точные формальные правила ее построения отсутствуют.

Целью нашего исследования является построение качественной (базовой) обобщенной модели роста численности изолированной популяции с учетом всех обозначенных здесь идеализаций.

Каузальный анализ законов роста

Каузальный анализ описывает явление на языке причинно-следственных связей. В его основе лежит стремление понять это явление на основе логики типа: «X вызывает Y». Факторы, которые вызывают какие-то изменения, называются независимыми переменными, в то время как переменные, изменяющиеся под действием этих факторов, называются зависимыми.

В общем случае присутствие причинно-следственных связей означает, что наличие изменений меняет вероятностные характеристики последствий. В чем задача каузального анализа роста численности популяции? Она заключается в поиске причин, по которым ее численность растет по тому или иному закону.

Самый простой в каузальном смысле рост – это экспоненциальный рост. Закон экспоненциального роста считается первым законом экологии популяций. Его можно уподобить первому закону Ньютона в механике. Когда на тело не действуют никакие другие тела – оно сохраняет состояние покоя или равномерного и прямолинейного движения. (Скорость растет, убывает, меняется по направлению только тогда, когда на тело действует сила.) Когда на растущую в условии изобилия ресурсов изолированную популяцию не оказывают воздействия никакие внутренние или внешние ограничения – она растет экспоненциально. Отклонение от экспоненты и, в частности, неизменная численность возможно лишь при наличия сопротивления (ускорения) со стороны среды обитания.

Причина экспоненциального роста без смертности (для делящихся микроорганизмов) заключена внутри черного ящика процесса репродукции элементарной ячейки популяции. И прирост численности здесь всегда будет пропорционален самой численности. Для популяций животных (многоклеточных организмов) разность между приростом численности за счет рождаемости и ее убылью по причине смертности за единицу времени – также пропорциональна самой численности.

В обоих случаях – это строгое равенство при выполнении принятых выше идеализаций, т. к. рост популяции здесь представляет суперпозицию не оказывающих взаимного влияния процессов. И если, скажем, увеличить численность в два раза, то и ее естественный прирост также должен возрасти в два раза. Поэтому экспоненциальный рост популяции, происходящий в естественных природных условиях, информационно и каузально прост и его можно считать причинно-самодостаточным, а сам закон экспоненциального роста – причинным.

Причинным в том смысле, что рост популяции здесь может быть представлен как автокаталитический, самоускоряющийся процесс, причиной которого является положительная обратная связь между численностью и естественным приростом, природа которой заключена в простом росте (по закону геометрической прогрессии на последовательности интервалов равной длительности) некоторого числа параллельных, в первом приближении не взаимодействующих элементарных продукционных процессов.

Самодостаточным в том смысле, что никаких других причин у этого роста кроме тех, что заключены внутри черного ящика процесса репродукции элементарной составляющей популяции – здесь нет. Если же учитывать влияние взаимодействий между членами популяции, то линейное уравнение экспоненциального роста необходимо трансформировать в нелинейное.

Примеры таких уравнений мы приведем ниже. При этом прирост численности на особь, элементарную ячейку размножающейся популяции, будет зависеть от ее общей численности.

* * *

Возможны два каузальных подхода при описании такого нелинейного роста.

1. В первом подходе причина роста ищется исключительно в связях между членами популяции, при этом полностью пренебрегается составляющей прироста без учета взаимодействий, т. е. индивидуальной способностью к размножению элементарной составляющей популяции, которая при отсутствии взаимодействий вызывает экспоненциальный рост. Так, в моделях роста численности населения Земли полагают, что мировой естественный прирост пропорционален квадрату полной численности населения Земли при любых значениях этой численности.

2. Во втором подходе прирост ищется в виде суммы двух составляющих, первая из которых отвечает за рост без взаимодействий. Вторая же составляющая естественного прироста, положительная или отрицательная, возникает по причине воздействия на него со стороны внутрипопуляционных связей.

Такой дополнительный положительный прирост за счет рождаемости, возникающий по причине взаимодействия между членами популяции, возможен лишь при том условии, что биотический потенциал системы полностью не исчерпан, т. е. если существует возможность увеличить приплод с особи за время ее жизни.

Другая часть такого дополнительного прироста возникает за счет изменения (положительного или отрицательного) уровня смертности. Оба эти воздействия так трансформируют, искажают естественный экспоненциальный рост, что превращают его, например, в рост логистический или даже в гиперболический.

Приведем примеры. Если рассматривать размножение колонии микроорганизмов в максимально благоприятных условиях, то никакие взаимодействия между этими организмами ускорить этот, уже и без того максимально быстрый экспоненциальный рост, очевидно, не могут, и рост будет экспоненциальным, таким же как и при отсутствии взаимодействий. Но могут его замедлить, если, например, среда обитания не безгранична и плотность популяции будет расти. Тогда закон роста будет нелинейным, например, логистическим.

Если же рассматривать рост численности населения Земли и исходить, к примеру, из модели Коротаева (где экспоненциальной составляющей прироста пренебрегается), то связи между членами социума, порождающие полезные инновации и способствующие их распространению на всю Мир-систему, преобразуют простую положительную обратную связь между естественным приростом и численностью в ПОС второго порядка, которая работает при любых численностях, во все времена и провозглашается единственной причиной гиперболического роста.

* * *

Второй подход представляется более логичным, т. к. величину связи между особями растущей популяции вряд ли можно считать неизменной на протяжении всего роста. Здесь разумно предположить, что зависимость эта будет тем сильнее, чем больше общая численность (плотность) популяции. Когда же эта численность невелика – рост должен быть экспоненциальным. Иначе говоря, если в нелинейном уравнении, описывающем рост популяции, численность устремить к нулю, оно должно превращаться в линейное уравнение Мальтуса.

Такой рост, подчиняющийся нелинейному закону, будет каузально более сложен, чем экспоненциальный рост, поскольку его причина заключена как в индивидуальной способности к размножению каждой элементарной репродуцирующей себя ячейки популяции, так и во взаимодействиях между ее членами. И такой нелинейный закон роста может быть назван причинным лишь в том случае, если он полностью определяется нелинейной обратной связью между численностью и естественным приростом.

В отличие от причинно-самодостаточного закона экспоненциального роста (dN/dt = aN) здесь уже недостаточно просто записать уравнение роста, нужно еще дать описание, объяснение тем нелинейным обратным связям, которые этот рост вызывают или на этот рост влияют. В этом сложность нелинейного роста и его каузального анализа.

Обычно, когда говорят о растущей изолированной популяции, то имеют в виду свободный рост, т. е. рост никем и никак не управляемый, не испытывающий никаких внешних воздействий и происходящий в естественных природных условиях. Причины свободного роста изолированной популяции заключены в двух процессах: процессе размножения каждой элементарной ячейки популяции и процессе взаимодействия между всеми этими ячейками.

Если же существуют какие-то факторы, целенаправленно воздействующие на рост, т. е. как-то его изменяющие, регулирующие, то такой рост следует считать управляемым. Примером управления ростом с помощью изменения его условий служит процесс выращивания микроорганизмов в питательной среде, где экспериментатор может менять температуру, состав питательной смеси и тем самым влиять на скорость деления микроорганизмов. Т. к. характерное время деления здесь мало, можно исследовать этот рост в широком диапазоне условий.

Другой пример – рост численности домашних животных. Здесь воздействие может варьироваться в широких пределах: от простой защиты от хищников и обеспечения кормом на пастбищах до постройки специально организованных ферм, где создаются все необходимые условия для роста и размножения. Вмешиваясь в ход природных процессов, человек может остановить исчезновение редких животных и восстановить их былую численность.

Все это примеры внешнего, не автономного воздействия на рост популяции. Но существует еще одна возможность: управление ростом изнутри, через связи, существующие между членами популяции. И здесь примером может служить рост человеческих сообществ. Можно целенаправленно с помощью специально созданных программ, без всякого оружия, только информацией – свести на нет, уничтожить целый народ.

И наоборот, используя разнообразные программы жизнесбережения, работающие изнутри, повысить естественный прирост целого этноса. В дальнейшем мы покажем, что если численность изолированной рассредоточенной популяции и скорость ее роста связаны нелинейно, то причиной такой связи может и не быть ПОС между приростом и численностью (N<—>?N/?t) или ООС между этими величинами, а закон, их связывающий, может и не быть законом причинным. Такой нелинейный закон роста популяции может описывать всего лишь функциональную, непричинную связь между ее численностью и естественным приростом. Т. е. представлять собой не более, чем регрессионную зависимость, не претендующую на какой-либо каузальный смысл.

* * *

Итак, рост популяции может быть как свободным, так и управляемым. Управляемый рост отличается от свободного наличием управляющей системы, стоящей над популяцией и способной изменять ее свободный рост в тех границах, которые определены биотическим потенциалом популяции и сопротивлением среды.

Например, превратить естественный экспоненциальный рост в рост гиперболический. Поскольку управляемый рост может быть осуществлен только достаточно сложной системой управления, как минимум обладающей памятью, то момент детерминации может быть расположен здесь позднее во времени того момента, когда происходит детерминированное событие.

Понимать это надо так: управляющая система непрерывно контролирует текущую численность популяции и воздействует на внутрипопуляционные связи таким образом, чтобы сделать максимально вероятной последовательность ранжированных событий, каждое из которых заключается в достижении численности популяции в определенный момент времени в будущем некоторого предустановленного значения.

Задача каузального анализа в таком случае заключается в том, чтобы найти целевой, телеологический каузальный закон, управляющий ростом, и механизм его реализации.

Модель степенного роста, или рассказ о том, как не растут популяции

Закон степенного роста (убывания) какой-либо величины во времени – это зависимость вида y = C(t – t

)

, где показатель n не равен нулю или единице и может быть положительным, отрицательным, целым или дробным.

Может ли численность роста какой-либо популяции на каком-то этапе своего роста описываться степенным законом? Это возможно лишь при том условии, что на этом этапе прирост численности за небольшой промежуток времени будет пропорционален некоторой степени численности, причем показатель этой степени не должен быть равен единице.

В таком случае вопрос можно сформулировать так: может ли скорость роста численности популяции выражаться в виде степенного закона (3) рис. 1?

Рис. 1. Степенной и экспоненциальный законы роста численности популяции.

При разных значениях параметра m закон (3) описывает параболический, экспоненциальный и гиперболический рост. Возьмем для определенности значения m = 0, 1, 2, которые соответствует трем наиболее часто встречающимся в природе законам: линейному, экспоненциальному и гиперболическому.

Из них только закон экспоненциального роста имеет встроенный масштаб времени или характерное время удвоения численности популяции, что ясно уже из соображений размерности, т. к. показатель экспоненты представлен в виде произведения константы ?, умноженной на время t.

Следовательно, величина обратная ?, определяющая этот встроенный масштаб времени, должна иметь размерность времени, поскольку в показателе экспоненты может стоять только безразмерная величина.

Термин «встроенный масштаб времени», возможно, является не совсем удачным, поскольку закон экспоненциального роста не содержит в себе какого-то единственного масштаба, в котором можно измерять время протекания процесса. А содержит постоянную времени через которую этот масштаб: время удвоения численности, какое-то другое характерное время, может быть выражен.

Природа экспоненциального роста такова, что если взять произвольную точку на оси времени и откладывать от нее интервалы произвольной, но равной длительности, то численность популяции на последовательности этих интервалов будет расти по закону геометрической прогрессии.

Что в корне отличает его от степенного параболического или гиперболического роста. Для которых не существует встроенного масштаба времени – неизменного времени удвоения численности, т. к. для них это время либо возрастает, либо убывает.

И которые в силу этой своей особенности не могут описывать рост какой-либо популяции, при том условии, конечно, что рост этот определяется причинным законом, т. е. порождается нелинейной положительной обратной связью (НПОС) между численностью и ее естественным приростом. НПОС, причины которой полностью определяются связями (и только связями, а не индивидуальной способностью к размножению) между членами популяции и которая может быть понята? и описана.

* * *

В самой природе степенного роста популяции есть что-то неестественное: трудно себе представить, чтобы прирост численности был пропорционален не самой численности, а какой-то ее степени. При экспоненциальном росте прирост численности популяции пропорционален самой численности. Если удвоить численность, то за этот же промежуток времени удвоится и ее прирост.

Но если прирост зависит от численности по степенному закону – это не так. В таком случае можно попробовать постулировать зависимость коэффициента прироста численности от численности по степенному закону. Открытие закона гиперболического роста населения Земли описывает Л.М. Гиндилис:

«Довольно очевидно, что абсолютный прирост населения должен быть пропорционален численности населения. Если взять какой-то однородный в демографическом отношении регион, то из двух пунктов этого региона, прирост будет выше там, где больше численность населения. Точно так же, чем больше численность населения в момент времени t, тем больше и прирост населения в этот момент. Статистика показывает, что за небольшое время dt, прирост будет равен dN = ?Ndt. «…»

«В 1960 году в журнале «Science» была опубликована статья трех авторов Х. Фостера, П. Мориа и Л. Эмиота, которая называлась «День страшного суда пятница 13 ноября 2026 года». Используя тщательно отобранные статистические данные авторы показали, что относительный прирост населения растет так же быстро, как само население. Чем объясняется такая зависимость, остается пока неясным». «…»

Рис. 2. Пропорциональность коэффициента мирового естественного прироста общей численности народонаселения позволяет объяснить гиперболический рост населения Земли.

«…Сокращение смертности в целом по земному шару перекрывает уменьшение рождаемости в отдельных (особенно развитых странах), так что естественный прирост на Земле возрастает со временем. Менее ясно почему он растет столь же стремительно как само население, что собственно и приводит к гиперболическому закону. Это пока остается загадкой» [22], стр. 471.

Здесь Л.М. Гиндилис допускает две серьезные ошибки. Первая заключается в том, что, отождествляя закон гиперболического роста численности населения мира с причинным степенным законом квадратичного роста (который утверждает, что причина гиперболического роста заключается в ПОС второго порядка между скоростью роста и численностью), он приписывает Фёрстеру открытие, которого тот не совершал.

Исследование Фёрстера и его коллег касается только зависимости численности от времени, которая была получена при обработке большого количества данных по методу наименьших квадратов. Как в точности, если не говорить о средних величинах, зависела при этом скорость роста численности от численности и от времени, и как зависел коэффициент прироста от численности – остается неизвестным.

На самом деле эмпирическая зависимость численности от времени, открытая Фёрстером и его коллегами, могла быть получена и при другом, отличном от закона квадратичного роста, дифференциальном причинном законе роста. Неясно даже может ли вообще гиперболический рост населения мира, учитывая непонятную, парадоксальную системность человечества, без которой он никогда бы не проявился, быть объяснен с помощью законов с простой преддетерминацией. Связь между скоростью роста и численностью в таком случае в период гиперболического роста могла и не быть причинно-следственной.

Вторая ошибка вполне логична и заключается в том, что автор подменяет здесь проблему гиперболического роста численности населения Земли на проблему линейной зависимости коэффициента мирового естественного прироста от численности.

Если коэффициент естественного прироста для каждого села, города, страны, региона – един и пропорционален численности населения мира: ? = ?

N, то сложив эти приросты (dN

= ?

N*N